distribute_transpiler.py 113.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52 53 54

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
C
Chengmo 已提交
55 56
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
57
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
58 59
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
60
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
61
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


68 69 70 71 72 73 74
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


75 76 77
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
78 79


T
typhoonzero 已提交
80 81 82 83 84 85
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
86

T
typhoonzero 已提交
87 88
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
89 90


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
95
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
96
    """
97 98 99 100 101 102
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
103
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
104 105 106

    Args:
        var_list (list): List of variables.
107 108
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
109 110
        min_block_size (int): Minimum splitted block size.
    Returns:
111
        blocks (list[(varname, block_id, current_block_size)]): A list
112
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
113 114 115
    """
    blocks = []
    for var in var_list:
116
        split_count = slice_count
T
typhoonzero 已提交
117 118 119 120
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
121
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
131
        # update split_count after aligning
T
typhoonzero 已提交
132
        split_count = int(math.ceil(var_numel / float(block_size)))
133
        for block_id in range(split_count):
T
typhoonzero 已提交
134 135 136 137 138 139 140
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
141 142
class DistributeTranspilerConfig(object):
    """
143
    A configuration class that provide support for transpiler distributed jobs.
144 145 146
    Some important parameters are explained as follows:


H
haowang101779990 已提交
147 148
    .. py:attribute:: slice_var_up (bool)

149
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
150 151 152

    .. py:attribute:: split_method (PSDispatcher)

153 154 155 156
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
157 158 159

    .. py:attribute:: min_block_size (int)

160
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
161 162

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
163
          We can use bandwidth effiently when data size is larger than 2MB.If you
164 165 166 167
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
168

169 170 171
    Examples:
        .. code-block:: python

172 173 174
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

175 176
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
177 178
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
179 180 181 182 183
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
184
    enable_dc_asgd = False
185
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
186
    mode = "pserver"
187
    print_log = False
W
Wu Yi 已提交
188
    wait_port = True
Q
Qiao Longfei 已提交
189
    # split the send recv var in runtime
1
123malin 已提交
190 191
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
192

193 194
    # half_async
    half_async = False
195
    completely_not_async = False
196

197 198 199 200
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

201 202 203 204 205 206 207
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

208
    # if mode is collective
209
    # supported modes: grad_allreduce, local_sgd
210 211
    collective_mode = None

212 213 214 215 216
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
217
        return self.__runtime_split_send_recv
218 219 220 221 222

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
223
        if value and self.__sync_mode:
224 225 226
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
227
        self.__runtime_split_send_recv = value
228 229 230

    @property
    def sync_mode(self):
1
123malin 已提交
231
        return self.__sync_mode
232 233 234 235 236

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
237
        if value and self.__runtime_split_send_recv:
238 239 240
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
241 242 243 244 245 246 247 248 249 250 251
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
252

G
gongweibao 已提交
253

Y
gen rst  
yi.wu 已提交
254
class DistributeTranspiler(object):
Y
yi.wu 已提交
255 256 257 258
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
259
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
260

W
Wu Yi 已提交
261 262 263 264 265 266 267 268 269
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
270 271 272 273

    Examples:
        .. code-block:: python

274 275
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
276 277 278 279 280 281 282 283
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
284 285 286 287 288 289
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
290
            role = "PSERVER"
T
Tink_Y 已提交
291 292 293 294 295 296
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
297
                                                                pserver_program)
T
Tink_Y 已提交
298 299 300 301
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
302 303
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
304 305
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
306
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
307
            t = fluid.DistributeTranspiler(config=config)
308
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
309
            exe = fluid.ParallelExecutor(
310 311 312
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
313 314
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
315
    """
Y
Yancey1989 已提交
316

G
gongweibao 已提交
317 318 319 320 321
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
322
        self._set_server_config()
G
gongweibao 已提交
323 324 325 326

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

327
        if self.config.sync_mode or self.config.completely_not_async:
328 329 330 331 332 333
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

334 335 336
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
337 338
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
339
        self.counter_var = None
G
gongweibao 已提交
340

1
123malin 已提交
341 342 343 344 345 346 347 348 349 350
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
351 352 353 354
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
355 356
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
357 358 359 360 361 362
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
363 364
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
365 366 367

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
368 369 370 371 372 373 374 375 376

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
377 378 379 380
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
381 382 383 384 385
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
386 387 388 389 390
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
391 392 393 394 395 396 397
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
398 399 400 401 402
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

403 404 405 406 407 408 409 410 411 412 413 414
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
415
        elif collective_mode != "single_process_multi_thread":
416 417
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
418 419
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
420 421 422 423 424 425 426 427 428 429
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
430
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
431
        elif collective_mode == 'local_sgd':
432
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
433 434
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
435 436 437 438 439 440 441 442 443 444 445
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
446
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
447
        sparse_update_ops = []
T
tangwei12 已提交
448
        sparse_update_op_types = ["lookup_table", "nce"]
Q
Qiao Longfei 已提交
449 450
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
451
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
452 453 454
                sparse_update_ops.append(op)
        return sparse_update_ops

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
530

531 532
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
533 534 535 536 537 538

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
539

540 541 542 543 544
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
545
                  sync_mode=True,
W
Wu Yi 已提交
546 547
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
548
        """
549
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
550 551 552 553 554 555

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
556 557
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
558 559
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
560 561 562
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
563
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
564 565
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
566 567 568
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
569 570 571 572 573 574 575 576 577 578 579

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
580
        """
581 582 583 584 585 586 587 588 589

        err_msg = """

API is deprecated since 2.0.0 Please use FleetAPI instead.
WIKI: https://github.com/PaddlePaddle/Fleet/blob/develop/markdown_doc/transpiler

        """
        print(err_msg, file=sys.stderr)

590 591
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
592 593
        if startup_program is None:
            startup_program = default_startup_program()
594
        self.origin_program = program
W
Wu Yi 已提交
595 596
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
597

W
Wu Yi 已提交
598 599
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
600
            self.origin_program._trainers_endpoints = trainers.split(",")
601 602
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
603 604 605 606 607
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
608
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
609 610 611 612 613 614 615 616 617 618 619
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
620 621 622 623
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
624 625
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
626 627
            return

628 629 630 631 632 633 634 635 636 637 638
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

639
        self.trainer_num = trainers
640
        self.sync_mode = sync_mode
641 642 643
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
644
        self.vars_overview = VarsDistributed()
645 646
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
647
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
648 649
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
650
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
651
        self.grad_name_to_param_name = dict()
652 653
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
654
            self.grad_name_to_param_name[grad_var.name] = param_var.name
655

Q
Qiao Longfei 已提交
656
        # get all sparse update ops
Q
Qiao Longfei 已提交
657
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
658
            self.origin_program)
Q
Qiao Longfei 已提交
659
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
660
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
661
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
662

T
tangwei12 已提交
663 664 665
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
666
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
667 668 669
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

670
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
671
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
672
        self._init_splited_vars()
673

G
gongweibao 已提交
674
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
675
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
676
        send_vars = []
677 678 679 680 681 682

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
683
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
684

G
gongweibao 已提交
685
        if not self.config.slice_var_up:
686 687
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
688

689
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
690

691
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
692
            eplist = ps_dispatcher.dispatch(splited_vars)
693

G
gongweibao 已提交
694
            if not self.config.slice_var_up:
695 696
                assert (len(splited_vars) == 1)

697
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
698
            if len(splited_vars) == 1:
699
                splited_grad_varname = splited_vars[0].name
700 701
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
702

Y
Yancey1989 已提交
703
            elif len(splited_vars) > 1:
704
                orig_var = program.global_block().vars[splited_grad_varname]
705 706
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
707

Q
Qiao Longfei 已提交
708 709 710 711
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
712 713
            else:
                AssertionError("Can not insert the send op by original "
714
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
715

716 717 718 719 720 721 722
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
723 724
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
725
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
726

Q
Qiao Longfei 已提交
727 728 729 730 731
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
732 733 734 735 736 737 738 739

                if self.config.completely_not_async:
                    send_varnames = [
                        "{}.trainer_{}".format(var.name, self.trainer_id)
                        for var in splited_vars
                    ]
                else:
                    send_varnames = [var.name for var in splited_vars]
Q
Qiao Longfei 已提交
740 741 742 743 744
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
745 746 747 748
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
749
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
750
                index=index + 1,
751
                type="send",
Q
Qiao Longfei 已提交
752
                inputs={"X": send_input_vars},
753
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
754 755
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
756 757
                    "sections": sections,
                    "send_varnames": send_varnames,
758
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
759 760 761
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
762
                    ]
Y
Yancey1989 已提交
763
                })
Y
update  
Yancey1989 已提交
764 765
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
766

767 768 769 770 771 772 773
        send_barrier_out = program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
                self.table_name] = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
        input_deps = list(self.grad_name_to_send_dummy_out.values())
774

775
        if not self.sync_mode:
1
123malin 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

            program.global_block().append_op(
                type="send_barrier",
                inputs={"X": list(input_deps)},
                outputs={"Out": send_barrier_out},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    "half_async": False,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
Y
Yancey1989 已提交
829

G
gongweibao 已提交
830
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
831
        recv_vars = []
Y
update  
Yancey1989 已提交
832
        for _, var in enumerate(send_vars):
833
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
834
        ps_dispatcher.reset()
Y
Yancey1989 已提交
835 836
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
837
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
838 839
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
840

841 842 843 844
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

845 846
        need_sparse_update_params = {}

Y
Yancey1989 已提交
847
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
848
        all_recv_outputs = []
849
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
850
            eps = []
Q
Qiao Longfei 已提交
851
            table_names = []
Y
Yancey1989 已提交
852 853 854
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
855
                table_names.append(var.name)
W
Wu Yi 已提交
856 857 858 859
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
860
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
861
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
862

W
Wu Yi 已提交
863 864 865 866 867 868 869 870 871
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
872
            if param_varname in self.sparse_param_to_height_sections:
873 874 875 876 877
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

878
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
879
            else:
Q
Qiao Longfei 已提交
880 881 882
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
883
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
884
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
885
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
886

Q
Qiao Longfei 已提交
887 888 889 890 891 892
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
893
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
894 895 896
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
897
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
898
                    })
T
typhoonzero 已提交
899

900 901
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
902
        if self.sync_mode:
W
Wu Yi 已提交
903
            # form a WAW dependency
Q
qiaolongfei 已提交
904 905
            program.global_block().append_op(
                type="fetch_barrier",
906
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
907
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
908 909
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
910
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
911 912
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
913

914
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
915 916
            if len(splited_var) <= 1:
                continue
917
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
918
            if param_varname not in self.sparse_param_to_height_sections:
919
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
920 921 922 923 924 925 926 927
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
928

G
gongweibao 已提交
929 930
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

931
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
932 933
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
934
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
935

936 937 938
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
1011
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
1012
        """
C
Chengmo 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
1022 1023 1024

        Returns:
            Program: trainer side program.
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1037
        """
T
typhoonzero 已提交
1038
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1039
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1040

T
tangwei12 已提交
1041 1042 1043 1044
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1045 1046
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1047
        self._delete_trainer_optimizer(is_startup=False)
1048

1049
        self.origin_program.__str__()
T
tangwei12 已提交
1050
        self.startup_program.__str__()
G
gongweibao 已提交
1051

W
Wu Yi 已提交
1052 1053 1054
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1055
        return self.origin_program
T
typhoonzero 已提交
1056

W
Wu Yi 已提交
1057
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1058 1059 1060 1061
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1062
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1063
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1064 1065 1066 1067

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1068
        startup_program = self.startup_program
G
gongweibao 已提交
1069 1070 1071

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1072 1073 1074 1075
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
        #self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1076

M
minqiyang 已提交
1077
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1078 1079
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1100
                inputs={"X": []},
G
gongweibao 已提交
1101 1102 1103
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1104
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1105 1106 1107
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1108 1109
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1110 1111 1112
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1113
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1114 1115
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1116
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1117 1118 1119
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1120
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1121 1122
            if varname in sparse_table_names:
                continue
T
tangwei12 已提交
1123
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
1124 1125
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1126
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1127
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1138 1139 1140 1141 1142 1143 1144 1145
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1146 1147
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1148 1149 1150 1151 1152 1153
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1154

Y
yi.wu 已提交
1155 1156
        Args:
            endpoint (str): current parameter server endpoint.
1157

Y
yi.wu 已提交
1158 1159
        Returns:
            Program: the program for current parameter server to run.
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1174
        """
Y
yi.wu 已提交
1175 1176 1177 1178
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1179 1180 1181
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1182 1183
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1184
        pserver_program.random_seed = self.origin_program.random_seed
1185 1186
        pserver_program._copy_dist_param_info_from(self.origin_program)

1187
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1188 1189 1190 1191 1192 1193 1194 1195
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1196 1197 1198 1199 1200
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1210
            if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
1211
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1221

Q
qiaolongfei 已提交
1222
        # step 3
1223
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1224 1225 1226
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1227
        # step 3.2
T
typhoonzero 已提交
1228 1229 1230 1231
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1232 1233
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1234
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1235
        # step 3.3
W
Wu Yi 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1254
        # Iterate through the ops, and if an op and the optimize ops
1255
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1256
        # append it into the sub program.
T
typhoonzero 已提交
1257 1258 1259

        global_ops = []

1260 1261 1262
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1263 1264
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1265
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1266
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1267 1268
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1269
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1270
                self._append_pserver_non_opt_ops(block, op)
1271

Y
Yancey1989 已提交
1272
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1273 1274 1275 1276 1277 1278 1279 1280
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1281
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1282 1283 1284

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1285
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1286 1287

            # clone ops
Y
Yancey1989 已提交
1288 1289
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1290
                # clone sub_block of op
Y
Yancey1989 已提交
1291
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1292 1293

            # reset the block of op
W
Wu Yi 已提交
1294
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1295

1296
        # append lr decay ops to the child block if exists
1297
        lr_ops = self._get_lr_ops()
1298 1299
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1300 1301

        lr_decay_block_id = -1
1302
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1303
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1304
                pserver_program.num_blocks - 1)
1305
            optimize_blocks.append(lr_decay_block)
1306
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1307
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1308
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1309 1310
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1311
            lr_decay_block_id = lr_decay_block.idx
1312

T
typhoonzero 已提交
1313
        # append op to the current block
Q
qiaolongfei 已提交
1314
        grad_to_block_id = []
Q
qiaolongfei 已提交
1315
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1316
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1317
            per_opt_block = pserver_program._create_block(pre_block_idx)
1318
            optimize_blocks.append(per_opt_block)
1319
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1320
            # append grad merging ops before clip and weight decay
1321 1322
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1323
            for _, op in enumerate(self.optimize_ops):
1324
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1325
                # merged_var should be the input var name of L2Decay
1326 1327 1328
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1329 1330 1331
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1332 1333 1334 1335 1336 1337
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1338
                            op not in global_ops:
1339 1340 1341 1342 1343
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1344

1345
        # dedup grad to ids list
W
Wu Yi 已提交
1346
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1347
        # append global ops
1348
        if global_ops:
W
Wu Yi 已提交
1349
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1350
                pserver_program.num_blocks - 1)
1351
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1352
            for glb_op in global_ops:
X
Xi Chen 已提交
1353
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1354
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1355

1356
        # process distributed lookup_table
Q
qiaolongfei 已提交
1357
        prefetch_var_name_to_block_id = []
1358 1359
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1360
            table_opt_block = self._create_table_optimize_block(
1361
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1362
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1363
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1364
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1365 1366
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1367

T
tangwei12 已提交
1368
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1369 1370
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1371

1372
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1373 1374
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1375 1376 1377 1378 1379 1380
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1381
        attrs = {
1382
            "optimize_blocks": optimize_blocks,
1383
            "endpoint": endpoint,
1384
            "pserver_id": self.pserver_endpoints.index(endpoint),
1385
            "Fanin": self.trainer_num,
1386
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1387
            "grad_to_block_id": grad_to_block_id,
1388
            "sparse_grad_to_param": sparse_grad_to_param,
1389
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1390 1391 1392 1393
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1394
        }
T
tangwei12 已提交
1395 1396

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1397
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1398 1399
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1400

T
tangwei12 已提交
1401 1402 1403 1404
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1405 1406 1407 1408 1409
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1410
            attrs=attrs)
1411

W
Wu Yi 已提交
1412
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1413 1414
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1415 1416
        return pserver_program

W
Wu Yi 已提交
1417 1418 1419
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1420 1421
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1422 1423 1424

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1425

W
Wu Yi 已提交
1426 1427
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1442 1443
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1444 1445
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1446 1447
        return pserver_prog, pserver_startup

1448 1449
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1450
                            pserver_program=None,
1451
                            startup_program=None):
T
typhoonzero 已提交
1452
        """
W
Wu Yi 已提交
1453 1454
        **Deprecated**

T
typhoonzero 已提交
1455 1456 1457
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1458 1459 1460

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1461 1462
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1463
                when initalizing
1464

Y
yi.wu 已提交
1465 1466
        Returns:
            Program: parameter server side startup program.
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1482 1483
        """
        s_prog = Program()
W
Wu Yi 已提交
1484
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1485
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1497
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1498
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1499
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1500 1501 1502 1503
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1504
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1505 1506
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1517 1518

            if op_on_pserver:
1519 1520 1521
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1522
                if op.type in [
1523 1524
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1525
                ]:
W
Wu Yi 已提交
1526
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1527 1528 1529 1530
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1531
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1541

T
typhoonzero 已提交
1542 1543
        return s_prog

1544 1545
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1546
        block_suffix = "block"
1547 1548 1549
        block_idx = 0
        offset = 0
        is_slice = False
1550

1551
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1552

1553 1554
        if not block_name:
            return is_slice, block_idx, offset
1555

1556 1557 1558 1559
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1560 1561 1562 1563 1564
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1590 1591 1592 1593
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1631

Y
yi.wu 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1671
    def _init_splited_vars(self):
Y
yi.wu 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1695
        if self.config.slice_var_up:
Y
yi.wu 已提交
1696 1697
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1698 1699 1700
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1701
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1702 1703
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1704 1705 1706
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1707 1708 1709 1710
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1711 1712
        assert (len(grad_blocks) == len(param_blocks))

1713
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1714 1715
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1732
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1733 1734 1735 1736
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1737
        # dict(grad_splited_var -> param_splited_var)
1738
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1739 1740 1741
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1742
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1743
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1744 1745

        # create mapping of endpoint -> split var to create pserver side program
1746
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1756
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1757 1758
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1759
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1760
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1761 1762
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1763 1764
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1765 1766 1767 1768 1769 1770

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1771 1772
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1773
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1774 1775 1776
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1777 1778
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1779 1780
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1781 1782 1783
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1784
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1785
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1786 1787

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1788
                    self.all_out_emb_vars.append(out_var)
1789 1790

                    # delete lookup_table_op
1791
                    delete_ops(program.global_block(), [op])
1792 1793 1794
                    # break for loop
                    break

S
seiriosPlus 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1841
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1842
        # 2. add split_ids_op and send_op to send gradient to pservers
1843

1844 1845
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1846
        table_grad_name = grad_var_name(self.table_name)
1847 1848 1849 1850
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1851
                program.global_block()._insert_op(
1852 1853 1854 1855 1856
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1857 1858
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1859
                program.global_block()._insert_op(
1860
                    index=op_index + 2,
1861
                    type="send",
1862
                    inputs={'X': self.trainer_side_table_grad_list},
1863 1864 1865 1866 1867
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1868 1869
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1870
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1871 1872 1873 1874 1875
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1876
                    })
1877 1878 1879 1880 1881 1882
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1883
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1909
        return prefetch_var_name_to_block_id
1910 1911

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1912
                                     pre_block_idx, grad_to_block_id):
1913
        # STEP: create table optimize block
1914
        table_opt_block = pserver_program._create_block(pre_block_idx)
1915
        # create table param and grad var in pserver program
1916 1917
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1918 1919 1920
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1921 1922
        ][0]

Y
Yancey1989 已提交
1923 1924
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1925

T
tangwei12 已提交
1926
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1927 1928
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1929 1930 1931
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1932 1933
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1934
            shape=table_shape,
Y
Yancey1989 已提交
1935 1936 1937
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1938

1939 1940
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1941
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1942
            self.origin_program.global_block().vars[grad_var_name(
1943
                self.table_name)])
1944

1945 1946 1947
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1948

1949 1950 1951
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1952
            pserver_side_table_grad_list = [
1953 1954 1955 1956 1957 1958 1959 1960 1961
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1962
            # append sum op for pserver_side_table_grad_list
1963 1964
            table_opt_block.append_op(
                type="sum",
1965
                inputs={"X": pserver_side_table_grad_list},
1966 1967
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1968 1969
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1970
            origin_grad_name = grad_var.name
1971 1972
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1973 1974
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1975
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1976
            grad_var = pserver_program.global_block()._rename_var(
1977
                origin_grad_name, splited_grad_name)
1978 1979 1980 1981 1982 1983 1984

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1985
        # only support sgd now
1986 1987 1988
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1989
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1990

1991 1992 1993
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1994 1995
        return table_opt_block

T
tangwei12 已提交
1996 1997 1998 1999 2000
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
2001
        pserver_program.global_block().create_var(
T
tangwei12 已提交
2002
            name="kLookupTablePath",
T
tangwei12 已提交
2003 2004
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
2005

W
Wu Yi 已提交
2006
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
2007
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
2008 2009 2010 2011
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
2012
            attrs={'file_path': "none"})
T
tangwei12 已提交
2013 2014 2015

        return checkpoint_save_block.idx

T
typhoonzero 已提交
2016 2017 2018 2019 2020
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
2021
        Create vars for each split.
T
typhoonzero 已提交
2022 2023
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2024 2025 2026 2027
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2028
        Returns:
2029
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2030
                from original var name to each var split.
T
typhoonzero 已提交
2031
        """
2032 2033

        # varname->[(block_id, current_block_size)]
2034
        block_map = collections.OrderedDict()
2035

2036
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2037 2038
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2039
            if varname not in block_map:
T
typhoonzero 已提交
2040
                block_map[varname] = []
2041
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2042

M
minqiyang 已提交
2043
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
2044
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
2045
            if len(splited) == 1:
2046
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2047
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2048
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
2049
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2050 2051 2052 2053 2054
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2055
                continue
T
typhoonzero 已提交
2056
            var_mapping[varname] = []
T
typhoonzero 已提交
2057 2058 2059 2060
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2061

T
typhoonzero 已提交
2062
            for i, block in enumerate(splited):
T
typhoonzero 已提交
2063
                size = block[1]
M
minqiyang 已提交
2064
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2065 2066 2067
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2068
                new_var_name = ""
2069
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2070
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2071
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2072 2073
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2074
                                   (varname, i)
T
typhoonzero 已提交
2075
                var = program.global_block().create_var(
T
typhoonzero 已提交
2076 2077
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2078
                    dtype=orig_var.dtype,
2079
                    type=orig_var.type,
T
typhoonzero 已提交
2080
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
2081
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2082
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2083
        return var_mapping
T
done  
typhoonzero 已提交
2084

2085
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2086 2087 2088 2089 2090 2091
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2092
            persistable=persistable)
T
done  
typhoonzero 已提交
2093

Q
Qiao Longfei 已提交
2094 2095 2096 2097 2098 2099 2100
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2101
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2102 2103
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2104
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2105
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2106
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2107 2108
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2109
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2110 2111 2112 2113
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2114 2115 2116 2117
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2118
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2119
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2120 2121 2122 2123
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2124
                attrs={
Q
Qiao Longfei 已提交
2125
                    "sections": height_sections,
2126 2127
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2128 2129 2130
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2131

T
typhoonzero 已提交
2132 2133 2134 2135
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2136
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2149
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2150 2151
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2152 2153
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2154
                return param_shape
2155 2156 2157
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2158 2159 2160
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2161 2162
        elif op_type == "sgd":
            pass
2163 2164 2165 2166
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2167 2168
        return orig_shape

2169 2170
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2171
        orig_var_name = ""
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2182
        else:
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2205
            return None
2206 2207 2208 2209
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2210
        else:
2211
            merged_var_name = orig_varname
2212 2213

        merged_var = pserver_block.vars[merged_var_name]
2214
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
2215
        if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
2216
            vars2merge = []
2217
            for i in range(self.trainer_num):
2218
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2219
                                   (merged_var_name, i)
2220 2221 2222 2223
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2224 2225
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2226 2227 2228 2229 2230
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2231
        return merged_var
T
typhoonzero 已提交
2232

W
Wu Yi 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2295
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2296 2297
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2298
        program = optimize_block.program
T
typhoonzero 已提交
2299
        pserver_block = program.global_block()
2300
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2311 2312 2313 2314
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2315
        for key in opt_op.input_names:
T
typhoonzero 已提交
2316
            if key == "Grad":
W
Wu Yi 已提交
2317 2318 2319
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2330
            elif key == "Param":
W
Wu Yi 已提交
2331
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2332 2333
                if not param_block:
                    return
T
typhoonzero 已提交
2334
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2335
                    name=param_block.name,
T
typhoonzero 已提交
2336
                    persistable=True,
T
typhoonzero 已提交
2337 2338 2339
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2340
            elif key == "LearningRate":
2341
                # learning rate variable has already be created by non-optimize op,
2342
                # don't create it once again.
2343
                lr_varname = opt_op.input(key)[0]
2344
                if lr_varname in pserver_block.vars:
2345 2346 2347 2348 2349 2350 2351 2352 2353
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2354

T
typhoonzero 已提交
2355
        for key in opt_op.input_names:
2356
            new_shape = None
2357 2358 2359 2360
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2361
                continue
2362
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2363
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2364
            # update accumulator variable shape
2365 2366
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2367
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2368 2369 2370 2371 2372
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2373

2374
        # change output's ParamOut variable
2375 2376
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2377
        outputs["ParamOut"] = new_inputs["Param"]
2378
        optimize_block.append_op(
T
typhoonzero 已提交
2379 2380
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2381
            outputs=outputs,
G
gongweibao 已提交
2382
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2383

2384 2385 2386 2387 2388 2389
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2401
        grad_block = None
M
minqiyang 已提交
2402
        for _, g in six.iteritems(var_dict):
2403
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2404
                # skip per trainer vars
2405
                if g.name.find(".trainer_") == -1:
2406
                    # only param or grads have splited blocks
2407 2408
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2409 2410
                        grad_block = g
                        break
2411 2412
        return grad_block

Q
Qiyang Min 已提交
2413 2414 2415
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2416
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2417 2418 2419 2420
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2421
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2422 2423 2424

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2425
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2426 2427 2428 2429
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2430
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2431

Y
Yancey1989 已提交
2432
        return block.append_op(
G
gongweibao 已提交
2433
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2434 2435

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2436
        program = optimize_block.program
2437
        # Append the ops for parameters that do not need to be optimized/updated
2438 2439
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2440
        for key, varlist in six.iteritems(inputs):
2441 2442
            if not isinstance(varlist, list):
                varlist = [varlist]
2443 2444 2445
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2446
                # for inputs/outputs
2447
                grad_block = self._get_pserver_grad_param_var(
2448 2449
                    var, program.global_block().vars)
                if grad_block:
2450
                    varlist[i] = grad_block
2451
                elif var.name not in program.global_block().vars:
2452 2453 2454 2455 2456
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2457

2458 2459
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2460
        for key, varlist in six.iteritems(outputs):
2461 2462
            if not isinstance(varlist, list):
                varlist = [varlist]
2463 2464 2465
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2466 2467
                    var, program.global_block().vars)
                if grad_block:
2468
                    varlist[i] = grad_block
2469
                elif var.name not in program.global_block().vars:
2470 2471 2472 2473 2474
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2475

Y
Yancey1989 已提交
2476
        return optimize_block.append_op(
T
typhoonzero 已提交
2477
            type=opt_op.type,
T
typhoonzero 已提交
2478 2479
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2480
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2481

2482 2483 2484 2485
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2486
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2487
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2488 2489 2490 2491 2492 2493
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2494 2495
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2496 2497 2498 2499 2500 2501
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2502
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2503
        if "Param" in op.input_names and \
T
tangwei12 已提交
2504
                "LearningRate" in op.input_names:
2505 2506 2507 2508 2509 2510 2511
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2512
        if op.input("Param")[0] in param_names:
2513 2514 2515
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2516
                param = op.input("Param")[0]
T
typhoonzero 已提交
2517
                if same_or_split_var(n, param) and n != param:
2518 2519 2520
                    return True
            return False

T
typhoonzero 已提交
2521
    def _get_input_map_from_op(self, varmap, op):
2522
        """Returns a dict from op input name to the vars in varmap."""
2523
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2535
        """Returns a dict from op output name to the vars in varmap."""
2536
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2546 2547

    def _get_lr_ops(self):
2548 2549
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2550
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2551 2552 2553 2554
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2601 2602 2603 2604 2605
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2606 2607 2608 2609
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2610
            if self._is_optimizer_op(op):
2611 2612 2613 2614
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2615
        block = self.origin_program.global_block()
2616 2617 2618 2619 2620
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2621

2622 2623 2624 2625 2626
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2627
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2628 2629 2630 2631 2632 2633
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2634 2635
                    # we only need to append op for once
                    break
2636
        return lr_ops
Y
Yancey1989 已提交
2637

W
Wu Yi 已提交
2638 2639 2640 2641 2642
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2643 2644
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2645 2646 2647
            return True
        return False

Y
Yancey1989 已提交
2648
    def _get_optimize_pass(self):
2649
        """
2650
        Get optimizer operators, parameters and gradients from origin_program
2651 2652
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2653
            params_grads (dict): parameter->gradient.
2654
        """
Y
Yancey1989 已提交
2655 2656 2657
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2658 2659
        # tmp set to dedup
        optimize_params = set()
2660
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2661
        for op in block.ops:
W
Wu Yi 已提交
2662
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
                # delete clip op from opt_ops when run in Parameter Server mode 
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2673
                opt_ops.append(op)
2674 2675 2676 2677 2678 2679
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2680 2681
                        params_grads.append([
                            origin_var_dict[param_name],
2682
                            origin_var_dict[grad_name]
2683
                        ])
Y
Yancey1989 已提交
2684 2685
            else:
                pass
C
Chengmo 已提交
2686 2687 2688 2689 2690 2691

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2692
        return opt_ops, params_grads
C
Chengmo 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

    def _get_distribute_update_vars(self):
        #TODO(chengmo): find more powerful and simple way to deal with these special situation
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads