analysis_config.cc 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18 19
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
20
#include "paddle/fluid/inference/utils/table_printer.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
23 24
#include "paddle/fluid/platform/enforce.h"

25 26 27 28
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30 31 32
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

33
namespace paddle {
W
wanghuancoder 已提交
34 35
struct MkldnnQuantizerConfig;

36
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
37
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
38
extern const std::vector<std::string> kLiteSubgraphPasses;
39

40
PassStrategy *AnalysisConfig::pass_builder() const {
41 42 43 44
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
45 46
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
47 48
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
49 50 51 52 53 54 55 56 57 58 59 60
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

61 62 63
  return pass_builder_.get();
}

64
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
65
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
66 67

  Update();
68
}
69 70
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
71 72
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
73 74

  Update();
75
}
76 77
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
78 79
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
80 81

  Update();
82
}
83 84
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
85
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
86 87
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
88
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
89
  gpu_device_id_ = device_id;
90
#else
Y
Yan Chunwei 已提交
91
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
92 93
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
94 95 96

  Update();
}
97
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
98 99 100
  use_gpu_ = false;

  Update();
101 102
}

103 104 105 106 107 108
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
109 110 111 112
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
113 114
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
115 116 117 118 119
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
120 121 122
  Update();
}

123 124 125 126 127 128 129 130
void AnalysisConfig::SetXpuDeviceId(int device_id) {
  PADDLE_ENFORCE_EQ(use_xpu_, true,
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
131 132 133 134 135 136 137 138 139 140 141 142
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}

143
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
144 145 146 147 148 149
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
150

151
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
152 153
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
154

155
  CP_MEMBER(use_fc_padding_);
156
  // GPU related.
157
  CP_MEMBER(use_gpu_);
158
  CP_MEMBER(use_cudnn_);
159
  CP_MEMBER(gpu_device_id_);
160
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
161 162

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
163
  // TensorRT related.
164 165 166 167
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
168
  CP_MEMBER(tensorrt_precision_mode_);
169
  CP_MEMBER(trt_disabled_ops_);
170 171
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
172
  CP_MEMBER(trt_use_static_engine_);
173
  CP_MEMBER(trt_use_calib_mode_);
174
  CP_MEMBER(trt_use_oss_);
175 176 177 178
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
D
denglin-github 已提交
179 180 181
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
182
  // MKLDNN related.
183 184
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
185
  CP_MEMBER(mkldnn_cache_capacity_);
186 187 188
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
189 190 191
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
192 193 194
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
195
  CP_MEMBER(disable_trt_plugin_fp16_);
196

石晓伟 已提交
197 198 199 200
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
201 202
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
203
  // XPU related.
204
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
205
  CP_MEMBER(xpu_device_id_);
206
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
207 208 209 210 211
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
212

W
Wilber 已提交
213 214 215
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
216
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
217

218 219 220
  // profile related.
  CP_MEMBER(with_profile_);

221 222 223
  // glog related.
  CP_MEMBER(with_glog_info_);

224 225 226 227 228 229 230 231 232 233
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

234 235
  CP_MEMBER(thread_local_stream_);

236
  if (use_gpu_) {
237 238 239
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
240 241
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
242 243 244
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
245 246 247
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
248 249 250 251 252
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

253
#undef CP_MEMBER
Y
Yan Chunwei 已提交
254

W
Wilber 已提交
255 256 257 258 259
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
260
    pass_builder_->ClearPasses();
W
Wilber 已提交
261
    auto other_passes = other.pass_builder()->AllPasses();
262 263
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
264
    }
265
  }
D
denglin-github 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
281 282
}

283
void AnalysisConfig::EnableCUDNN() {
284
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
285 286 287 288 289 290 291 292 293
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

294
void AnalysisConfig::EnableMKLDNN() {
295 296 297 298 299 300
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
301 302

  Update();
303 304
}

305 306 307 308 309 310 311 312 313
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

314 315 316 317 318 319 320 321 322 323 324 325 326
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

327 328
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
329 330
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
331 332 333 334
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
335 336 337 338
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
339 340 341 342 343 344 345 346
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

347
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
348
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
349 350
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
351
  return mkldnn_quantizer_config_.get();
352 353
}

354
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
355
    int workspace_size, int max_batch_size, int min_subgraph_size,
356
    AnalysisConfig::Precision precision_mode, bool use_static,
357
    bool use_calib_mode) {
358
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
359 360 361 362 363
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

364 365 366
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
367
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
368
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
369
  trt_use_static_engine_ = use_static;
370
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
371

372
  Update();
Y
Yan Chunwei 已提交
373 374 375 376
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
377 378
}

D
denglin-github 已提交
379 380 381 382 383 384
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

385 386 387 388 389 390 391 392 393 394 395
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

396 397 398 399 400
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

401 402 403 404 405
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

406
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
407

Y
Yan Chunwei 已提交
408
// TODO(Superjomn) refactor this, buggy.
409
void AnalysisConfig::Update() {
410 411 412
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
413
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
414 415 416
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
      ((use_npu() ^ pass_builder_->use_npu()))) {
Y
Yan Chunwei 已提交
417 418 419 420 421 422 423
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
424 425 426 427 428 429
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
430 431 432 433 434 435
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
Y
Yan Chunwei 已提交
436 437 438
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
439

440
  } else {
Y
Yan Chunwei 已提交
441 442 443
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
444 445 446 447 448 449 450
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
451 452 453 454 455 456 457
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
458 459 460 461
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
462 463 464
  }

  if (use_tensorrt_) {
465 466
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
467
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
468
          (pass == "conv_bn_fuse_pass")) {
469 470
        continue;
      }
471
      pass_builder()->AppendPass(pass);
472 473
    }
  }
474

D
denglin-github 已提交
475 476 477 478 479 480 481
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

482
  if (use_gpu() && use_cudnn_) {
483
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
484 485 486 487 488 489 490 491
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

492
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
493
#ifdef PADDLE_WITH_MKLDNN
494 495 496
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
497 498
    } else {
      pass_builder()->EnableMKLDNN();
499 500 501 502
    }
#endif
  }

503 504 505 506 507
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
508 509
    }
#ifdef PADDLE_WITH_MKLDNN
510
    pass_builder()->EnableMkldnnQuantizer();
511 512 513
#endif
  }

514 515 516 517 518 519
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

520
#ifdef PADDLE_WITH_MKLDNN
521 522
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
523
#else
Y
Yan Chunwei 已提交
524
  if (enable_memory_optim_) {
525 526
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
527 528
  }

石晓伟 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

543
  if (use_xpu_) {
544
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
545 546 547 548
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
549 550 551 552 553
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
554 555
  }

W
Wilber 已提交
556
  if (use_npu_) {
557
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
558 559 560 561 562 563 564 565 566 567 568
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }

569 570 571 572 573
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

574
std::string AnalysisConfig::SerializeInfoCache() {
575
  std::stringstream ss;
Y
Yan Chunwei 已提交
576 577 578 579
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

580
  ss << use_gpu_;
581
  ss << use_fc_padding_;
582 583
  ss << gpu_device_id_;
  ss << xpu_device_id_;
584 585 586 587 588
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
589 590
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
591 592 593
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

594 595 596
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

597 598 599
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
600
  ss << enable_memory_optim_;
601 602

  ss << use_mkldnn_;
603
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
604 605 606
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

607
  ss << use_mkldnn_quantizer_;
608
  ss << use_mkldnn_bfloat16_;
609 610
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
611 612
  ss << model_from_memory_;

613 614
  ss << with_profile_;

615 616
  ss << with_glog_info_;

617 618 619 620
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
621 622
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
623 624

  ss << use_lite_;
625 626
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
627 628 629 630 631
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
632

W
Wilber 已提交
633 634 635
  ss << use_npu_;
  ss << npu_device_id_;

636 637
  ss << thread_local_stream_;

638 639 640
  return ss.str();
}

641
void AnalysisConfig::SetCpuMathLibraryNumThreads(
642 643
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
644 645

  Update();
646 647
}

648
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
649
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
650 651
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
652
  size_t gpu_total, gpu_available;
653
  platform::SetDeviceId(gpu_device_id_);
654 655
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
656 657
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
658 659 660 661
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
662 663 664 665
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
666 667
}

668 669
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
670 671 672
  Update();
}

673
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
674 675 676
  return enable_memory_optim_;
}

677 678 679 680
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
681 682
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
683
  model_from_memory_ = true;
T
Tao Luo 已提交
684 685
}

686
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
687 688 689 690 691
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
692
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
693 694 695 696 697
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
698 699 700 701
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
702 703 704 705 706 707

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

708 709 710 711 712
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
713
void AnalysisConfig::EnableLiteEngine(
714
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
715 716 717 718 719 720
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
721
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
722 723 724
  Update();
}

725 726 727 728 729 730 731
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

732 733
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
753
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
812 813 814
      os.InsertRow({"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_
                                                        ? shape_range_info_path_
                                                        : "false"});
815 816 817 818 819 820

      os.InsertRow({"tensorrt_use_oss", trt_use_oss_ ? "true" : "false"});
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
821
#endif
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
845 846
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
847 848 849 850

  return os.PrintTable();
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
  PADDLE_ENFORCE_EQ(model_cache_token.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
                    false, platform::errors::InvalidArgument(
                               "model_cache_token has already been set."));

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false,
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
942
}  // namespace paddle