analysis_config.cc 42.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24
#include "paddle/fluid/platform/enforce.h"
25
#include "paddle/utils/string/split.h"
26

27 28 29 30
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

31
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
32 33 34
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

35
namespace paddle {
W
wanghuancoder 已提交
36 37
struct MkldnnQuantizerConfig;

38
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
39
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
40
extern const std::vector<std::string> kLiteSubgraphPasses;
41

42
PassStrategy *AnalysisConfig::pass_builder() const {
43 44 45 46
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
47 48
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
49 50
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
51 52 53
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
54 55 56 57 58 59 60 61 62 63 64 65
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

66 67 68
  return pass_builder_.get();
}

69
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
70
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
71 72

  Update();
73
}
74 75
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
76 77
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
78 79

  Update();
80
}
81 82
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
83 84
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
85 86

  Update();
87
}
88 89
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
90
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
91 92
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
93
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
94
  gpu_device_id_ = device_id;
95
#else
Y
Yan Chunwei 已提交
96
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
97 98
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
99 100 101

  Update();
}
102

103
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
104 105 106
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
107 108 109 110 111 112
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
113 114 115
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
116 117 118 119 120 121 122
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

123
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
124 125 126
  use_gpu_ = false;

  Update();
127 128
}

129 130 131 132 133 134
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
135 136 137 138
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
139
                               const std::string &precision,
140 141
                               bool adaptive_seqlen,
                               bool enable_multi_stream) {
142 143
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
144 145 146 147 148
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
149
  xpu_enable_multi_stream_ = enable_multi_stream;
150 151 152
  Update();
}

153
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
154 155
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
156 157 158 159 160 161
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
162
void AnalysisConfig::EnableNpu(int device_id) {
S
shentanyue 已提交
163
#if defined(PADDLE_WITH_ASCEND_CL)
W
Wilber 已提交
164 165
  use_npu_ = true;
  npu_device_id_ = device_id;
S
shentanyue 已提交
166 167 168 169
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = "npu";
W
Wilber 已提交
170 171 172 173 174 175
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif
  Update();
}
176

177 178 179 180 181 182 183 184 185 186 187 188 189
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
190 191
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
192 193
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
194 195 196
  enable_ir_optim_ = true;

  use_ipu_ = true;
197 198
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
199 200
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
201 202 203 204

  Update();
}

W
Wilber 已提交
205 206
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
207 208 209 210 211 212
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
213 214 215

  Update();
}
W
Wilber 已提交
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
void AnalysisConfig::SetIpuCustomInfo(
    const std::vector<std::vector<std::string>> &ipu_custom_ops_info,
    const std::map<std::string, bool> &ipu_custom_patterns) {
  ipu_custom_ops_info_ = ipu_custom_ops_info;
  for (auto iter = ipu_custom_patterns.begin();
       iter != ipu_custom_patterns.end();
       iter++) {
    if (iter->second == true) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "True"});
    } else if (iter->second == false) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "False"});
    }
  }

  Update();
}

void AnalysisConfig::LoadIpuConfig(const std::string &config_path) {
  std::ifstream fin(config_path, std::ios::in);
  PADDLE_ENFORCE_EQ(
      static_cast<bool>(fin.is_open()),
      true,
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_path));
  std::string line;
  while (std::getline(fin, line)) {
    // remove all space
    line.erase(std::remove(line.begin(), line.end(), ' '), line.end());

    std::string key;
    std::string value;
    std::istringstream stream(line);
    // Split string to key and value based on the first `,`
    std::getline(stream, key, ',');
    std::getline(stream, value);

    auto string2bool = [](std::string s) {
      std::transform(s.begin(), s.end(), s.begin(), [](unsigned char c) {
        return ::tolower(c);
      });
      return s == "true" || s == "1";
    };

    // ipu_custom_ops_info:
    // [[paddle_op_name, popart_op_name, domain, version], [paddle_op_name,
    // popart_op_name, domain, version]...]
    // ipu_custom_patterns:
    // [[paddle_op_name, enable_pattern], [paddle_op_name, enable_pattern]...]
    auto string2vector = [](std::string s) {
      std::vector<std::vector<std::string>> custom_info;
      s.erase(0, 1);
      s.pop_back();

      std::string one;
      std::istringstream s_stream(s);
      while (std::getline(s_stream, one, ']')) {
        if (!one.empty()) {
          // remove `[`
          one.erase(0, 1);
          custom_info.push_back(paddle::string::Split(one, ','));
        }
      }
      return custom_info;
    };

    if (ipu_config_mapper_.find(key) == ipu_config_mapper_.end()) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "invalid key {} in IPU config", key));
    }
    switch (ipu_config_mapper_.at(key)) {
      case ipu_config_code::ipu_device_num:
        ipu_device_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_micro_batch_size:
        ipu_micro_batch_size_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_pipelining:
        ipu_enable_pipelining_ = string2bool(value);
        break;
      case ipu_config_code::ipu_batches_per_step:
        ipu_batches_per_step_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_fp16:
        ipu_enable_fp16_ = string2bool(value);
        break;
      case ipu_config_code::ipu_replica_num:
        ipu_replica_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_available_memory_proportion:
        ipu_available_memory_proportion_ = std::stof(value);
        break;
      case ipu_config_code::ipu_enable_half_partial:
        ipu_enable_half_partial_ = string2bool(value);
        break;
      case ipu_config_code::ipu_custom_ops_info:
        ipu_custom_ops_info_ = string2vector(value);
        break;
      case ipu_config_code::ipu_custom_patterns:
        ipu_custom_patterns_ = string2vector(value);
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "invalid key {} in IPU config", key));
        break;
    }
  }

  Update();
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

358
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
359 360 361 362 363 364
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
365

366
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
367 368
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
369

370
  CP_MEMBER(use_fc_padding_);
371
  // GPU related.
372
  CP_MEMBER(use_gpu_);
373 374
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
375
  CP_MEMBER(use_cudnn_);
376
  CP_MEMBER(gpu_device_id_);
377
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
378

379 380 381
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
382
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
383
  // TensorRT related.
384 385 386 387
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
388
  CP_MEMBER(tensorrt_precision_mode_);
389
  CP_MEMBER(trt_disabled_ops_);
390 391
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
392
  CP_MEMBER(trt_use_static_engine_);
393
  CP_MEMBER(trt_use_calib_mode_);
394
  CP_MEMBER(trt_use_varseqlen_);
395
  CP_MEMBER(trt_with_interleaved_);
396 397
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
398 399 400 401
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
402
  CP_MEMBER(trt_use_inspector_);
403
  CP_MEMBER(trt_engine_memory_sharing_);
D
denglin-github 已提交
404 405 406
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
D
denglin-github 已提交
407 408 409 410 411 412 413
  CP_MEMBER(dlnne_max_batchsize_);
  CP_MEMBER(dlnne_use_static_batch_);
  CP_MEMBER(dlnne_weight_share_mode_);
  CP_MEMBER(dlnne_use_calib_mode_);
  CP_MEMBER(dlnne_precision_mode_);
  CP_MEMBER(dlnne_disable_nodes_by_outputs_);
  CP_MEMBER(dlnne_input_shape_dict_);
S
Sylwester Fraczek 已提交
414
  // MKLDNN related.
415 416
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
417
  CP_MEMBER(mkldnn_cache_capacity_);
418 419 420
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
421
  // Quantization related.
B
baoachun 已提交
422 423 424
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
425 426
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
427 428 429
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
430
  CP_MEMBER(disable_trt_plugin_fp16_);
431

石晓伟 已提交
432 433 434 435
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
436 437
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
438
  // XPU related.
439
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
440
  CP_MEMBER(xpu_device_id_);
441
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
442 443 444 445 446
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
447
  CP_MEMBER(xpu_enable_multi_stream_);
石晓伟 已提交
448

W
Wilber 已提交
449 450 451
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
452
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
453

454 455 456
  // profile related.
  CP_MEMBER(with_profile_);

457 458 459
  // glog related.
  CP_MEMBER(with_glog_info_);

460 461 462 463 464 465 466 467 468 469
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

470 471
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
472 473 474
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
475
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
476 477
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
478 479 480 481
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
482 483
  CP_MEMBER(ipu_custom_ops_info_);
  CP_MEMBER(ipu_custom_patterns_);
J
jianghaicheng 已提交
484

485 486 487
  // fleet exe related
  CP_MEMBER(dist_config_);

488 489 490 491 492
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

493 494 495 496
  // JITLayer relate
  CP_MEMBER(apply_optim_);
  CP_MEMBER(skip_load_params_);

497
  if (use_gpu_) {
W
Wilber 已提交
498 499
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
500 501
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
502 503
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
504 505 506
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
507 508 509
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
510 511 512
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
513 514 515 516 517
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

518
#undef CP_MEMBER
Y
Yan Chunwei 已提交
519

W
Wilber 已提交
520 521 522 523 524
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
525
    pass_builder_->ClearPasses();
W
Wilber 已提交
526
    auto other_passes = other.pass_builder()->AllPasses();
527 528
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
529
    }
530
  }
D
denglin-github 已提交
531 532 533 534 535 536 537 538
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
539 540 541 542
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
543 544 545 546 547
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
W
Wilber 已提交
548 549 550 551

  for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) {
    pass_builder_->DeletePass(delete_pass);
  }
552 553
}

554
void AnalysisConfig::EnableCUDNN() {
555
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
556 557 558 559 560 561 562 563 564
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

565
void AnalysisConfig::EnableMKLDNN() {
566 567 568 569 570 571
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
572 573

  Update();
574 575
}

576 577 578 579 580 581 582 583 584
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

585 586 587 588 589 590 591 592 593 594 595 596 597
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

598 599
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
600 601
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
602 603 604 605
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
606 607 608 609
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
610 611 612 613 614 615 616 617
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

P
Paulina Gacek 已提交
618 619 620 621 622 623 624 625 626 627
void AnalysisConfig::DisableMkldnnFcPasses() {
#ifdef PADDLE_WITH_MKLDNN
  disable_mkldnn_fc_passes_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use DisableMkldnnFcPasses";
  disable_mkldnn_fc_passes_ = false;
#endif
  Update();
}

B
baoachun 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

657
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
658
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
659 660
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
661
  return mkldnn_quantizer_config_.get();
662 663
}

664
void AnalysisConfig::EnableTensorRtEngine(
665
    int64_t workspace_size,
W
Wilber 已提交
666 667 668 669
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
670
    bool use_calib_mode) {
671
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
672 673 674 675 676
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

677
  use_tensorrt_ = true;
678
#ifdef PADDLE_WITH_TENSORRT
679 680 681 682 683 684 685 686 687 688 689 690
  // https://forums.developer.nvidia.com/t/nvinfer1-createexecutioncontextwithoutdevicememory-returns-nullptr/111878/2
  // when trt version less than 7.2,
  // createExecutionContextWithoutDeviceMemory() has bug.
  // so, we cannot enable engine context memory sharing.
#if IS_TRT_VERSION_GE(7200)
  trt_engine_memory_sharing_ = true;
#else
  LOG(WARNING)
      << "TensorRT engine context memory sharing needs version 7.2 and after.";
  trt_engine_memory_sharing_ = false;
#endif
#endif
691 692
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
693
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
694
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
695
  trt_use_static_engine_ = use_static;
696
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
697

698
  Update();
Y
Yan Chunwei 已提交
699 700 701 702
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
703 704
}

D
denglin-github 已提交
705 706 707 708 709 710 711 712 713
void AnalysisConfig::EnableDlnne(
    int min_subgraph_size,
    int max_batch_size,
    bool use_static_batch,
    std::string weight_share_mode,
    std::unordered_set<std::string> disable_nodes_by_ouputs,
    std::map<std::string, std::vector<int64_t>> dlnne_input_shape_dict,
    bool use_calib_mode,
    AnalysisConfig::Precision precision_mode) {
D
denglin-github 已提交
714 715
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
D
denglin-github 已提交
716 717 718 719 720 721 722
  dlnne_max_batchsize_ = max_batch_size;
  dlnne_use_static_batch_ = use_static_batch;
  dlnne_weight_share_mode_ = weight_share_mode;
  dlnne_disable_nodes_by_outputs_ = disable_nodes_by_ouputs;
  dlnne_input_shape_dict_ = dlnne_input_shape_dict;
  dlnne_use_calib_mode_ = use_calib_mode;
  dlnne_precision_mode_ = precision_mode;
D
denglin-github 已提交
723 724 725
  Update();
}

726 727 728 729 730 731 732 733 734 735 736
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

737 738 739 740 741
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

742 743
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

744 745 746 747 748
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

749
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
750

Y
Yan Chunwei 已提交
751
// TODO(Superjomn) refactor this, buggy.
752
void AnalysisConfig::Update() {
753
  auto &&info = SerializeInfoCache();
754 755
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
756
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
757 758
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
759
      ((use_npu() ^ pass_builder_->use_npu())) ||
760 761
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
762 763 764 765 766 767 768
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
769 770 771
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
772 773
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
774 775
          use_gpu(),
          false,
776 777 778
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
779 780
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
781 782
          use_gpu(),
          false,
W
Wilber 已提交
783 784 785
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
786 787
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
788 789
          use_gpu(),
          false,
790 791 792
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
793 794 795
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
796

797
  } else {
Y
Yan Chunwei 已提交
798 799 800
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
801 802 803 804
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
805 806
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
807 808
          use_gpu(),
          false,
809 810 811 812
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
813 814
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
815 816
          use_gpu(),
          false,
W
Wilber 已提交
817 818 819 820
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
821 822
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
823 824
          use_gpu(),
          false,
825 826 827 828
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
829 830 831 832
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
833 834 835
  }

  if (use_tensorrt_) {
836 837
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
838
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
839
          (pass == "conv_bn_fuse_pass")) {
840 841
        continue;
      }
842
      pass_builder()->AppendPass(pass);
843 844
    }
  }
845

D
denglin-github 已提交
846 847 848 849 850 851 852
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

853
  if (use_gpu() && use_cudnn_) {
854
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
855 856 857 858 859 860 861 862
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

863
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
864
#ifdef PADDLE_WITH_MKLDNN
865 866 867
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
868 869
    } else {
      pass_builder()->EnableMKLDNN();
870 871 872 873
    }
#endif
  }

874 875 876 877 878
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
879 880
    }
#ifdef PADDLE_WITH_MKLDNN
881
    pass_builder()->EnableMkldnnQuantizer();
882 883 884
#endif
  }

885 886 887 888 889 890
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

P
Paulina Gacek 已提交
905 906 907 908 909 910
  if (disable_mkldnn_fc_passes_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->DisableMkldnnFcPasses();
#endif
  }

911
#ifdef PADDLE_WITH_MKLDNN
912 913
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
914
#else
Y
Yan Chunwei 已提交
915
  if (enable_memory_optim_) {
916 917
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
918 919
  }

石晓伟 已提交
920 921 922 923 924 925 926
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
927 928
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
929 930 931 932 933 934
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

935
  if (use_xpu_) {
936
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
937 938
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
939 940 941
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
942 943 944 945 946
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
947 948
  }

W
Wilber 已提交
949
  if (use_npu_) {
950
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
951 952
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
953 954 955 956 957 958 959 960 961
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
962 963 964 965 966 967 968
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
969 970 971 972 973 974 975
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
976 977 978 979 980
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

981
std::string AnalysisConfig::SerializeInfoCache() {
982
  std::stringstream ss;
Y
Yan Chunwei 已提交
983 984 985 986
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

987
  ss << use_gpu_;
988 989
  ss << use_external_stream_;
  ss << exec_stream_;
990
  ss << use_fc_padding_;
991 992
  ss << gpu_device_id_;
  ss << xpu_device_id_;
993 994 995 996 997
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
998 999
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
1000 1001 1002
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

1003 1004 1005
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

1006 1007 1008
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
1009
  ss << enable_memory_optim_;
1010
  ss << trt_engine_memory_sharing_;
1011 1012

  ss << use_mkldnn_;
1013
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
1014 1015 1016
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

1017
  ss << use_mkldnn_quantizer_;
1018
  ss << use_mkldnn_bfloat16_;
1019
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
1020 1021 1022
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
1023
  ss << ";";
Y
Yan Chunwei 已提交
1024 1025
  ss << model_from_memory_;

1026 1027
  ss << with_profile_;

1028 1029
  ss << with_glog_info_;

1030 1031 1032 1033
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
1034 1035
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
1036 1037

  ss << use_lite_;
1038 1039
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
1040 1041 1042 1043 1044
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
1045
  ss << xpu_enable_multi_stream_;
1046

W
Wilber 已提交
1047 1048 1049
  ss << use_npu_;
  ss << npu_device_id_;

1050 1051
  ss << thread_local_stream_;

J
jianghaicheng 已提交
1052 1053
  ss << use_ipu_;
  ss << ipu_device_num_;
1054
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
1055 1056
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
1057 1058 1059 1060
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
1061 1062 1063 1064 1065 1066
  for (auto custom_op : ipu_custom_ops_info_)
    for (auto attr : custom_op) ss << attr;
  ss << ";";
  for (auto pattern : ipu_custom_patterns_)
    for (auto attr : pattern) ss << attr;
  ss << ";";
1067
  for (auto &op : mixed_black_list_) ss << op.c_str();
1068 1069 1070
  return ss.str();
}

1071
void AnalysisConfig::SetCpuMathLibraryNumThreads(
1072 1073
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
1074 1075

  Update();
1076 1077
}

1078
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
1079
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1080 1081
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
1082
  size_t gpu_total, gpu_available;
1083
  platform::SetDeviceId(gpu_device_id_);
1084 1085
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
1086 1087
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
1088 1089 1090 1091
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
1092 1093 1094 1095
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
1096 1097
}

1098 1099
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
1100 1101 1102
  Update();
}

1103
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
1104 1105 1106
  return enable_memory_optim_;
}

1107 1108 1109 1110
bool AnalysisConfig::trt_engine_memory_sharing() const {
  return trt_engine_memory_sharing_;
}

1111 1112 1113 1114
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
1115 1116
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
1117
  model_from_memory_ = true;
T
Tao Luo 已提交
1118 1119
}

1120
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
1121 1122 1123 1124 1125
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
1126
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
1127 1128 1129 1130 1131
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
1132 1133 1134 1135
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
1136 1137 1138 1139 1140 1141

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

1142 1143 1144 1145 1146
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
1147
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
1148 1149
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
1150 1151 1152 1153 1154 1155
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
1156
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
1157 1158 1159
  Update();
}

1160 1161 1162 1163 1164 1165 1166
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

1167 1168
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
1180

1181 1182 1183 1184 1185 1186 1187 1188
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
1189
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1200 1201
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1202 1203 1204 1205 1206
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1250 1251 1252
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1253

1254 1255
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1256 1257
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1258 1259 1260
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1261 1262 1263 1264
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1265 1266
      os.InsertRow({"trt_engine_memory_sharing",
                    trt_engine_memory_sharing_ ? "true" : "false"});
1267
#endif
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1291 1292
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1293 1294 1295 1296

  return os.PrintTable();
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1318 1319
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1320 1321
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1322 1323
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1324 1325 1326
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1327 1328 1329
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1355 1356 1357 1358 1359 1360 1361
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1362 1363
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1364 1365 1366 1367 1368 1369
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

1370
const std::string &AnalysisConfig::shape_range_info_path() const {
1371 1372 1373
  return shape_range_info_path_;
}

1374
bool AnalysisConfig::shape_range_info_collected() const {
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

1385
bool AnalysisConfig::tuned_tensorrt_dynamic_shape() const {
1386 1387 1388
  return trt_tuned_dynamic_shape_;
}

1389
bool AnalysisConfig::trt_allow_build_at_runtime() const {
1390 1391
  return trt_allow_build_at_runtime_;
}
1392 1393 1394 1395 1396 1397

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1398
}  // namespace paddle