analysis_config.cc 30.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18 19
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
20
#include "paddle/fluid/inference/utils/table_printer.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
23 24
#include "paddle/fluid/platform/enforce.h"

25 26 27 28
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30 31 32
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

33
namespace paddle {
W
wanghuancoder 已提交
34 35
struct MkldnnQuantizerConfig;

36
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
37
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
38
extern const std::vector<std::string> kLiteSubgraphPasses;
39

40
PassStrategy *AnalysisConfig::pass_builder() const {
41 42 43 44
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
45 46
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
47 48
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
49 50 51
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
52 53 54 55 56 57 58 59 60 61 62 63
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

64 65 66
  return pass_builder_.get();
}

67
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
68
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
69 70

  Update();
71
}
72 73
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
74 75
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
76 77

  Update();
78
}
79 80
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
81 82
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
83 84

  Update();
85
}
86 87
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
88
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
89 90
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
91
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
92
  gpu_device_id_ = device_id;
93
#else
Y
Yan Chunwei 已提交
94
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
95 96
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
97 98 99

  Update();
}
100
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
101 102 103
  use_gpu_ = false;

  Update();
104 105
}

106 107 108 109 110 111
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
112 113 114 115
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
116 117
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
118 119 120 121 122
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
123 124 125
  Update();
}

126 127 128 129 130 131 132 133
void AnalysisConfig::SetXpuDeviceId(int device_id) {
  PADDLE_ENFORCE_EQ(use_xpu_, true,
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
134 135 136 137 138 139 140 141 142 143 144
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
J
jianghaicheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158
void AnalysisConfig::EnableIpu(int device_num, bool ipu_enable_pipelining,
                               int ipu_batches_per_step, int ipu_batch_size,
                               bool ipu_need_avg_shard) {
  enable_ir_optim_ = true;

  use_ipu_ = true;
  ipu_device_num_ = device_num;
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
  ipu_batch_size_ = ipu_batch_size;
  ipu_need_avg_shard_ = ipu_need_avg_shard;

  Update();
}
W
Wilber 已提交
159

160
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
161 162 163 164 165 166
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
167

168
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
169 170
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
171

172
  CP_MEMBER(use_fc_padding_);
173
  // GPU related.
174
  CP_MEMBER(use_gpu_);
175
  CP_MEMBER(use_cudnn_);
176
  CP_MEMBER(gpu_device_id_);
177
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
178 179

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
180
  // TensorRT related.
181 182 183 184
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
185
  CP_MEMBER(tensorrt_precision_mode_);
186
  CP_MEMBER(trt_disabled_ops_);
187 188
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
189
  CP_MEMBER(trt_use_static_engine_);
190
  CP_MEMBER(trt_use_calib_mode_);
191
  CP_MEMBER(trt_use_oss_);
192
  CP_MEMBER(trt_with_interleaved_);
193 194 195 196
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
D
denglin-github 已提交
197 198 199
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
200
  // MKLDNN related.
201 202
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
203
  CP_MEMBER(mkldnn_cache_capacity_);
204 205 206
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
207 208 209
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
210 211 212
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
213
  CP_MEMBER(disable_trt_plugin_fp16_);
214

石晓伟 已提交
215 216 217 218
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
219 220
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
221
  // XPU related.
222
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
223
  CP_MEMBER(xpu_device_id_);
224
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
225 226 227 228 229
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
230

W
Wilber 已提交
231 232 233
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
234
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
235

236 237 238
  // profile related.
  CP_MEMBER(with_profile_);

239 240 241
  // glog related.
  CP_MEMBER(with_glog_info_);

242 243 244 245 246 247 248 249 250 251
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

252 253
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
254 255 256 257 258 259 260 261
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
  CP_MEMBER(ipu_batch_size_);
  CP_MEMBER(ipu_need_avg_shard_);

262
  if (use_gpu_) {
263 264 265
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
266 267
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
268 269 270
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
271 272 273
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
274 275 276
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
277 278 279 280 281
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

282
#undef CP_MEMBER
Y
Yan Chunwei 已提交
283

W
Wilber 已提交
284 285 286 287 288
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
289
    pass_builder_->ClearPasses();
W
Wilber 已提交
290
    auto other_passes = other.pass_builder()->AllPasses();
291 292
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
293
    }
294
  }
D
denglin-github 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
310 311
}

312
void AnalysisConfig::EnableCUDNN() {
313
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
314 315 316 317 318 319 320 321 322
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

323
void AnalysisConfig::EnableMKLDNN() {
324 325 326 327 328 329
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
330 331

  Update();
332 333
}

334 335 336 337 338 339 340 341 342
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

343 344 345 346 347 348 349 350 351 352 353 354 355
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

356 357
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
358 359
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
360 361 362 363
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
364 365 366 367
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
368 369 370 371 372 373 374 375
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

376
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
377
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
378 379
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
380
  return mkldnn_quantizer_config_.get();
381 382
}

383
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
384
    int workspace_size, int max_batch_size, int min_subgraph_size,
385
    AnalysisConfig::Precision precision_mode, bool use_static,
386
    bool use_calib_mode) {
387
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
388 389 390 391 392
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

393 394 395
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
396
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
397
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
398
  trt_use_static_engine_ = use_static;
399
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
400

401
  Update();
Y
Yan Chunwei 已提交
402 403 404 405
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
406 407
}

D
denglin-github 已提交
408 409 410 411 412 413
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

414 415 416 417 418 419 420 421 422 423 424
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

425 426 427 428 429
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

430 431 432 433 434
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

435
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
436

Y
Yan Chunwei 已提交
437
// TODO(Superjomn) refactor this, buggy.
438
void AnalysisConfig::Update() {
439 440 441
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
442
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
443 444
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
445 446
      ((use_npu() ^ pass_builder_->use_npu())) ||
      ((use_ipu() ^ pass_builder_->use_ipu()))) {
Y
Yan Chunwei 已提交
447 448 449 450 451 452 453
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
454 455 456
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
457 458 459 460 461 462
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
463 464 465 466 467 468
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
Y
Yan Chunwei 已提交
469 470 471
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
472

473
  } else {
Y
Yan Chunwei 已提交
474 475 476
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
477 478 479 480
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
481 482 483 484 485 486 487
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
488 489 490 491 492 493 494
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
495 496 497 498
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
499 500 501
  }

  if (use_tensorrt_) {
502 503
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
504
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
505
          (pass == "conv_bn_fuse_pass")) {
506 507
        continue;
      }
508
      pass_builder()->AppendPass(pass);
509 510
    }
  }
511

D
denglin-github 已提交
512 513 514 515 516 517 518
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

519
  if (use_gpu() && use_cudnn_) {
520
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
521 522 523 524 525 526 527 528
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

529
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
530
#ifdef PADDLE_WITH_MKLDNN
531 532 533
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
534 535
    } else {
      pass_builder()->EnableMKLDNN();
536 537 538 539
    }
#endif
  }

540 541 542 543 544
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
545 546
    }
#ifdef PADDLE_WITH_MKLDNN
547
    pass_builder()->EnableMkldnnQuantizer();
548 549 550
#endif
  }

551 552 553 554 555 556
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

557
#ifdef PADDLE_WITH_MKLDNN
558 559
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
560
#else
Y
Yan Chunwei 已提交
561
  if (enable_memory_optim_) {
562 563
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
564 565
  }

石晓伟 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

580
  if (use_xpu_) {
581
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
582 583 584 585
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
586 587 588 589 590
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
591 592
  }

W
Wilber 已提交
593
  if (use_npu_) {
594
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
595 596 597 598 599 600 601 602 603 604
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
605 606 607 608 609 610 611
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
W
Wilber 已提交
612

613 614 615 616 617
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

618
std::string AnalysisConfig::SerializeInfoCache() {
619
  std::stringstream ss;
Y
Yan Chunwei 已提交
620 621 622 623
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

624
  ss << use_gpu_;
625
  ss << use_fc_padding_;
626 627
  ss << gpu_device_id_;
  ss << xpu_device_id_;
628 629 630 631 632
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
633 634
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
635 636 637
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

638 639 640
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

641 642 643
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
644
  ss << enable_memory_optim_;
645 646

  ss << use_mkldnn_;
647
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
648 649 650
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

651
  ss << use_mkldnn_quantizer_;
652
  ss << use_mkldnn_bfloat16_;
653 654
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
655 656
  ss << model_from_memory_;

657 658
  ss << with_profile_;

659 660
  ss << with_glog_info_;

661 662 663 664
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
665 666
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
667 668

  ss << use_lite_;
669 670
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
671 672 673 674 675
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
676

W
Wilber 已提交
677 678 679
  ss << use_npu_;
  ss << npu_device_id_;

680 681
  ss << thread_local_stream_;

J
jianghaicheng 已提交
682 683 684 685 686 687 688
  ss << use_ipu_;
  ss << ipu_device_num_;
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
  ss << ipu_batch_size_;
  ss << ipu_need_avg_shard_;

689 690 691
  return ss.str();
}

692
void AnalysisConfig::SetCpuMathLibraryNumThreads(
693 694
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
695 696

  Update();
697 698
}

699
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
700
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
701 702
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
703
  size_t gpu_total, gpu_available;
704
  platform::SetDeviceId(gpu_device_id_);
705 706
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
707 708
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
709 710 711 712
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
713 714 715 716
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
717 718
}

719 720
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
721 722 723
  Update();
}

724
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
725 726 727
  return enable_memory_optim_;
}

728 729 730 731
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
732 733
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
734
  model_from_memory_ = true;
T
Tao Luo 已提交
735 736
}

737
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
738 739 740 741 742
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
743
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
744 745 746 747 748
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
749 750 751 752
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
753 754 755 756 757 758

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

759 760 761 762 763
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
764
void AnalysisConfig::EnableLiteEngine(
765
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
766 767 768 769 770 771
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
772
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
773 774 775
  Update();
}

776 777 778 779 780 781 782
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

783 784
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
804
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
863 864 865
      os.InsertRow({"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_
                                                        ? shape_range_info_path_
                                                        : "false"});
866 867

      os.InsertRow({"tensorrt_use_oss", trt_use_oss_ ? "true" : "false"});
868 869
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
870 871 872 873
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
874
#endif
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
898 899
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
900 901 902 903

  return os.PrintTable();
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
  PADDLE_ENFORCE_EQ(model_cache_token.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
                    false, platform::errors::InvalidArgument(
                               "model_cache_token has already been set."));

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false,
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
995
}  // namespace paddle