analysis_config.cc 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18 19
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
20
#include "paddle/fluid/inference/utils/table_printer.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
23 24
#include "paddle/fluid/platform/enforce.h"

25 26 27 28
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30 31 32
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

33
namespace paddle {
W
wanghuancoder 已提交
34 35
struct MkldnnQuantizerConfig;

36
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
37
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
38
extern const std::vector<std::string> kLiteSubgraphPasses;
39

40
PassStrategy *AnalysisConfig::pass_builder() const {
41 42 43 44
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
45 46
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
47 48
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
49 50 51
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
52 53 54 55 56 57 58 59 60 61 62 63
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

64 65 66
  return pass_builder_.get();
}

67
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
68
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
69 70

  Update();
71
}
72 73
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
74 75
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
76 77

  Update();
78
}
79 80
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
81 82
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
83 84

  Update();
85
}
86 87
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
88
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
89 90
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
91
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
92
  gpu_device_id_ = device_id;
93
#else
Y
Yan Chunwei 已提交
94
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
95 96
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
97 98 99

  Update();
}
100
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
101 102 103
  use_gpu_ = false;

  Update();
104 105
}

106 107 108 109 110 111
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
112 113 114 115
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
116 117
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
118 119 120 121 122
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
123 124 125
  Update();
}

126 127 128 129 130 131 132 133
void AnalysisConfig::SetXpuDeviceId(int device_id) {
  PADDLE_ENFORCE_EQ(use_xpu_, true,
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
134 135 136 137 138 139 140 141 142 143 144
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
145 146 147 148

void AnalysisConfig::EnableIpu(int ipu_device_num, int ipu_micro_batch_size,
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
149 150 151
  enable_ir_optim_ = true;

  use_ipu_ = true;
152 153
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
154 155
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
156 157 158 159 160 161 162 163 164 165 166

  Update();
}

void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16, int ipu_replica_num,
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
167 168 169

  Update();
}
W
Wilber 已提交
170

171
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
172 173 174 175 176 177
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
178

179
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
180 181
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
182

183
  CP_MEMBER(use_fc_padding_);
184
  // GPU related.
185
  CP_MEMBER(use_gpu_);
186
  CP_MEMBER(use_cudnn_);
187
  CP_MEMBER(gpu_device_id_);
188
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
189 190

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
191
  // TensorRT related.
192 193 194 195
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
196
  CP_MEMBER(tensorrt_precision_mode_);
197
  CP_MEMBER(trt_disabled_ops_);
198 199
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
200
  CP_MEMBER(trt_use_static_engine_);
201
  CP_MEMBER(trt_use_calib_mode_);
202
  CP_MEMBER(trt_use_oss_);
203
  CP_MEMBER(trt_with_interleaved_);
204 205 206 207
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
208
  CP_MEMBER(trt_use_inspector_);
D
denglin-github 已提交
209 210 211
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
212
  // MKLDNN related.
213 214
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
215
  CP_MEMBER(mkldnn_cache_capacity_);
216 217 218
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
219 220 221
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
222 223 224
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
225
  CP_MEMBER(disable_trt_plugin_fp16_);
226

石晓伟 已提交
227 228 229 230
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
231 232
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
233
  // XPU related.
234
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
235
  CP_MEMBER(xpu_device_id_);
236
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
237 238 239 240 241
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
242

W
Wilber 已提交
243 244 245
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
246
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
247

248 249 250
  // profile related.
  CP_MEMBER(with_profile_);

251 252 253
  // glog related.
  CP_MEMBER(with_glog_info_);

254 255 256 257 258 259 260 261 262 263
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

264 265
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
266 267 268
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
269
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
270 271
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
272 273 274 275
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
J
jianghaicheng 已提交
276

277 278 279
  // fleet exe related
  CP_MEMBER(dist_config_);

280
  if (use_gpu_) {
281 282 283
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
284 285
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
286 287 288
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
289 290 291
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
292 293 294
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
295 296 297 298 299
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

300
#undef CP_MEMBER
Y
Yan Chunwei 已提交
301

W
Wilber 已提交
302 303 304 305 306
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
307
    pass_builder_->ClearPasses();
W
Wilber 已提交
308
    auto other_passes = other.pass_builder()->AllPasses();
309 310
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
311
    }
312
  }
D
denglin-github 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
328 329
}

330
void AnalysisConfig::EnableCUDNN() {
331
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
332 333 334 335 336 337 338 339 340
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

341
void AnalysisConfig::EnableMKLDNN() {
342 343 344 345 346 347
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
348 349

  Update();
350 351
}

352 353 354 355 356 357 358 359 360
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

361 362 363 364 365 366 367 368 369 370 371 372 373
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

374 375
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
376 377
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
378 379 380 381
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
382 383 384 385
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
386 387 388 389 390 391 392 393
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

394
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
395
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
396 397
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
398
  return mkldnn_quantizer_config_.get();
399 400
}

401
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
402
    int workspace_size, int max_batch_size, int min_subgraph_size,
403
    AnalysisConfig::Precision precision_mode, bool use_static,
404
    bool use_calib_mode) {
405
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
406 407 408 409 410
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

411 412 413
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
414
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
415
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
416
  trt_use_static_engine_ = use_static;
417
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
418

419
  Update();
Y
Yan Chunwei 已提交
420 421 422 423
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
424 425
}

D
denglin-github 已提交
426 427 428 429 430 431
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

432 433 434 435 436 437 438 439 440 441 442
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

443 444 445 446 447
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

448 449
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

450 451 452 453 454
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

455
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
456

Y
Yan Chunwei 已提交
457
// TODO(Superjomn) refactor this, buggy.
458
void AnalysisConfig::Update() {
459 460 461
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
462
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
463 464
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
465 466
      ((use_npu() ^ pass_builder_->use_npu())) ||
      ((use_ipu() ^ pass_builder_->use_ipu()))) {
Y
Yan Chunwei 已提交
467 468 469 470 471 472 473
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
474 475 476
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
477 478 479 480 481 482
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
483 484 485 486 487 488
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
Y
Yan Chunwei 已提交
489 490 491
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
492

493
  } else {
Y
Yan Chunwei 已提交
494 495 496
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
497 498 499 500
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
501 502 503 504 505 506 507
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
508 509 510 511 512 513 514
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
515 516 517 518
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
519 520 521
  }

  if (use_tensorrt_) {
522 523
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
524
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
525
          (pass == "conv_bn_fuse_pass")) {
526 527
        continue;
      }
528
      pass_builder()->AppendPass(pass);
529 530
    }
  }
531

D
denglin-github 已提交
532 533 534 535 536 537 538
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

539
  if (use_gpu() && use_cudnn_) {
540
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
541 542 543 544 545 546 547 548
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

549
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
550
#ifdef PADDLE_WITH_MKLDNN
551 552 553
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
554 555
    } else {
      pass_builder()->EnableMKLDNN();
556 557 558 559
    }
#endif
  }

560 561 562 563 564
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
565 566
    }
#ifdef PADDLE_WITH_MKLDNN
567
    pass_builder()->EnableMkldnnQuantizer();
568 569 570
#endif
  }

571 572 573 574 575 576
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

577
#ifdef PADDLE_WITH_MKLDNN
578 579
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
580
#else
Y
Yan Chunwei 已提交
581
  if (enable_memory_optim_) {
582 583
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
584 585
  }

石晓伟 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

600
  if (use_xpu_) {
601
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
602 603 604 605
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
606 607 608 609 610
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
611 612
  }

W
Wilber 已提交
613
  if (use_npu_) {
614
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
615 616 617 618 619 620 621 622 623 624
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
625 626 627 628 629 630 631
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
W
Wilber 已提交
632

633 634 635 636 637
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

638
std::string AnalysisConfig::SerializeInfoCache() {
639
  std::stringstream ss;
Y
Yan Chunwei 已提交
640 641 642 643
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

644
  ss << use_gpu_;
645
  ss << use_fc_padding_;
646 647
  ss << gpu_device_id_;
  ss << xpu_device_id_;
648 649 650 651 652
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
653 654
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
655 656 657
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

658 659 660
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

661 662 663
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
664
  ss << enable_memory_optim_;
665 666

  ss << use_mkldnn_;
667
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
668 669 670
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

671
  ss << use_mkldnn_quantizer_;
672
  ss << use_mkldnn_bfloat16_;
673 674
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
675 676
  ss << model_from_memory_;

677 678
  ss << with_profile_;

679 680
  ss << with_glog_info_;

681 682 683 684
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
685 686
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
687 688

  ss << use_lite_;
689 690
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
691 692 693 694 695
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
696

W
Wilber 已提交
697 698 699
  ss << use_npu_;
  ss << npu_device_id_;

700 701
  ss << thread_local_stream_;

J
jianghaicheng 已提交
702 703
  ss << use_ipu_;
  ss << ipu_device_num_;
704
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
705 706
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
707 708 709 710
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
J
jianghaicheng 已提交
711

712 713 714
  return ss.str();
}

715
void AnalysisConfig::SetCpuMathLibraryNumThreads(
716 717
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
718 719

  Update();
720 721
}

722
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
723
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
724 725
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
726
  size_t gpu_total, gpu_available;
727
  platform::SetDeviceId(gpu_device_id_);
728 729
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
730 731
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
732 733 734 735
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
736 737 738 739
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
740 741
}

742 743
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
744 745 746
  Update();
}

747
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
748 749 750
  return enable_memory_optim_;
}

751 752 753 754
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
755 756
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
757
  model_from_memory_ = true;
T
Tao Luo 已提交
758 759
}

760
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
761 762 763 764 765
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
766
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
767 768 769 770 771
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
772 773 774 775
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
776 777 778 779 780 781

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

782 783 784 785 786
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
787
void AnalysisConfig::EnableLiteEngine(
788
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
789 790 791 792 793 794
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
795
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
796 797 798
  Update();
}

799 800 801 802 803 804 805
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

806 807
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
827
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
886 887 888
      os.InsertRow({"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_
                                                        ? shape_range_info_path_
                                                        : "false"});
889 890

      os.InsertRow({"tensorrt_use_oss", trt_use_oss_ ? "true" : "false"});
891 892
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
893 894 895 896
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
897
#endif
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
921 922
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
923 924 925 926

  return os.PrintTable();
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
  PADDLE_ENFORCE_EQ(model_cache_token.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
                    false, platform::errors::InvalidArgument(
                               "model_cache_token has already been set."));

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false,
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
1018
}  // namespace paddle