analysis_config.cc 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18 19
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
20
#include "paddle/fluid/inference/utils/table_printer.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/fluid/platform/gpu_info.h"
24

25 26 27 28
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30 31 32
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

33
namespace paddle {
W
wanghuancoder 已提交
34 35
struct MkldnnQuantizerConfig;

36
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
37
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
38
extern const std::vector<std::string> kLiteSubgraphPasses;
39

40
PassStrategy *AnalysisConfig::pass_builder() const {
41 42 43 44
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
45 46
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
47 48
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
49 50 51 52 53 54 55 56 57 58 59 60
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

61 62 63
  return pass_builder_.get();
}

64
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
65
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
66 67

  Update();
68
}
69 70
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
71 72
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
73 74

  Update();
75
}
76 77
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
78 79
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
80 81

  Update();
82
}
83 84
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
85
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
86 87
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
88
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
89
  gpu_device_id_ = device_id;
90
#else
Y
Yan Chunwei 已提交
91
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
92 93
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
94 95 96

  Update();
}
97
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
98 99 100
  use_gpu_ = false;

  Update();
101 102
}

103 104 105 106 107 108
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
109 110 111 112
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
113 114
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
115 116 117 118 119
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
120 121 122
  Update();
}

123 124 125 126 127 128 129 130
void AnalysisConfig::SetXpuDeviceId(int device_id) {
  PADDLE_ENFORCE_EQ(use_xpu_, true,
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
131 132 133 134 135 136 137 138 139 140 141 142
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}

143
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
144 145 146 147 148 149
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
150

151
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
152 153
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
154

155
  CP_MEMBER(use_fc_padding_);
156
  // GPU related.
157
  CP_MEMBER(use_gpu_);
158
  CP_MEMBER(use_cudnn_);
159
  CP_MEMBER(gpu_device_id_);
160
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
161 162

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
163
  // TensorRT related.
164 165 166 167
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
168
  CP_MEMBER(tensorrt_precision_mode_);
169
  CP_MEMBER(trt_disabled_ops_);
170 171
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
172
  CP_MEMBER(trt_use_static_engine_);
173
  CP_MEMBER(trt_use_calib_mode_);
174
  CP_MEMBER(trt_use_oss_);
175 176 177 178
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
D
denglin-github 已提交
179 180 181
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
182
  // MKLDNN related.
183 184
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
185
  CP_MEMBER(mkldnn_cache_capacity_);
186 187 188
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
189 190 191
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
192 193 194
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
195
  CP_MEMBER(disable_trt_plugin_fp16_);
196

石晓伟 已提交
197 198 199 200
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
201 202
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
203
  // XPU related.
204
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
205
  CP_MEMBER(xpu_device_id_);
206
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
207 208 209 210 211
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
212

W
Wilber 已提交
213 214 215
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
216
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
217

218 219 220
  // profile related.
  CP_MEMBER(with_profile_);

221 222 223
  // glog related.
  CP_MEMBER(with_glog_info_);

224 225 226 227 228 229 230 231 232 233
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

234 235
  CP_MEMBER(thread_local_stream_);

236
  if (use_gpu_) {
237 238 239
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
240 241
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
242 243 244
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
245 246 247
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
248 249 250 251 252
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

253
#undef CP_MEMBER
Y
Yan Chunwei 已提交
254

W
Wilber 已提交
255 256 257 258 259 260 261
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
    auto all_passes = kTRTSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
W
Wilber 已提交
262 263 264 265
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
W
Wilber 已提交
266 267 268 269 270 271 272
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
273
  }
D
denglin-github 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
289 290
}

291
void AnalysisConfig::EnableCUDNN() {
292
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
293 294 295 296 297 298 299 300 301
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

302
void AnalysisConfig::EnableMKLDNN() {
303 304 305 306 307 308
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
309 310

  Update();
311 312
}

313 314 315 316 317 318 319 320 321
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

322 323 324 325 326 327 328 329 330 331 332 333 334
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

335 336
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
337 338
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
339 340 341 342
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
343 344 345 346
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
347 348 349 350 351 352 353 354
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

355
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
356
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
357 358
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
359
  return mkldnn_quantizer_config_.get();
360 361
}

362
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
363
    int workspace_size, int max_batch_size, int min_subgraph_size,
364
    AnalysisConfig::Precision precision_mode, bool use_static,
365
    bool use_calib_mode) {
366
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
367 368 369 370 371
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

372 373 374
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
375
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
376
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
377
  trt_use_static_engine_ = use_static;
378
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
379

380
  Update();
Y
Yan Chunwei 已提交
381 382 383 384
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
385 386
}

D
denglin-github 已提交
387 388 389 390 391 392
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

393 394 395 396 397 398 399 400 401 402 403
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

404 405 406 407 408
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

409 410 411 412 413
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

414
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
415

Y
Yan Chunwei 已提交
416
// TODO(Superjomn) refactor this, buggy.
417
void AnalysisConfig::Update() {
418 419 420
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
421
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
422 423 424
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
      ((use_npu() ^ pass_builder_->use_npu()))) {
Y
Yan Chunwei 已提交
425 426 427 428 429 430 431
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
432 433 434 435 436 437
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
438 439 440 441 442 443
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
Y
Yan Chunwei 已提交
444 445 446
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
447

448
  } else {
Y
Yan Chunwei 已提交
449 450 451
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
452 453 454 455 456 457 458
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
459 460 461 462 463 464 465
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
466 467 468 469
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
470 471 472
  }

  if (use_tensorrt_) {
473 474
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
475
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
476
          (pass == "conv_bn_fuse_pass")) {
477 478
        continue;
      }
479
      pass_builder()->AppendPass(pass);
480 481
    }
  }
D
denglin-github 已提交
482 483 484 485 486 487 488
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

489
  if (use_gpu() && use_cudnn_) {
490
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
491 492 493 494 495 496 497 498
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

499
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
500
#ifdef PADDLE_WITH_MKLDNN
501 502 503
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
504 505
    } else {
      pass_builder()->EnableMKLDNN();
506 507 508 509
    }
#endif
  }

510 511 512 513 514
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
515 516
    }
#ifdef PADDLE_WITH_MKLDNN
517
    pass_builder()->EnableMkldnnQuantizer();
518 519 520
#endif
  }

521 522 523 524 525 526
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

527
#ifdef PADDLE_WITH_MKLDNN
528 529
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
530
#else
Y
Yan Chunwei 已提交
531
  if (enable_memory_optim_) {
532 533
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
534 535
  }

石晓伟 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

550
  if (use_xpu_) {
551
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
552 553 554 555
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
556 557 558 559 560
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
561 562
  }

W
Wilber 已提交
563
  if (use_npu_) {
564
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
565 566 567 568 569 570 571 572 573 574 575
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }

576 577 578 579 580
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

581
std::string AnalysisConfig::SerializeInfoCache() {
582
  std::stringstream ss;
Y
Yan Chunwei 已提交
583 584 585 586
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

587
  ss << use_gpu_;
588
  ss << use_fc_padding_;
589 590
  ss << gpu_device_id_;
  ss << xpu_device_id_;
591 592 593 594 595
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
596 597
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
598 599 600
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

601 602 603
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

604 605 606
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
607
  ss << enable_memory_optim_;
608 609

  ss << use_mkldnn_;
610
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
611 612 613
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

614
  ss << use_mkldnn_quantizer_;
615
  ss << use_mkldnn_bfloat16_;
616 617
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
618 619
  ss << model_from_memory_;

620 621
  ss << with_profile_;

622 623
  ss << with_glog_info_;

624 625 626 627
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
628 629
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
630 631

  ss << use_lite_;
632 633
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
634 635 636 637 638
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
639

W
Wilber 已提交
640 641 642
  ss << use_npu_;
  ss << npu_device_id_;

643 644
  ss << thread_local_stream_;

645 646 647
  return ss.str();
}

648
void AnalysisConfig::SetCpuMathLibraryNumThreads(
649 650
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
651 652

  Update();
653 654
}

655
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
656
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
657 658
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
659
  size_t gpu_total, gpu_available;
660
  platform::SetDeviceId(gpu_device_id_);
661 662
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
663 664
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
665 666 667 668
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
669 670 671 672
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
673 674
}

675 676
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
677 678 679
  Update();
}

680
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
681 682 683
  return enable_memory_optim_;
}

684 685 686 687
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
688 689
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
690
  model_from_memory_ = true;
Y
Yan Chunwei 已提交
691 692

  Update();
T
Tao Luo 已提交
693 694
}

695
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
696 697 698 699 700
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
701
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
702 703 704 705 706
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
707 708 709 710
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
711 712 713 714 715 716

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

717 718 719 720 721
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
722
void AnalysisConfig::EnableLiteEngine(
723
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
724 725 726 727 728 729
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
730
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
731 732 733
  Update();
}

734 735 736 737 738 739 740
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

741 742
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
762
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
821 822 823
      os.InsertRow({"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_
                                                        ? shape_range_info_path_
                                                        : "false"});
824 825 826 827 828 829

      os.InsertRow({"tensorrt_use_oss", trt_use_oss_ ? "true" : "false"});
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
830
#endif
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
854 855
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
856 857 858 859

  return os.PrintTable();
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
  PADDLE_ENFORCE_EQ(model_cache_token.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
                    false, platform::errors::InvalidArgument(
                               "model_cache_token has already been set."));

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false,
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
951
}  // namespace paddle