op_converter.h 30.5 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
21

L
Luo Tao 已提交
22
#include "paddle/fluid/framework/block_desc.h"
23
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/framework/scope.h"
25
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/tensorrt/engine.h"
27
#include "paddle/fluid/inference/tensorrt/helper.h"
W
weishengying 已提交
28
#include "paddle/fluid/inference/tensorrt/op_teller.h"
L
Luo Tao 已提交
29
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yuanle Liu 已提交
30
#include "paddle/phi/common/data_type.h"
L
Luo Tao 已提交
31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
42

43 44
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
45 46
                          const framework::Scope& scope,
                          bool test_mode = false) {}
47

48 49
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
50 51
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
52 53
                 const framework::Scope& scope,
                 TensorRTEngine* engine,
W
weishengying 已提交
54 55
                 bool test_mode = false,
                 const framework::proto::BlockDesc* block = nullptr) {
Y
Yan Chunwei 已提交
56
    framework::OpDesc op_desc(op, nullptr);
57 58

    OpConverter* it{nullptr};
L
Luo Tao 已提交
59

60 61 62
    auto converter_type = static_cast<OpConverterType>(
        PADDLE_GET_CONST(int, op_desc.GetAttr("converter_type")));
    switch (converter_type) {
W
weishengying 已提交
63 64 65
      case OpConverterType::Default:
        if (op_desc.Type().find("elementwise") != std::string::npos) {
          static std::unordered_set<std::string> add_tensor_op_set{
66
              "add", "mul", "sub", "div", "max", "min", "pow", "mod"};
W
weishengying 已提交
67
          static std::unordered_set<std::string> add_weight_op_set{
68
              "add", "mul", "sub", "div", "max", "min", "pow", "mod"};
W
weishengying 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
          PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                            1UL,
                            platform::errors::InvalidArgument(
                                "The input op's Input(\"Y\")."
                                "size() should equal to 1, but reveceid "
                                "Input(\"Y\").size() = %u.",
                                op_desc.Input("Y").size()));
          int op_type_len = op_desc.Type().size();
          std::string op_type =
              op_desc.Type().substr(op_type_len - 3, op_type_len);
          std::string Y = op_desc.Input("Y")[0];
          if (parameters.count(Y)) {
            PADDLE_ENFORCE_GT(
                add_weight_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_weight");
            PADDLE_ENFORCE_NOT_NULL(
                it,
                platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
          } else {
            PADDLE_ENFORCE_GT(
                add_tensor_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_tensor");
          }
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
N
nhzlx 已提交
106

W
weishengying 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        if (op_desc.Type() == "depthwise_conv2d") {
          it = Registry<OpConverter>::Global().Lookup("conv2d");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "depthwise_conv2d_transpose") {
          it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "transpose2") {
          it = Registry<OpConverter>::Global().Lookup("transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "flatten2") {
          it = Registry<OpConverter>::Global().Lookup("flatten");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        // reshape2 == reshape
        if (op_desc.Type() == "reshape2") {
          it = Registry<OpConverter>::Global().Lookup("reshape");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (!it) {
          it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
        }
        break;

      case OpConverterType::GenericPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use generic_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("generic_plugin_creater");
        break;

      case OpConverterType::CustomPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use custom_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("custom_plugin_creater");
        break;

      default:
        CHECK(false) << "no OpConverter for optype " << op_desc.Type();
162
    }
W
weishengying 已提交
163

S
Shang Zhizhou 已提交
164
    PADDLE_ENFORCE_NOT_NULL(
165 166 167
        it,
        platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                        op_desc.Type()));
168

169
    it->SetEngine(engine);
170
    engine->SetScope(scope);
W
weishengying 已提交
171
    it->SetBlockDesc(block);
172
    (*it)(op, scope, test_mode);
173

174
    size_t output_num = op_desc.OutputNames().size();
175 176 177
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
R
Ruibiao Chen 已提交
178
          PADDLE_GET_CONST(float, op_desc.GetAttr("out_threshold"));
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
R
Ruibiao Chen 已提交
201
        float out_scale = PADDLE_GET_CONST(
202 203 204
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
205 206 207 208 209
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
210 211 212 213 214 215 216 217 218 219 220 221
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
R
Ruibiao Chen 已提交
222
            PADDLE_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
223 224 225 226 227 228 229 230 231 232
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
R
Ruibiao Chen 已提交
233
            PADDLE_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
234 235 236
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
237 238
      }
    }
L
Luo Tao 已提交
239 240
  }

Y
Yan Chunwei 已提交
241 242
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
243
  void ConvertBlock(const framework::proto::BlockDesc& block,
244
                    const std::unordered_set<std::string>& parameters,
245 246
                    const framework::Scope& scope,
                    TensorRTEngine* engine) {
N
nhzlx 已提交
247
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
248
    for (int i = 0; i < block.ops_size(); i++) {
249
      const auto& op = block.ops(i);
W
weishengying 已提交
250
      ConvertOp(op, parameters, scope, engine, false, &block);
L
Luo Tao 已提交
251
    }
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    for (int i = 0; i < engine->network()->getNbLayers(); i++) {
      auto layer = engine->network()->getLayer(i);
      if (layer->getType() == nvinfer1::LayerType::kSHUFFLE) {
        auto* input_tensor = layer->getInput(0);
        auto* output_tensor = layer->getOutput(0);
        auto output_tensor_name = output_tensor->getName();
        auto input_tensor_name = input_tensor->getName();
        if (engine->DynamicRangeIsSet(input_tensor) &&
            !engine->DynamicRangeIsSet(output_tensor)) {
          float output_scale = engine->GetTensorDynamicRange(input_tensor);
          VLOG(1) << "Set output tensor scale = " << output_scale
                  << " for tensor in TensorRT: " << output_tensor_name << ".";
          engine->SetTensorDynamicRange(output_tensor, output_scale);
        } else {
          VLOG(1) << "Failed to get input tensor scale for tensor in TensorRT: "
                  << input_tensor_name << ".";
        }
      }
    }
L
Luo Tao 已提交
271 272
  }

273
  // The scope here should be inited with the parameter vars.
274
  void ConvertBlockToTRTEngine(
275 276
      framework::BlockDesc* block_desc,
      const framework::Scope& scope,
277 278
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
279 280
      const std::vector<std::string>& outputs,
      TensorRTEngine* engine) {
281
    engine->InitNetwork();
282
    for (auto input : inputs) {
283
      if (parameters.count(input)) continue;
284 285
      // NOTE(liuyuanle): It is a trick. If you need a name [input], then you
      // need to use [input.substr(0, idx)].
286 287 288
      // Maybe we insert suffix of "_cast_auto_mixed.tmp_" in
      // auto_mixed_precision_pass.
      auto idx = input.find("_cast_auto_mixed.tmp_");
289 290
      input = input.substr(0, idx);

291
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
292
      PADDLE_ENFORCE_NOT_NULL(
293 294 295
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     input.c_str()));
S
Shang Zhizhou 已提交
296
      PADDLE_ENFORCE_EQ(
297 298
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
S
Shang Zhizhou 已提交
299 300
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
301
      nvinfer1::DataType in_dtype = FluidDataType2TRT(var->GetDataType());
Y
Yuanle Liu 已提交
302
      if (engine->precision() == phi::DataType::FLOAT16 &&
303 304 305 306 307
          in_dtype == nvinfer1::DataType::kFLOAT &&
          engine->EnableLowPrecisionIO()) {
        in_dtype = nvinfer1::DataType::kHALF;
      }

N
nhzlx 已提交
308
      auto var_shape = var->GetShape();
309 310 311 312 313 314
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
315

316
        std::vector<int64_t> input_shape;
317 318
        // input_shape.push_back(-1);
        for (size_t i = 0; i < ranks; i++) {
319 320 321 322 323
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
324 325
            PADDLE_ENFORCE_EQ(min_input_shape[i],
                              optim_input_shape[i],
326 327 328 329 330 331
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
332
            input, in_dtype, Vec2TRT_Dims(input_shape, input, true));
333 334
#endif
      } else {
335
        engine->DeclareInput(input, in_dtype, Vec2TRT_Dims(var_shape, input));
336
      }
337
      VLOG(1) << "set trt engine input dtype " << static_cast<int>(in_dtype);
338
    }
339

340 341
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
342

343
    for (auto& output : outputs) {
344 345 346 347 348 349 350 351 352 353
      auto* var = block_desc->FindVar(output);
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     output.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument(
              "The output tensor in TensorRT subgraph should be LoDTensor"));
354
      nvinfer1::DataType out_dtype = FluidDataType2TRT(var->GetDataType());
Y
Yuanle Liu 已提交
355
      if (engine->precision() == phi::DataType::FLOAT16 &&
356 357 358 359 360 361
          out_dtype == nvinfer1::DataType::kFLOAT &&
          engine->EnableLowPrecisionIO()) {
        out_dtype = nvinfer1::DataType::kHALF;
      }
      engine->DeclareOutput(output, out_dtype);
      VLOG(1) << "set trt engine output dtype " << static_cast<int>(out_dtype);
362
    }
363

364
    engine->FreezeNetwork();
365
    engine->ClearWeights();
366 367
  }

368 369 370 371 372 373 374
  nvinfer1::ITensor* Cast(nvinfer1::ITensor* input, nvinfer1::DataType dtype) {
    auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Identity, *input);
    layer->setOutputType(0, dtype);
    layer->getOutput(0)->setType(dtype);
    return layer->getOutput(0);
  }

Z
zhoutianzi666 已提交
375 376
  // rank(result) = rank(input)
  nvinfer1::ITensor* Gather(nvinfer1::ITensor* input,
377 378
                            const std::vector<int32_t> indices,
                            int axis = 0) {
Z
zhoutianzi666 已提交
379 380 381 382 383 384 385
    auto* indices_tensor = Add1DConstantLayer(indices, " ");
    auto* result =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *input, *indices_tensor, axis)
            ->getOutput(0);
    return result;
  }

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  nvinfer1::ITensor* Unsqueeze(nvinfer1::ITensor* input,
                               const std::vector<int32_t> axis) {
    const auto dims = input->getDimensions();
    const std::unordered_set<int32_t> axis_data(axis.begin(), axis.end());
    std::vector<int32_t> subscripts(dims.nbDims);
    std::iota(subscripts.begin(), subscripts.end(), 0);
    for (const auto& axis_value : axis_data) {
      subscripts.insert(subscripts.begin() + axis_value, dims.nbDims);
    }
    nvinfer1::ITensor* input_shape{nullptr};
    if (engine_->with_dynamic_shape()) {
      input_shape = Shape(input);
    } else {
      input_shape = Add1DConstantLayer(dims);
    }
    auto* new_dim =
        TRT_ENGINE_ADD_LAYER(engine_,
                             Gather,
                             *Concat(std::vector<nvinfer1::ITensor*>{
                                 input_shape, Add1DConstantLayer(1)}),
                             *Add1DConstantLayer(subscripts),
                             0)
            ->getOutput(0);
    auto result = Reshape(input, new_dim);
    return result;
  }

  nvinfer1::ITensor* Squeeze(nvinfer1::ITensor* input,
                             const std::vector<int32_t> axis) {
    const auto dims = input->getDimensions();
    std::vector<int32_t> subscripts(dims.nbDims);
    std::iota(subscripts.begin(), subscripts.end(), 0);
    auto p =
        std::remove_if(subscripts.begin(), subscripts.end(), [axis](int x) {
          return std::find(axis.begin(), axis.end(), x) != axis.end();
        });
    subscripts.resize(p - subscripts.begin());

    nvinfer1::ITensor* input_shape{nullptr};
    if (engine_->with_dynamic_shape()) {
      input_shape = Shape(input);
    } else {
      input_shape = Add1DConstantLayer(dims);
    }

    auto* new_dim =
        TRT_ENGINE_ADD_LAYER(
            engine_, Gather, *input_shape, *Add1DConstantLayer(subscripts), 0)
            ->getOutput(0);
    auto result = Reshape(input, new_dim);
    return result;
  }

Z
zhoutianzi666 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  // paddle allows negative index
  // for axis length = 5, paddle allows [-5, 4]
  nvinfer1::ITensor* FixNegIndices(nvinfer1::ITensor* input_shape,
                                   nvinfer1::ITensor* indices) {
    int rank = input_shape->getDimensions().nbDims;
    std::vector<int32_t> zero = std::vector<int32_t>(rank, 0);
    std::vector<int32_t> minus_one = std::vector<int32_t>(rank, -1);
    nvinfer1::ITensor* zero_tensor = Add1DConstantLayer(zero);
    nvinfer1::ITensor* minus_one_tensor = Add1DConstantLayer(minus_one);
    // -1, 0
    auto* sign = Max(Min(indices, zero_tensor), minus_one_tensor);
    return Sub(indices, Prod(sign, input_shape));
  }

  nvinfer1::ITensor* Shape(nvinfer1::ITensor* input) {
    return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
  }

457
  nvinfer1::ITensor* Reshape(nvinfer1::ITensor* input,
458
                             nvinfer1::ITensor* newShape,
459
                             const std::string& name = "") {
460
    auto* shuffle = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    if (engine_->with_dynamic_shape()) {
      shuffle->setInput(1, *newShape);
    } else {
      auto shape = newShape->getDimensions();
      shuffle->setReshapeDimensions(shape);
    }
    if (name != "") {
      shuffle->setName(name.c_str());
    }
    return shuffle->getOutput(0);
  }

  nvinfer1::ITensor* Reshape(nvinfer1::ITensor* input,
                             nvinfer1::Dims shape,
                             const std::string& name = "") {
    auto* shuffle = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
    shuffle->setReshapeDimensions(shape);
478 479 480
    if (name != "") {
      shuffle->setName(name.c_str());
    }
481 482 483 484
    return shuffle->getOutput(0);
  }

  nvinfer1::ITensor* BroadcastTensor(nvinfer1::ITensor* input,
485 486
                                     const int nbDims,
                                     const std::string& name = "") {
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    auto oldShape = Shape(input);
    auto oldShapeDims = oldShape->getDimensions();
    const int rank = oldShapeDims.nbDims;
    if (rank > nbDims) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Cannot broadcast a higher rank tensor to a lower rank tensor."));
    }
    if (rank < nbDims) {
      nvinfer1::ITensor* concat_shape_tensor;
      auto* one_rank_tensor =
          Add1DConstantLayer(std::vector<int32_t>(nbDims - rank, 1));
      std::vector<nvinfer1::ITensor*> itensors;
      itensors.push_back(one_rank_tensor);
      itensors.push_back(oldShape);
      concat_shape_tensor = Concat(itensors);
502
      input = Reshape(input, concat_shape_tensor, name);
503 504 505 506 507
    }
    return input;
  }

  nvinfer1::ITensor* BroadcastTensors(nvinfer1::ITensor* a,
508 509
                                      nvinfer1::ITensor* b,
                                      const std::string& name = "") {
510 511 512 513 514 515
    const int aDims = a->getDimensions().nbDims;
    const int bDims = b->getDimensions().nbDims;
    if (aDims == bDims) {
      VLOG(3) << "Broadcast two equal rank tensors";
    }
    if (aDims > bDims) {
516
      return BroadcastTensor(b, aDims, name);
517
    }
518
    return BroadcastTensor(a, bDims, name);
519 520
  }

Z
zhoutianzi666 已提交
521 522 523
  // Concat not make rank changed
  nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
                            int axis = 0) {
524 525
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Concatenation, inputs.data(), inputs.size());
Z
zhoutianzi666 已提交
526 527 528 529 530 531 532
    if (axis != 0) layer->setAxis(axis);
    nvinfer1::ITensor* c = layer->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sum(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
533 534
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUM)
Z
zhoutianzi666 已提交
535 536 537 538 539 540
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Prod(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
541 542
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kPROD)
Z
zhoutianzi666 已提交
543 544 545 546 547 548
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Min(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
549 550
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMIN)
Z
zhoutianzi666 已提交
551 552 553 554 555 556
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Max(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
557 558
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMAX)
Z
zhoutianzi666 已提交
559 560 561 562 563 564
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sub(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
565 566
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUB)
Z
zhoutianzi666 已提交
567 568 569 570 571 572
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Div(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
573 574
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kDIV)
Z
zhoutianzi666 已提交
575 576 577 578
            ->getOutput(0);
    return c;
  }

579 580 581 582 583 584 585 586 587 588 589
  nvinfer1::ITensor* FloorDiv(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_,
                             ElementWise,
                             *a,
                             *b,
                             nvinfer1::ElementWiseOperation::kFLOOR_DIV)
            ->getOutput(0);
    return c;
  }

590 591 592 593 594 595 596 597
  nvinfer1::ITensor* Pow(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kPOW)
            ->getOutput(0);
    return c;
  }

Z
zhoutianzi666 已提交
598 599 600 601 602 603 604 605 606
  nvinfer1::ITensor* Act(nvinfer1::ITensor* a,
                         nvinfer1::ActivationType act_type) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, Activation, *a, act_type)->getOutput(0);
    return c;
  }

  // Get element tensor of 1D shape tensor
  nvinfer1::ITensor* GetEleTensorOfShape(nvinfer1::ITensor* shape_tensor,
607 608
                                         int index,
                                         bool is_scalar = false) {
Z
zhoutianzi666 已提交
609 610 611 612 613 614
    PADDLE_ENFORCE_GE(
        index,
        0,
        platform::errors::PreconditionNotMet(
            "The index should be greater or equal than 0, but got %d", index));

Z
zhoutianzi666 已提交
615
    auto* tensor =
616 617 618 619 620
        TRT_ENGINE_ADD_LAYER(engine_,
                             Gather,
                             *shape_tensor,
                             *Add1DConstantLayer(index, " ", is_scalar),
                             0)
Z
zhoutianzi666 已提交
621 622 623
            ->getOutput(0);
    return tensor;
  }
624 625 626
  template <typename T>
  // Create and add Multi-D constant float/int32 layer
  nvinfer1::ITensor* AddConstantLayer(const T* data,
627 628 629 630 631 632 633 634 635 636
                                      nvinfer1::Dims shape,
                                      const std::string& weight_name = "") {
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

637
    int data_size = std::accumulate(
638
        shape.d, shape.d + shape.nbDims, 1, std::multiplies<int>());
639
    std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
Z
zhoutianzi666 已提交
640
    tmp_tensor->Resize({data_size});
641
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
642 643 644 645 646
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

647 648 649 650 651 652
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
    }

    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
653 654
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
655

Z
zhoutianzi666 已提交
656
    auto const_layer =
657
        TRT_ENGINE_ADD_LAYER(engine_, Constant, shape, weight.get());
Z
zhoutianzi666 已提交
658 659 660
    return const_layer->getOutput(0);
  }

661 662 663
  // Create and add 1D constant float/int32 layer
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<T>& data,
Z
zhoutianzi666 已提交
664 665
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
666 667 668 669 670 671 672 673
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

674
    std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
Z
zhoutianzi666 已提交
675 676
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
677
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
678 679 680 681 682
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

683 684 685
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
Z
zhoutianzi666 已提交
686 687
    }

688
    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  nvinfer1::ITensor* Add1DConstantLayer(nvinfer1::Dims data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    for (int i = 0; i < data.nbDims; i++) tmp_data.push_back(data.d[i]);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

707 708
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(T data,
Z
zhoutianzi666 已提交
709 710
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
711 712 713
    std::vector<T> input_data;
    input_data.push_back(data);
    return Add1DConstantLayer(input_data, weight_name, scalar);
Z
zhoutianzi666 已提交
714 715
  }

716
  void RreplenishLayerAndOutput(
717 718
      nvinfer1::ILayer* layer,
      const std::string& layer_type,
719 720
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
721 722 723
    if (layer == nullptr) {
      return;
    }
724
    size_t num_out = output_tensor_names.size();
Z
zhoutianzi666 已提交
725
    std::string layer_name = layer_type + " (Output: ";
726 727 728 729 730 731
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
Z
zhoutianzi666 已提交
732 733
      layer_name += output_tensor_names[i];
      if (i != num_out - 1) layer_name += ", ";
734
    }
Z
zhoutianzi666 已提交
735
    layer->setName((layer_name + ")").c_str());
736
  }
L
Luo Tao 已提交
737 738
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

W
weishengying 已提交
739 740 741 742
  void SetBlockDesc(const framework::proto::BlockDesc* block) {
    block_ = block;
  }

L
Luo Tao 已提交
743 744
  virtual ~OpConverter() {}

L
Luo Tao 已提交
745 746
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};
W
weishengying 已提交
747 748
  // BlockDesc
  const framework::proto::BlockDesc* block_{nullptr};
L
Luo Tao 已提交
749

750 751 752
 protected:
  bool test_mode_;

L
Luo Tao 已提交
753 754 755 756 757
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
758
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
759
  std::mutex mut_;
L
Luo Tao 已提交
760 761
};

762 763 764 765
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

766 767 768
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
769 770 771
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
772 773 774 775 776 777 778 779
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

780 781 782
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
783
      TouchConverterRegister_##op_type__();