analysis_config.cc 42.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24
#include "paddle/fluid/platform/enforce.h"
25
#include "paddle/utils/string/split.h"
26

27 28 29 30
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

31
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
32 33 34
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

35
namespace paddle {
W
wanghuancoder 已提交
36 37
struct MkldnnQuantizerConfig;

38
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
39
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
40
extern const std::vector<std::string> kLiteSubgraphPasses;
41

42
PassStrategy *AnalysisConfig::pass_builder() const {
43 44 45 46
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
47 48
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
49 50
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
51 52 53
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
54 55 56 57 58 59 60 61 62 63 64 65
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

66 67 68
  return pass_builder_.get();
}

69
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
70
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
71 72

  Update();
73
}
74 75
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
76 77
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
78 79

  Update();
80
}
81 82
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
83 84
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
85 86

  Update();
87
}
88 89
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
90
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
91 92
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
93
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
94
  gpu_device_id_ = device_id;
95
#else
Y
Yan Chunwei 已提交
96
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
97 98
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
99 100 101

  Update();
}
102

103
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
104 105 106
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
107 108 109 110 111 112
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
113 114 115
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
116 117 118 119 120 121 122
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

123
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
124 125 126
  use_gpu_ = false;

  Update();
127 128
}

129 130 131 132 133 134
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
135 136 137 138
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
139
                               const std::string &precision,
140 141
                               bool adaptive_seqlen,
                               bool enable_multi_stream) {
142 143
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
144 145 146 147 148
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
149
  xpu_enable_multi_stream_ = enable_multi_stream;
150 151 152
  Update();
}

153
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
154 155
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
156 157 158 159 160 161
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
162
void AnalysisConfig::EnableNpu(int device_id) {
S
shentanyue 已提交
163
#if defined(PADDLE_WITH_ASCEND_CL)
W
Wilber 已提交
164 165
  use_npu_ = true;
  npu_device_id_ = device_id;
S
shentanyue 已提交
166 167 168 169
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = "npu";
W
Wilber 已提交
170 171 172 173 174 175
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif
  Update();
}
176

177 178 179 180 181 182 183 184 185 186 187 188 189
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
190 191
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
192 193
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
194 195 196
  enable_ir_optim_ = true;

  use_ipu_ = true;
197 198
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
199 200
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
201 202 203 204

  Update();
}

W
Wilber 已提交
205 206
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
207 208 209 210 211 212
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
213 214 215

  Update();
}
W
Wilber 已提交
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
void AnalysisConfig::SetIpuCustomInfo(
    const std::vector<std::vector<std::string>> &ipu_custom_ops_info,
    const std::map<std::string, bool> &ipu_custom_patterns) {
  ipu_custom_ops_info_ = ipu_custom_ops_info;
  for (auto iter = ipu_custom_patterns.begin();
       iter != ipu_custom_patterns.end();
       iter++) {
    if (iter->second == true) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "True"});
    } else if (iter->second == false) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "False"});
    }
  }

  Update();
}

void AnalysisConfig::LoadIpuConfig(const std::string &config_path) {
  std::ifstream fin(config_path, std::ios::in);
  PADDLE_ENFORCE_EQ(
      static_cast<bool>(fin.is_open()),
      true,
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_path));
  std::string line;
  while (std::getline(fin, line)) {
    // remove all space
    line.erase(std::remove(line.begin(), line.end(), ' '), line.end());

    std::string key;
    std::string value;
    std::istringstream stream(line);
    // Split string to key and value based on the first `,`
    std::getline(stream, key, ',');
    std::getline(stream, value);

    auto string2bool = [](std::string s) {
      std::transform(s.begin(), s.end(), s.begin(), [](unsigned char c) {
        return ::tolower(c);
      });
      return s == "true" || s == "1";
    };

    // ipu_custom_ops_info:
    // [[paddle_op_name, popart_op_name, domain, version], [paddle_op_name,
    // popart_op_name, domain, version]...]
    // ipu_custom_patterns:
    // [[paddle_op_name, enable_pattern], [paddle_op_name, enable_pattern]...]
    auto string2vector = [](std::string s) {
      std::vector<std::vector<std::string>> custom_info;
      s.erase(0, 1);
      s.pop_back();

      std::string one;
      std::istringstream s_stream(s);
      while (std::getline(s_stream, one, ']')) {
        if (!one.empty()) {
          // remove `[`
          one.erase(0, 1);
          custom_info.push_back(paddle::string::Split(one, ','));
        }
      }
      return custom_info;
    };

    if (ipu_config_mapper_.find(key) == ipu_config_mapper_.end()) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "invalid key {} in IPU config", key));
    }
    switch (ipu_config_mapper_.at(key)) {
      case ipu_config_code::ipu_device_num:
        ipu_device_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_micro_batch_size:
        ipu_micro_batch_size_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_pipelining:
        ipu_enable_pipelining_ = string2bool(value);
        break;
      case ipu_config_code::ipu_batches_per_step:
        ipu_batches_per_step_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_fp16:
        ipu_enable_fp16_ = string2bool(value);
        break;
      case ipu_config_code::ipu_replica_num:
        ipu_replica_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_available_memory_proportion:
        ipu_available_memory_proportion_ = std::stof(value);
        break;
      case ipu_config_code::ipu_enable_half_partial:
        ipu_enable_half_partial_ = string2bool(value);
        break;
      case ipu_config_code::ipu_custom_ops_info:
        ipu_custom_ops_info_ = string2vector(value);
        break;
      case ipu_config_code::ipu_custom_patterns:
        ipu_custom_patterns_ = string2vector(value);
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "invalid key {} in IPU config", key));
        break;
    }
  }

  Update();
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

358
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
359 360 361 362 363 364
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
365

366
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
367 368
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
369

370
  CP_MEMBER(use_fc_padding_);
371
  // GPU related.
372
  CP_MEMBER(use_gpu_);
373 374
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
375
  CP_MEMBER(use_cudnn_);
376
  CP_MEMBER(gpu_device_id_);
377
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
378

379 380 381
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
382
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
383
  // TensorRT related.
384 385 386 387
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
388
  CP_MEMBER(tensorrt_precision_mode_);
389
  CP_MEMBER(trt_disabled_ops_);
390 391
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
392
  CP_MEMBER(trt_use_static_engine_);
393
  CP_MEMBER(trt_use_calib_mode_);
394
  CP_MEMBER(trt_use_varseqlen_);
395
  CP_MEMBER(trt_with_interleaved_);
396 397
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
398 399 400 401
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
402
  CP_MEMBER(trt_use_inspector_);
403
  CP_MEMBER(trt_engine_memory_sharing_);
D
denglin-github 已提交
404 405 406
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
D
denglin-github 已提交
407 408 409 410 411 412 413
  CP_MEMBER(dlnne_max_batchsize_);
  CP_MEMBER(dlnne_use_static_batch_);
  CP_MEMBER(dlnne_weight_share_mode_);
  CP_MEMBER(dlnne_use_calib_mode_);
  CP_MEMBER(dlnne_precision_mode_);
  CP_MEMBER(dlnne_disable_nodes_by_outputs_);
  CP_MEMBER(dlnne_input_shape_dict_);
S
Sylwester Fraczek 已提交
414
  // MKLDNN related.
415 416
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
417
  CP_MEMBER(mkldnn_cache_capacity_);
418 419 420
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
421
  // Quantization related.
B
baoachun 已提交
422 423 424
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
425 426
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
427 428 429
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
430
  CP_MEMBER(disable_trt_plugin_fp16_);
431

石晓伟 已提交
432 433 434 435
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
436 437
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
438
  // XPU related.
439
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
440
  CP_MEMBER(xpu_device_id_);
441
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
442 443 444 445 446
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
447
  CP_MEMBER(xpu_enable_multi_stream_);
石晓伟 已提交
448

W
Wilber 已提交
449 450 451
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
452
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
453

454 455 456
  // profile related.
  CP_MEMBER(with_profile_);

457 458 459
  // glog related.
  CP_MEMBER(with_glog_info_);

460 461 462 463 464 465 466 467 468 469
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

470 471
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
472 473 474
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
475
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
476 477
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
478 479 480 481
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
482 483
  CP_MEMBER(ipu_custom_ops_info_);
  CP_MEMBER(ipu_custom_patterns_);
J
jianghaicheng 已提交
484

485 486 487
  // fleet exe related
  CP_MEMBER(dist_config_);

488 489 490 491 492
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

493 494 495 496
  // JITLayer relate
  CP_MEMBER(apply_optim_);
  CP_MEMBER(skip_load_params_);

497
  if (use_gpu_) {
W
Wilber 已提交
498 499
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
500 501
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
502 503
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
504 505 506
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
507 508 509
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
510 511 512
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
513 514 515 516 517
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

518
#undef CP_MEMBER
Y
Yan Chunwei 已提交
519

W
Wilber 已提交
520 521 522 523 524
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
525
    pass_builder_->ClearPasses();
W
Wilber 已提交
526
    auto other_passes = other.pass_builder()->AllPasses();
527 528
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
529
    }
530
  }
D
denglin-github 已提交
531 532 533 534 535 536 537 538
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
539 540 541 542
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
543 544 545 546 547
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
W
Wilber 已提交
548 549 550 551

  for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) {
    pass_builder_->DeletePass(delete_pass);
  }
552 553
}

554
void AnalysisConfig::EnableCUDNN() {
555
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
556 557 558 559 560 561 562 563 564
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

565
void AnalysisConfig::EnableMKLDNN() {
566 567 568 569 570 571
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
572 573

  Update();
574 575
}

576 577 578 579 580 581 582 583 584
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

585 586 587 588 589 590 591 592 593 594 595 596 597
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

598 599
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
600 601
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
602 603 604 605
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
606 607 608 609
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
610 611 612 613 614 615 616 617
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

647
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
648
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
649 650
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
651
  return mkldnn_quantizer_config_.get();
652 653
}

654
void AnalysisConfig::EnableTensorRtEngine(
655
    int64_t workspace_size,
W
Wilber 已提交
656 657 658 659
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
660
    bool use_calib_mode) {
661
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
662 663 664 665 666
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

667
  use_tensorrt_ = true;
668
#ifdef PADDLE_WITH_TENSORRT
669 670 671 672 673 674 675 676 677 678 679 680
  // https://forums.developer.nvidia.com/t/nvinfer1-createexecutioncontextwithoutdevicememory-returns-nullptr/111878/2
  // when trt version less than 7.2,
  // createExecutionContextWithoutDeviceMemory() has bug.
  // so, we cannot enable engine context memory sharing.
#if IS_TRT_VERSION_GE(7200)
  trt_engine_memory_sharing_ = true;
#else
  LOG(WARNING)
      << "TensorRT engine context memory sharing needs version 7.2 and after.";
  trt_engine_memory_sharing_ = false;
#endif
#endif
681 682
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
683
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
684
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
685
  trt_use_static_engine_ = use_static;
686
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
687

688
  Update();
Y
Yan Chunwei 已提交
689 690 691 692
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
693 694
}

D
denglin-github 已提交
695 696 697 698 699 700 701 702 703
void AnalysisConfig::EnableDlnne(
    int min_subgraph_size,
    int max_batch_size,
    bool use_static_batch,
    std::string weight_share_mode,
    std::unordered_set<std::string> disable_nodes_by_ouputs,
    std::map<std::string, std::vector<int64_t>> dlnne_input_shape_dict,
    bool use_calib_mode,
    AnalysisConfig::Precision precision_mode) {
D
denglin-github 已提交
704 705
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
D
denglin-github 已提交
706 707 708 709 710 711 712
  dlnne_max_batchsize_ = max_batch_size;
  dlnne_use_static_batch_ = use_static_batch;
  dlnne_weight_share_mode_ = weight_share_mode;
  dlnne_disable_nodes_by_outputs_ = disable_nodes_by_ouputs;
  dlnne_input_shape_dict_ = dlnne_input_shape_dict;
  dlnne_use_calib_mode_ = use_calib_mode;
  dlnne_precision_mode_ = precision_mode;
D
denglin-github 已提交
713 714 715
  Update();
}

716 717 718 719 720 721 722 723 724 725 726
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

727 728 729 730 731
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

732 733
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

734 735 736 737 738
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

739
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
740

Y
Yan Chunwei 已提交
741
// TODO(Superjomn) refactor this, buggy.
742
void AnalysisConfig::Update() {
743
  auto &&info = SerializeInfoCache();
744 745
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
746
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
747 748
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
749
      ((use_npu() ^ pass_builder_->use_npu())) ||
750 751
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
752 753 754 755 756 757 758
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
759 760 761
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
762 763
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
764 765
          use_gpu(),
          false,
766 767 768
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
769 770
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
771 772
          use_gpu(),
          false,
W
Wilber 已提交
773 774 775
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
776 777
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
778 779
          use_gpu(),
          false,
780 781 782
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
783 784 785
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
786

787
  } else {
Y
Yan Chunwei 已提交
788 789 790
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
791 792 793 794
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
795 796
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
797 798
          use_gpu(),
          false,
799 800 801 802
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
803 804
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
805 806
          use_gpu(),
          false,
W
Wilber 已提交
807 808 809 810
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
811 812
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
813 814
          use_gpu(),
          false,
815 816 817 818
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
819 820 821 822
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
823 824 825
  }

  if (use_tensorrt_) {
826 827
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
828
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
829
          (pass == "conv_bn_fuse_pass")) {
830 831
        continue;
      }
832
      pass_builder()->AppendPass(pass);
833 834
    }
  }
835

D
denglin-github 已提交
836 837 838 839 840 841 842
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

843
  if (use_gpu() && use_cudnn_) {
844
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
845 846 847 848 849 850 851 852
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

853
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
854
#ifdef PADDLE_WITH_MKLDNN
855 856 857
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
858 859
    } else {
      pass_builder()->EnableMKLDNN();
860 861 862 863
    }
#endif
  }

864 865 866 867 868
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
869 870
    }
#ifdef PADDLE_WITH_MKLDNN
871
    pass_builder()->EnableMkldnnQuantizer();
872 873 874
#endif
  }

875 876 877 878 879 880
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

895
#ifdef PADDLE_WITH_MKLDNN
896 897
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
898
#else
Y
Yan Chunwei 已提交
899
  if (enable_memory_optim_) {
900 901
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
902 903
  }

石晓伟 已提交
904 905 906 907 908 909 910
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
911 912
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
913 914 915 916 917 918
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

919
  if (use_xpu_) {
920
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
921 922
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
923 924 925
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
926 927 928 929 930
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
931 932
  }

W
Wilber 已提交
933
  if (use_npu_) {
934
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
935 936
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
937 938 939 940 941 942 943 944 945
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
946 947 948 949 950 951 952
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
953 954 955 956 957 958 959
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
960 961 962 963 964
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

965
std::string AnalysisConfig::SerializeInfoCache() {
966
  std::stringstream ss;
Y
Yan Chunwei 已提交
967 968 969 970
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

971
  ss << use_gpu_;
972 973
  ss << use_external_stream_;
  ss << exec_stream_;
974
  ss << use_fc_padding_;
975 976
  ss << gpu_device_id_;
  ss << xpu_device_id_;
977 978 979 980 981
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
982 983
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
984 985 986
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

987 988 989
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

990 991 992
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
993
  ss << enable_memory_optim_;
994
  ss << trt_engine_memory_sharing_;
995 996

  ss << use_mkldnn_;
997
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
998 999 1000
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

1001
  ss << use_mkldnn_quantizer_;
1002
  ss << use_mkldnn_bfloat16_;
1003
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
1004 1005 1006
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
1007
  ss << ";";
Y
Yan Chunwei 已提交
1008 1009
  ss << model_from_memory_;

1010 1011
  ss << with_profile_;

1012 1013
  ss << with_glog_info_;

1014 1015 1016 1017
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
1018 1019
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
1020 1021

  ss << use_lite_;
1022 1023
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
1024 1025 1026 1027 1028
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
1029
  ss << xpu_enable_multi_stream_;
1030

W
Wilber 已提交
1031 1032 1033
  ss << use_npu_;
  ss << npu_device_id_;

1034 1035
  ss << thread_local_stream_;

J
jianghaicheng 已提交
1036 1037
  ss << use_ipu_;
  ss << ipu_device_num_;
1038
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
1039 1040
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
1041 1042 1043 1044
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
1045 1046 1047 1048 1049 1050
  for (auto custom_op : ipu_custom_ops_info_)
    for (auto attr : custom_op) ss << attr;
  ss << ";";
  for (auto pattern : ipu_custom_patterns_)
    for (auto attr : pattern) ss << attr;
  ss << ";";
1051
  for (auto &op : mixed_black_list_) ss << op.c_str();
1052 1053 1054
  return ss.str();
}

1055
void AnalysisConfig::SetCpuMathLibraryNumThreads(
1056 1057
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
1058 1059

  Update();
1060 1061
}

1062
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
1063
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1064 1065
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
1066
  size_t gpu_total, gpu_available;
1067
  platform::SetDeviceId(gpu_device_id_);
1068 1069
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
1070 1071
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
1072 1073 1074 1075
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
1076 1077 1078 1079
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
1080 1081
}

1082 1083
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
1084 1085 1086
  Update();
}

1087
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
1088 1089 1090
  return enable_memory_optim_;
}

1091 1092 1093 1094
bool AnalysisConfig::trt_engine_memory_sharing() const {
  return trt_engine_memory_sharing_;
}

1095 1096 1097 1098
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
1099 1100
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
1101
  model_from_memory_ = true;
T
Tao Luo 已提交
1102 1103
}

1104
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
1105 1106 1107 1108 1109
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
1110
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
1111 1112 1113 1114 1115
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
1116 1117 1118 1119
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
1120 1121 1122 1123 1124 1125

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

1126 1127 1128 1129 1130
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
1131
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
1132 1133
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
1134 1135 1136 1137 1138 1139
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
1140
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
1141 1142 1143
  Update();
}

1144 1145 1146 1147 1148 1149 1150
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

1151 1152
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
1164

1165 1166 1167 1168 1169 1170 1171 1172
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
1173
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1184 1185
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1186 1187 1188 1189 1190
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1234 1235 1236
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1237

1238 1239
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1240 1241
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1242 1243 1244
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1245 1246 1247 1248
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1249 1250
      os.InsertRow({"trt_engine_memory_sharing",
                    trt_engine_memory_sharing_ ? "true" : "false"});
1251
#endif
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1275 1276
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1277 1278 1279 1280

  return os.PrintTable();
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1302 1303
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1304 1305
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1306 1307
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1308 1309 1310
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1311 1312 1313
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1339 1340 1341 1342 1343 1344 1345
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1346 1347
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1348 1349 1350 1351 1352 1353
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

1354
const std::string &AnalysisConfig::shape_range_info_path() const {
1355 1356 1357
  return shape_range_info_path_;
}

1358
bool AnalysisConfig::shape_range_info_collected() const {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

1369
bool AnalysisConfig::tuned_tensorrt_dynamic_shape() const {
1370 1371 1372
  return trt_tuned_dynamic_shape_;
}

1373
bool AnalysisConfig::trt_allow_build_at_runtime() const {
1374 1375
  return trt_allow_build_at_runtime_;
}
1376 1377 1378 1379 1380 1381

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1382
}  // namespace paddle