analysis_config.cc 35.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18 19
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
20
#include "paddle/fluid/inference/utils/table_printer.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
23 24
#include "paddle/fluid/platform/enforce.h"

25 26 27 28
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30 31 32
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

33
namespace paddle {
W
wanghuancoder 已提交
34 35
struct MkldnnQuantizerConfig;

36
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
37
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
38
extern const std::vector<std::string> kLiteSubgraphPasses;
39

40
PassStrategy *AnalysisConfig::pass_builder() const {
41 42 43 44
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
45 46
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
47 48
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
49 50 51
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
52 53 54 55 56 57 58 59 60 61 62 63
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

64 65 66
  return pass_builder_.get();
}

67
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
68
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
69 70

  Update();
71
}
72 73
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
74 75
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
76 77

  Update();
78
}
79 80
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
81 82
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
83 84

  Update();
85
}
86

87 88
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
90 91
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
92
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
93
  gpu_device_id_ = device_id;
94
#else
Y
Yan Chunwei 已提交
95
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
96 97
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
98 99 100

  Update();
}
101

102
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
103 104 105
  use_gpu_ = false;

  Update();
106 107
}

108 109 110 111 112 113 114 115 116 117 118 119 120
void AnalysisConfig::Exp_EnableUseGpuFp16(
    std::unordered_set<std::string> op_list) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  use_gpu_fp16_ = true;
  gpu_fp16_disabled_op_types_.insert(op_list.begin(), op_list.end());
#else
  LOG(ERROR) << "Please compile with gpu to Exp_EnableUseGpuFp16()";
  use_gpu_fp16_ = false;
#endif

  Update();
}

121 122 123 124 125 126
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
127 128 129 130
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
131 132
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
133 134 135 136 137
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
138 139 140
  Update();
}

141 142 143 144 145 146 147 148
void AnalysisConfig::SetXpuDeviceId(int device_id) {
  PADDLE_ENFORCE_EQ(use_xpu_, true,
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
149 150 151 152 153 154 155 156 157 158 159
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
160

161 162 163 164 165 166 167 168 169 170 171 172 173
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

174 175 176
void AnalysisConfig::EnableIpu(int ipu_device_num, int ipu_micro_batch_size,
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
177 178 179
  enable_ir_optim_ = true;

  use_ipu_ = true;
180 181
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
182 183
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
184 185 186 187 188 189 190 191 192 193 194

  Update();
}

void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16, int ipu_replica_num,
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
195 196 197

  Update();
}
W
Wilber 已提交
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

226
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
227 228 229 230 231 232
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
233

234
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
235 236
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
237

238
  CP_MEMBER(use_fc_padding_);
239
  // GPU related.
240
  CP_MEMBER(use_gpu_);
241
  CP_MEMBER(use_cudnn_);
242
  CP_MEMBER(gpu_device_id_);
243
  CP_MEMBER(memory_pool_init_size_mb_);
244 245
  CP_MEMBER(use_gpu_fp16_);
  CP_MEMBER(gpu_fp16_disabled_op_types_);
Y
Yan Chunwei 已提交
246 247

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
248
  // TensorRT related.
249 250 251 252
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
253
  CP_MEMBER(tensorrt_precision_mode_);
254
  CP_MEMBER(trt_disabled_ops_);
255 256
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
257
  CP_MEMBER(trt_use_static_engine_);
258
  CP_MEMBER(trt_use_calib_mode_);
259
  CP_MEMBER(trt_use_varseqlen_);
260
  CP_MEMBER(trt_with_interleaved_);
261 262
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
263 264 265 266
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
267
  CP_MEMBER(trt_use_inspector_);
D
denglin-github 已提交
268 269 270
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
271
  // MKLDNN related.
272 273
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
274
  CP_MEMBER(mkldnn_cache_capacity_);
275 276 277
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
278
  // Quantization related.
B
baoachun 已提交
279 280 281
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
282 283
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
284 285 286
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
287
  CP_MEMBER(disable_trt_plugin_fp16_);
288

石晓伟 已提交
289 290 291 292
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
293 294
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
295
  // XPU related.
296
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
297
  CP_MEMBER(xpu_device_id_);
298
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
299 300 301 302 303
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
304

W
Wilber 已提交
305 306 307
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
308
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
309

310 311 312
  // profile related.
  CP_MEMBER(with_profile_);

313 314 315
  // glog related.
  CP_MEMBER(with_glog_info_);

316 317 318 319 320 321 322 323 324 325
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

326 327
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
328 329 330
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
331
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
332 333
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
334 335 336 337
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
J
jianghaicheng 已提交
338

339 340 341
  // fleet exe related
  CP_MEMBER(dist_config_);

342 343 344 345 346
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

347
  if (use_gpu_) {
348 349 350
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
351 352
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
353 354 355
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
356 357 358
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
359 360 361
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
362 363 364 365 366
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

367
#undef CP_MEMBER
Y
Yan Chunwei 已提交
368

W
Wilber 已提交
369 370 371 372 373
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
374
    pass_builder_->ClearPasses();
W
Wilber 已提交
375
    auto other_passes = other.pass_builder()->AllPasses();
376 377
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
378
    }
379
  }
D
denglin-github 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
395 396
}

397
void AnalysisConfig::EnableCUDNN() {
398
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
399 400 401 402 403 404 405 406 407
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

408
void AnalysisConfig::EnableMKLDNN() {
409 410 411 412 413 414
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
415 416

  Update();
417 418
}

419 420 421 422 423 424 425 426 427
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

428 429 430 431 432 433 434 435 436 437 438 439 440
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

441 442
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
443 444
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
445 446 447 448
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
449 450 451 452
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
453 454 455 456 457 458 459 460
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

490
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
491
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
492 493
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
494
  return mkldnn_quantizer_config_.get();
495 496
}

497
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
498
    int workspace_size, int max_batch_size, int min_subgraph_size,
499
    AnalysisConfig::Precision precision_mode, bool use_static,
500
    bool use_calib_mode) {
501
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
502 503 504 505 506
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

507 508 509
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
510
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
511
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
512
  trt_use_static_engine_ = use_static;
513
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
514

515
  Update();
Y
Yan Chunwei 已提交
516 517 518 519
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
520 521
}

D
denglin-github 已提交
522 523 524 525 526 527
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

528 529 530 531 532 533 534 535 536 537 538
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

539 540 541 542 543
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

544 545
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

546 547 548 549 550
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

551
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
552

Y
Yan Chunwei 已提交
553
// TODO(Superjomn) refactor this, buggy.
554
void AnalysisConfig::Update() {
555 556 557
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
558
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
559 560
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
561
      ((use_npu() ^ pass_builder_->use_npu())) ||
562 563
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
564 565 566 567 568 569 570
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
571 572 573
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
574 575 576 577 578 579
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
580 581 582 583 584 585
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
586 587 588 589 590 591
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
592 593 594
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
595

596
  } else {
Y
Yan Chunwei 已提交
597 598 599
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
600 601 602 603
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
604 605 606 607 608 609 610
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
611 612 613 614 615 616 617
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
618 619 620 621 622 623 624
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
625 626 627 628
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
629 630 631
  }

  if (use_tensorrt_) {
632 633
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
634
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
635
          (pass == "conv_bn_fuse_pass")) {
636 637
        continue;
      }
638
      pass_builder()->AppendPass(pass);
639 640
    }
  }
641

D
denglin-github 已提交
642 643 644 645 646 647 648
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

649
  if (use_gpu() && use_cudnn_) {
650
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
651 652 653 654 655 656 657 658
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

659 660 661 662 663 664 665 666 667 668 669 670 671 672
  if (use_gpu_fp16_) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (!enable_ir_optim_) {
      LOG(ERROR) << "Exp_EnableUseGpuFp16() only works when IR optimization is "
                    "enabled.";
    } else if (!use_gpu()) {
      LOG(ERROR)
          << "Exp_EnableUseGpuFp16() only works when use_gpu is enabled.";
    } else {
      pass_builder()->Exp_EnableUseGpuFp16();
    }
#endif
  }

673
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
674
#ifdef PADDLE_WITH_MKLDNN
675 676 677
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
678 679
    } else {
      pass_builder()->EnableMKLDNN();
680 681 682 683
    }
#endif
  }

684 685 686 687 688
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
689 690
    }
#ifdef PADDLE_WITH_MKLDNN
691
    pass_builder()->EnableMkldnnQuantizer();
692 693 694
#endif
  }

695 696 697 698 699 700
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

715
#ifdef PADDLE_WITH_MKLDNN
716 717
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
718
#else
Y
Yan Chunwei 已提交
719
  if (enable_memory_optim_) {
720 721
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
722 723
  }

石晓伟 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

738
  if (use_xpu_) {
739
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
740 741 742 743
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
744 745 746 747 748
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
749 750
  }

W
Wilber 已提交
751
  if (use_npu_) {
752
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
753 754 755 756 757 758 759 760 761 762
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
763 764 765 766 767 768 769
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
770 771 772 773 774 775 776
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
777 778 779 780 781
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

782
std::string AnalysisConfig::SerializeInfoCache() {
783
  std::stringstream ss;
Y
Yan Chunwei 已提交
784 785 786 787
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

788
  ss << use_gpu_;
789 790
  ss << use_gpu_fp16_;
  for (auto &item : gpu_fp16_disabled_op_types_) ss << item;
791
  ss << use_fc_padding_;
792 793
  ss << gpu_device_id_;
  ss << xpu_device_id_;
794 795 796 797 798
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
799 800
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
801 802 803
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

804 805 806
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

807 808 809
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
810
  ss << enable_memory_optim_;
811 812

  ss << use_mkldnn_;
813
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
814 815 816
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

817
  ss << use_mkldnn_quantizer_;
818
  ss << use_mkldnn_bfloat16_;
819
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
820 821 822
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
823
  ss << ";";
Y
Yan Chunwei 已提交
824 825
  ss << model_from_memory_;

826 827
  ss << with_profile_;

828 829
  ss << with_glog_info_;

830 831 832 833
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
834 835
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
836 837

  ss << use_lite_;
838 839
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
840 841 842 843 844
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
845

W
Wilber 已提交
846 847 848
  ss << use_npu_;
  ss << npu_device_id_;

849 850
  ss << thread_local_stream_;

J
jianghaicheng 已提交
851 852
  ss << use_ipu_;
  ss << ipu_device_num_;
853
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
854 855
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
856 857 858 859
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
J
jianghaicheng 已提交
860

861 862 863
  return ss.str();
}

864
void AnalysisConfig::SetCpuMathLibraryNumThreads(
865 866
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
867 868

  Update();
869 870
}

871
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
872
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
873 874
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
875
  size_t gpu_total, gpu_available;
876
  platform::SetDeviceId(gpu_device_id_);
877 878
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
879 880
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
881 882 883 884
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
885 886 887 888
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
889 890
}

891 892
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
893 894 895
  Update();
}

896
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
897 898 899
  return enable_memory_optim_;
}

900 901 902 903
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
904 905
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
906
  model_from_memory_ = true;
T
Tao Luo 已提交
907 908
}

909
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
910 911 912 913 914
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
915
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
916 917 918 919 920
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
921 922 923 924
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
925 926 927 928 929 930

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

931 932 933 934 935
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
936
void AnalysisConfig::EnableLiteEngine(
937
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
938 939 940 941 942 943
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
944
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
945 946 947
  Update();
}

948 949 950 951 952 953 954
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

955 956
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
976
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
1035 1036 1037
      os.InsertRow({"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_
                                                        ? shape_range_info_path_
                                                        : "false"});
1038

1039 1040
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1041 1042
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1043 1044 1045
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1046 1047 1048 1049
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1050
#endif
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1074 1075
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1076 1077 1078 1079

  return os.PrintTable();
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
  PADDLE_ENFORCE_EQ(model_cache_token.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
                    false, platform::errors::InvalidArgument(
                               "model_cache_token has already been set."));

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false,
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
1171
}  // namespace paddle