analysis_config.cc 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24 25
#include "paddle/fluid/platform/enforce.h"

26 27 28 29
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

30
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
31 32 33
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

34
namespace paddle {
W
wanghuancoder 已提交
35 36
struct MkldnnQuantizerConfig;

37
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
38
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
39
extern const std::vector<std::string> kLiteSubgraphPasses;
40

41
PassStrategy *AnalysisConfig::pass_builder() const {
42 43 44 45
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
46 47
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
48 49
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
50 51 52
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
53 54 55 56 57 58 59 60 61 62 63 64
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

65 66 67
  return pass_builder_.get();
}

68
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
69
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
70 71

  Update();
72
}
73 74
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
75 76
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
77 78

  Update();
79
}
80 81
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
82 83
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
84 85

  Update();
86
}
87 88
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
90 91
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
92
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
93
  gpu_device_id_ = device_id;
94
#else
Y
Yan Chunwei 已提交
95
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
96 97
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
98 99 100

  Update();
}
101

102
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
103 104 105
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
106 107 108 109 110 111
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
112 113 114
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
115 116 117 118 119 120 121
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

122
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
123 124 125
  use_gpu_ = false;

  Update();
126 127
}

128 129 130 131 132 133
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
134 135 136 137
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
138 139
                               const std::string &precision,
                               bool adaptive_seqlen) {
140 141
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
142 143 144 145 146
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
147 148 149
  Update();
}

150
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
151 152
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
153 154 155 156 157 158
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
159 160 161 162 163 164 165 166 167 168 169
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
170

171 172 173 174 175 176 177 178 179 180 181 182 183
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
184 185
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
186 187
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
188 189 190
  enable_ir_optim_ = true;

  use_ipu_ = true;
191 192
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
193 194
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
195 196 197 198

  Update();
}

W
Wilber 已提交
199 200
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
201 202 203 204 205 206
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
207 208 209

  Update();
}
W
Wilber 已提交
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

238
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
239 240 241 242 243 244
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
245

246
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
247 248
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
249

250
  CP_MEMBER(use_fc_padding_);
251
  // GPU related.
252
  CP_MEMBER(use_gpu_);
253 254
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
255
  CP_MEMBER(use_cudnn_);
256
  CP_MEMBER(gpu_device_id_);
257
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
258

259 260 261
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
262
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
263
  // TensorRT related.
264 265 266 267
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
268
  CP_MEMBER(tensorrt_precision_mode_);
269
  CP_MEMBER(trt_disabled_ops_);
270 271
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
272
  CP_MEMBER(trt_use_static_engine_);
273
  CP_MEMBER(trt_use_calib_mode_);
274
  CP_MEMBER(trt_use_varseqlen_);
275
  CP_MEMBER(trt_with_interleaved_);
276 277
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
278 279 280 281
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
282
  CP_MEMBER(trt_use_inspector_);
D
denglin-github 已提交
283 284 285
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
286
  // MKLDNN related.
287 288
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
289
  CP_MEMBER(mkldnn_cache_capacity_);
290 291 292
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
293
  // Quantization related.
B
baoachun 已提交
294 295 296
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
297 298
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
299 300 301
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
302
  CP_MEMBER(disable_trt_plugin_fp16_);
303

石晓伟 已提交
304 305 306 307
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
308 309
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
310
  // XPU related.
311
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
312
  CP_MEMBER(xpu_device_id_);
313
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
314 315 316 317 318
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
319

W
Wilber 已提交
320 321 322
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
323
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
324

325 326 327
  // profile related.
  CP_MEMBER(with_profile_);

328 329 330
  // glog related.
  CP_MEMBER(with_glog_info_);

331 332 333 334 335 336 337 338 339 340
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

341 342
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
343 344 345
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
346
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
347 348
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
349 350 351 352
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
J
jianghaicheng 已提交
353

354 355 356
  // fleet exe related
  CP_MEMBER(dist_config_);

357 358 359 360 361
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

362
  if (use_gpu_) {
W
Wilber 已提交
363 364
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
365 366
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
367 368
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
369 370 371
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
372 373 374
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
375 376 377
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
378 379 380 381 382
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

383
#undef CP_MEMBER
Y
Yan Chunwei 已提交
384

W
Wilber 已提交
385 386 387 388 389
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
390
    pass_builder_->ClearPasses();
W
Wilber 已提交
391
    auto other_passes = other.pass_builder()->AllPasses();
392 393
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
394
    }
395
  }
D
denglin-github 已提交
396 397 398 399 400 401 402 403
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
404 405 406 407
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
408 409 410 411 412
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
W
Wilber 已提交
413 414 415 416

  for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) {
    pass_builder_->DeletePass(delete_pass);
  }
417 418
}

419
void AnalysisConfig::EnableCUDNN() {
420
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
421 422 423 424 425 426 427 428 429
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

430
void AnalysisConfig::EnableMKLDNN() {
431 432 433 434 435 436
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
437 438

  Update();
439 440
}

441 442 443 444 445 446 447 448 449
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

450 451 452 453 454 455 456 457 458 459 460 461 462
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

463 464
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
465 466
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
467 468 469 470
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
471 472 473 474
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
475 476 477 478 479 480 481 482
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

512
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
513
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
514 515
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
516
  return mkldnn_quantizer_config_.get();
517 518
}

519
void AnalysisConfig::EnableTensorRtEngine(
520
    int64_t workspace_size,
W
Wilber 已提交
521 522 523 524
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
525
    bool use_calib_mode) {
526
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
527 528 529 530 531
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

532 533 534
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
535
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
536
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
537
  trt_use_static_engine_ = use_static;
538
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
539

540
  Update();
Y
Yan Chunwei 已提交
541 542 543 544
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
545 546
}

D
denglin-github 已提交
547 548 549 550 551 552
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

553 554 555 556 557 558 559 560 561 562 563
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

564 565 566 567 568
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

569 570
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

571 572 573 574 575
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

576
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
577

Y
Yan Chunwei 已提交
578
// TODO(Superjomn) refactor this, buggy.
579
void AnalysisConfig::Update() {
580 581 582
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
583
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
584 585
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
586
      ((use_npu() ^ pass_builder_->use_npu())) ||
587 588
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
589 590 591 592 593 594 595
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
596 597 598
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
599 600
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
601 602
          use_gpu(),
          false,
603 604 605
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
606 607
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
608 609
          use_gpu(),
          false,
W
Wilber 已提交
610 611 612
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
613 614
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
615 616
          use_gpu(),
          false,
617 618 619
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
620 621 622
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
623

624
  } else {
Y
Yan Chunwei 已提交
625 626 627
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
628 629 630 631
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
632 633
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
634 635
          use_gpu(),
          false,
636 637 638 639
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
640 641
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
642 643
          use_gpu(),
          false,
W
Wilber 已提交
644 645 646 647
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
648 649
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
650 651
          use_gpu(),
          false,
652 653 654 655
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
656 657 658 659
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
660 661 662
  }

  if (use_tensorrt_) {
663 664
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
665
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
666
          (pass == "conv_bn_fuse_pass")) {
667 668
        continue;
      }
669
      pass_builder()->AppendPass(pass);
670 671
    }
  }
672

D
denglin-github 已提交
673 674 675 676 677 678 679
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

680
  if (use_gpu() && use_cudnn_) {
681
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
682 683 684 685 686 687 688 689
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

690
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
691
#ifdef PADDLE_WITH_MKLDNN
692 693 694
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
695 696
    } else {
      pass_builder()->EnableMKLDNN();
697 698 699 700
    }
#endif
  }

701 702 703 704 705
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
706 707
    }
#ifdef PADDLE_WITH_MKLDNN
708
    pass_builder()->EnableMkldnnQuantizer();
709 710 711
#endif
  }

712 713 714 715 716 717
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

732
#ifdef PADDLE_WITH_MKLDNN
733 734
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
735
#else
Y
Yan Chunwei 已提交
736
  if (enable_memory_optim_) {
737 738
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
739 740
  }

石晓伟 已提交
741 742 743 744 745 746 747
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
748 749
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
750 751 752 753 754 755
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

756
  if (use_xpu_) {
757
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
758 759
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
760 761 762
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
763 764 765 766 767
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
768 769
  }

W
Wilber 已提交
770
  if (use_npu_) {
771
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
772 773
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
774 775 776 777 778 779 780 781 782
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
783 784 785 786 787 788 789
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
790 791 792 793 794 795 796
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
797 798 799 800 801
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

802
std::string AnalysisConfig::SerializeInfoCache() {
803
  std::stringstream ss;
Y
Yan Chunwei 已提交
804 805 806 807
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

808
  ss << use_gpu_;
809 810
  ss << use_external_stream_;
  ss << exec_stream_;
811
  ss << use_fc_padding_;
812 813
  ss << gpu_device_id_;
  ss << xpu_device_id_;
814 815 816 817 818
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
819 820
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
821 822 823
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

824 825 826
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

827 828 829
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
830
  ss << enable_memory_optim_;
831 832

  ss << use_mkldnn_;
833
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
834 835 836
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

837
  ss << use_mkldnn_quantizer_;
838
  ss << use_mkldnn_bfloat16_;
839
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
840 841 842
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
843
  ss << ";";
Y
Yan Chunwei 已提交
844 845
  ss << model_from_memory_;

846 847
  ss << with_profile_;

848 849
  ss << with_glog_info_;

850 851 852 853
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
854 855
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
856 857

  ss << use_lite_;
858 859
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
860 861 862 863 864
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
865

W
Wilber 已提交
866 867 868
  ss << use_npu_;
  ss << npu_device_id_;

869 870
  ss << thread_local_stream_;

J
jianghaicheng 已提交
871 872
  ss << use_ipu_;
  ss << ipu_device_num_;
873
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
874 875
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
876 877 878 879
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
J
jianghaicheng 已提交
880

881
  for (auto &op : mixed_black_list_) ss << op.c_str();
882 883 884
  return ss.str();
}

885
void AnalysisConfig::SetCpuMathLibraryNumThreads(
886 887
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
888 889

  Update();
890 891
}

892
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
893
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
894 895
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
896
  size_t gpu_total, gpu_available;
897
  platform::SetDeviceId(gpu_device_id_);
898 899
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
900 901
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
902 903 904 905
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
906 907 908 909
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
910 911
}

912 913
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
914 915 916
  Update();
}

917
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
918 919 920
  return enable_memory_optim_;
}

921 922 923 924
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
925 926
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
927
  model_from_memory_ = true;
T
Tao Luo 已提交
928 929
}

930
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
931 932 933 934 935
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
936
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
937 938 939 940 941
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
942 943 944 945
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
946 947 948 949 950 951

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

952 953 954 955 956
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
957
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
958 959
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
960 961 962 963 964 965
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
966
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
967 968 969
  Update();
}

970 971 972 973 974 975 976
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

977 978
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
998
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1009 1010
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1011 1012 1013 1014 1015
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1059 1060 1061
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1062

1063 1064
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1065 1066
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1067 1068 1069
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1070 1071 1072 1073
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1074
#endif
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1098 1099
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1100 1101 1102 1103

  return os.PrintTable();
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1125 1126
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1127 1128
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1129 1130
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1131 1132 1133
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1134 1135 1136
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1162 1163 1164 1165 1166 1167 1168
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1169 1170
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
1199 1200 1201 1202 1203 1204

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1205
}  // namespace paddle