analysis_config.cc 37.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24 25
#include "paddle/fluid/platform/enforce.h"

26 27 28 29
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

30
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
31 32 33
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

34
namespace paddle {
W
wanghuancoder 已提交
35 36
struct MkldnnQuantizerConfig;

37
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
38
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
39
extern const std::vector<std::string> kLiteSubgraphPasses;
40

41
PassStrategy *AnalysisConfig::pass_builder() const {
42 43 44 45
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
46 47
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
48 49
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
50 51 52
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
53 54 55 56 57 58 59 60 61 62 63 64
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

65 66 67
  return pass_builder_.get();
}

68
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
69
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
70 71

  Update();
72
}
73 74
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
75 76
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
77 78

  Update();
79
}
80 81
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
82 83
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
84 85

  Update();
86
}
87 88
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
90 91
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
92
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
93
  gpu_device_id_ = device_id;
94
#else
Y
Yan Chunwei 已提交
95
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
96 97
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
98 99 100

  Update();
}
101

102
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
103 104 105
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
106 107 108 109 110 111
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
112 113 114
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
115 116 117 118 119 120 121
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

122
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
123 124 125
  use_gpu_ = false;

  Update();
126 127
}

128 129 130 131 132 133
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
134 135 136 137
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
138 139
                               const std::string &precision,
                               bool adaptive_seqlen) {
140 141
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
142 143 144 145 146
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
147 148 149
  Update();
}

150
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
151 152
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
153 154 155 156 157 158
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
159 160 161 162 163 164 165 166 167 168 169
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
170

171 172 173 174 175 176 177 178 179 180 181 182 183
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
184 185
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
186 187
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
188 189 190
  enable_ir_optim_ = true;

  use_ipu_ = true;
191 192
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
193 194
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
195 196 197 198

  Update();
}

W
Wilber 已提交
199 200
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
201 202 203 204 205 206
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
207 208 209

  Update();
}
W
Wilber 已提交
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

238
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
239 240 241 242 243 244
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
245

246
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
247 248
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
249

250
  CP_MEMBER(use_fc_padding_);
251
  // GPU related.
252
  CP_MEMBER(use_gpu_);
253 254
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
255
  CP_MEMBER(use_cudnn_);
256
  CP_MEMBER(gpu_device_id_);
257
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
258

259 260 261
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
262
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
263
  // TensorRT related.
264 265 266 267
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
268
  CP_MEMBER(tensorrt_precision_mode_);
269
  CP_MEMBER(trt_disabled_ops_);
270 271
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
272
  CP_MEMBER(trt_use_static_engine_);
273
  CP_MEMBER(trt_use_calib_mode_);
274
  CP_MEMBER(trt_use_varseqlen_);
275
  CP_MEMBER(trt_with_interleaved_);
276 277
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
278 279 280 281
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
282
  CP_MEMBER(trt_use_inspector_);
D
denglin-github 已提交
283 284 285
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
D
denglin-github 已提交
286 287 288 289 290 291 292
  CP_MEMBER(dlnne_max_batchsize_);
  CP_MEMBER(dlnne_use_static_batch_);
  CP_MEMBER(dlnne_weight_share_mode_);
  CP_MEMBER(dlnne_use_calib_mode_);
  CP_MEMBER(dlnne_precision_mode_);
  CP_MEMBER(dlnne_disable_nodes_by_outputs_);
  CP_MEMBER(dlnne_input_shape_dict_);
S
Sylwester Fraczek 已提交
293
  // MKLDNN related.
294 295
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
296
  CP_MEMBER(mkldnn_cache_capacity_);
297 298 299
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
300
  // Quantization related.
B
baoachun 已提交
301 302 303
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
304 305
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
306 307 308
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
309
  CP_MEMBER(disable_trt_plugin_fp16_);
310

石晓伟 已提交
311 312 313 314
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
315 316
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
317
  // XPU related.
318
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
319
  CP_MEMBER(xpu_device_id_);
320
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
321 322 323 324 325
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
326

W
Wilber 已提交
327 328 329
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
330
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
331

332 333 334
  // profile related.
  CP_MEMBER(with_profile_);

335 336 337
  // glog related.
  CP_MEMBER(with_glog_info_);

338 339 340 341 342 343 344 345 346 347
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

348 349
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
350 351 352
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
353
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
354 355
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
356 357 358 359
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
J
jianghaicheng 已提交
360

361 362 363
  // fleet exe related
  CP_MEMBER(dist_config_);

364 365 366 367 368
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

369
  if (use_gpu_) {
W
Wilber 已提交
370 371
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
372 373
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
374 375
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
376 377 378
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
379 380 381
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
382 383 384
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
385 386 387 388 389
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

390
#undef CP_MEMBER
Y
Yan Chunwei 已提交
391

W
Wilber 已提交
392 393 394 395 396
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
397
    pass_builder_->ClearPasses();
W
Wilber 已提交
398
    auto other_passes = other.pass_builder()->AllPasses();
399 400
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
401
    }
402
  }
D
denglin-github 已提交
403 404 405 406 407 408 409 410
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
411 412 413 414
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
415 416 417 418 419
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
W
Wilber 已提交
420 421 422 423

  for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) {
    pass_builder_->DeletePass(delete_pass);
  }
424 425
}

426
void AnalysisConfig::EnableCUDNN() {
427
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
428 429 430 431 432 433 434 435 436
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

437
void AnalysisConfig::EnableMKLDNN() {
438 439 440 441 442 443
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
444 445

  Update();
446 447
}

448 449 450 451 452 453 454 455 456
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

457 458 459 460 461 462 463 464 465 466 467 468 469
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

470 471
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
472 473
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
474 475 476 477
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
478 479 480 481
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
482 483 484 485 486 487 488 489
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

519
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
520
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
521 522
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
523
  return mkldnn_quantizer_config_.get();
524 525
}

526
void AnalysisConfig::EnableTensorRtEngine(
527
    int64_t workspace_size,
W
Wilber 已提交
528 529 530 531
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
532
    bool use_calib_mode) {
533
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
534 535 536 537 538
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

539 540 541
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
542
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
543
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
544
  trt_use_static_engine_ = use_static;
545
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
546

547
  Update();
Y
Yan Chunwei 已提交
548 549 550 551
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
552 553
}

D
denglin-github 已提交
554 555 556 557 558 559 560 561 562
void AnalysisConfig::EnableDlnne(
    int min_subgraph_size,
    int max_batch_size,
    bool use_static_batch,
    std::string weight_share_mode,
    std::unordered_set<std::string> disable_nodes_by_ouputs,
    std::map<std::string, std::vector<int64_t>> dlnne_input_shape_dict,
    bool use_calib_mode,
    AnalysisConfig::Precision precision_mode) {
D
denglin-github 已提交
563 564
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
D
denglin-github 已提交
565 566 567 568 569 570 571
  dlnne_max_batchsize_ = max_batch_size;
  dlnne_use_static_batch_ = use_static_batch;
  dlnne_weight_share_mode_ = weight_share_mode;
  dlnne_disable_nodes_by_outputs_ = disable_nodes_by_ouputs;
  dlnne_input_shape_dict_ = dlnne_input_shape_dict;
  dlnne_use_calib_mode_ = use_calib_mode;
  dlnne_precision_mode_ = precision_mode;
D
denglin-github 已提交
572 573 574
  Update();
}

575 576 577 578 579 580 581 582 583 584 585
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

586 587 588 589 590
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

591 592
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

593 594 595 596 597
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

598
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
599

Y
Yan Chunwei 已提交
600
// TODO(Superjomn) refactor this, buggy.
601
void AnalysisConfig::Update() {
602 603 604
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
605
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
606 607
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
608
      ((use_npu() ^ pass_builder_->use_npu())) ||
609 610
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
611 612 613 614 615 616 617
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
618 619 620
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
621 622
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
623 624
          use_gpu(),
          false,
625 626 627
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
628 629
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
630 631
          use_gpu(),
          false,
W
Wilber 已提交
632 633 634
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
635 636
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
637 638
          use_gpu(),
          false,
639 640 641
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
642 643 644
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
645

646
  } else {
Y
Yan Chunwei 已提交
647 648 649
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
650 651 652 653
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
654 655
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
656 657
          use_gpu(),
          false,
658 659 660 661
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
662 663
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
664 665
          use_gpu(),
          false,
W
Wilber 已提交
666 667 668 669
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
670 671
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
672 673
          use_gpu(),
          false,
674 675 676 677
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
678 679 680 681
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
682 683 684
  }

  if (use_tensorrt_) {
685 686
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
687
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
688
          (pass == "conv_bn_fuse_pass")) {
689 690
        continue;
      }
691
      pass_builder()->AppendPass(pass);
692 693
    }
  }
694

D
denglin-github 已提交
695 696 697 698 699 700 701
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

702
  if (use_gpu() && use_cudnn_) {
703
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
704 705 706 707 708 709 710 711
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

712
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
713
#ifdef PADDLE_WITH_MKLDNN
714 715 716
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
717 718
    } else {
      pass_builder()->EnableMKLDNN();
719 720 721 722
    }
#endif
  }

723 724 725 726 727
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
728 729
    }
#ifdef PADDLE_WITH_MKLDNN
730
    pass_builder()->EnableMkldnnQuantizer();
731 732 733
#endif
  }

734 735 736 737 738 739
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

754
#ifdef PADDLE_WITH_MKLDNN
755 756
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
757
#else
Y
Yan Chunwei 已提交
758
  if (enable_memory_optim_) {
759 760
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
761 762
  }

石晓伟 已提交
763 764 765 766 767 768 769
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
770 771
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
772 773 774 775 776 777
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

778
  if (use_xpu_) {
779
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
780 781
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
782 783 784
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
785 786 787 788 789
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
790 791
  }

W
Wilber 已提交
792
  if (use_npu_) {
793
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
794 795
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
796 797 798 799 800 801 802 803 804
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
805 806 807 808 809 810 811
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
812 813 814 815 816 817 818
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
819 820 821 822 823
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

824
std::string AnalysisConfig::SerializeInfoCache() {
825
  std::stringstream ss;
Y
Yan Chunwei 已提交
826 827 828 829
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

830
  ss << use_gpu_;
831 832
  ss << use_external_stream_;
  ss << exec_stream_;
833
  ss << use_fc_padding_;
834 835
  ss << gpu_device_id_;
  ss << xpu_device_id_;
836 837 838 839 840
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
841 842
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
843 844 845
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

846 847 848
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

849 850 851
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
852
  ss << enable_memory_optim_;
853 854

  ss << use_mkldnn_;
855
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
856 857 858
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

859
  ss << use_mkldnn_quantizer_;
860
  ss << use_mkldnn_bfloat16_;
861
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
862 863 864
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
865
  ss << ";";
Y
Yan Chunwei 已提交
866 867
  ss << model_from_memory_;

868 869
  ss << with_profile_;

870 871
  ss << with_glog_info_;

872 873 874 875
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
876 877
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
878 879

  ss << use_lite_;
880 881
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
882 883 884 885 886
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
887

W
Wilber 已提交
888 889 890
  ss << use_npu_;
  ss << npu_device_id_;

891 892
  ss << thread_local_stream_;

J
jianghaicheng 已提交
893 894
  ss << use_ipu_;
  ss << ipu_device_num_;
895
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
896 897
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
898 899 900 901
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
J
jianghaicheng 已提交
902

903
  for (auto &op : mixed_black_list_) ss << op.c_str();
904 905 906
  return ss.str();
}

907
void AnalysisConfig::SetCpuMathLibraryNumThreads(
908 909
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
910 911

  Update();
912 913
}

914
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
915
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
916 917
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
918
  size_t gpu_total, gpu_available;
919
  platform::SetDeviceId(gpu_device_id_);
920 921
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
922 923
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
924 925 926 927
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
928 929 930 931
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
932 933
}

934 935
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
936 937 938
  Update();
}

939
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
940 941 942
  return enable_memory_optim_;
}

943 944 945 946
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
947 948
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
949
  model_from_memory_ = true;
T
Tao Luo 已提交
950 951
}

952
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
953 954 955 956 957
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
958
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
959 960 961 962 963
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
964 965 966 967
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
968 969 970 971 972 973

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

974 975 976 977 978
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
979
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
980 981
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
982 983 984 985 986 987
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
988
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
989 990 991
  Update();
}

992 993 994 995 996 997 998
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

999 1000
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
1020
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1031 1032
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1033 1034 1035 1036 1037
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1081 1082 1083
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1084

1085 1086
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1087 1088
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1089 1090 1091
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1092 1093 1094 1095
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1096
#endif
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1120 1121
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1122 1123 1124 1125

  return os.PrintTable();
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1147 1148
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1149 1150
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1151 1152
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1153 1154 1155
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1156 1157 1158
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1184 1185 1186 1187 1188 1189 1190
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1191 1192
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
1221 1222 1223 1224 1225 1226

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1227
}  // namespace paddle