op_converter.h 25.7 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
21

L
Luo Tao 已提交
22
#include "paddle/fluid/framework/block_desc.h"
23
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/framework/scope.h"
25
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/tensorrt/engine.h"
27
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
28
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
40

41 42
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
43 44
                          const framework::Scope& scope,
                          bool test_mode = false) {}
45

46 47
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
48 49
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
50 51
                 const framework::Scope& scope,
                 TensorRTEngine* engine,
52
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
53
    framework::OpDesc op_desc(op, nullptr);
54 55

    OpConverter* it{nullptr};
L
Luo Tao 已提交
56

57
    if (op_desc.Type() == "mul") {
58 59
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                        1UL,
S
Shang Zhizhou 已提交
60 61 62 63 64
                        platform::errors::InvalidArgument(
                            "The input op mul's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
65 66
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
67
        it = Registry<OpConverter>::Global().Lookup("fc");
68 69
      }
    }
N
nhzlx 已提交
70 71 72
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
S
shentanyue 已提交
73 74
      static std::unordered_set<std::string> add_weight_op_set{
          "add", "mul", "sub", "div", "pow"};
75 76
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                        1UL,
S
Shang Zhizhou 已提交
77 78 79 80 81
                        platform::errors::InvalidArgument(
                            "The input op's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
N
nhzlx 已提交
82 83 84 85
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
S
Shang Zhizhou 已提交
86
        PADDLE_ENFORCE_GT(
87 88
            add_weight_op_set.count(op_type),
            0,
S
Shang Zhizhou 已提交
89 90
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
91 92
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
S
Shang Zhizhou 已提交
93
        PADDLE_ENFORCE_NOT_NULL(
94 95 96
            it,
            platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                            op_desc.Type()));
N
nhzlx 已提交
97
      } else {
S
Shang Zhizhou 已提交
98
        PADDLE_ENFORCE_GT(
99 100
            add_tensor_op_set.count(op_type),
            0,
S
Shang Zhizhou 已提交
101 102
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
103 104
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
105
      }
S
Shang Zhizhou 已提交
106
      PADDLE_ENFORCE_NOT_NULL(
107 108 109
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
N
nhzlx 已提交
110 111 112
    }

    if (op_desc.Type() == "depthwise_conv2d") {
113
      it = Registry<OpConverter>::Global().Lookup("conv2d");
114
      PADDLE_ENFORCE_NOT_NULL(
115 116 117
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
118 119 120
    }
    if (op_desc.Type() == "depthwise_conv2d_transpose") {
      it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
S
Shang Zhizhou 已提交
121
      PADDLE_ENFORCE_NOT_NULL(
122 123 124
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
N
nhzlx 已提交
125
    }
126 127 128
    if (op_desc.Type() == "transpose2") {
      it = Registry<OpConverter>::Global().Lookup("transpose");
      PADDLE_ENFORCE_NOT_NULL(
129 130 131
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
132 133 134 135
    }
    if (op_desc.Type() == "flatten2") {
      it = Registry<OpConverter>::Global().Lookup("flatten");
      PADDLE_ENFORCE_NOT_NULL(
136 137 138
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
139
    }
W
Wangzheee 已提交
140 141 142 143
    // reshape2 == reshape
    if (op_desc.Type() == "reshape2") {
      it = Registry<OpConverter>::Global().Lookup("reshape");
      PADDLE_ENFORCE_NOT_NULL(
144 145 146
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
W
Wangzheee 已提交
147
    }
148
    if (!it) {
149
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
150
    }
S
Shang Zhizhou 已提交
151
    PADDLE_ENFORCE_NOT_NULL(
152 153 154
        it,
        platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                        op_desc.Type()));
155

156
    it->SetEngine(engine);
157
    (*it)(op, scope, test_mode);
158

159
    size_t output_num = op_desc.OutputNames().size();
160 161 162
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
R
Ruibiao Chen 已提交
163
          PADDLE_GET_CONST(float, op_desc.GetAttr("out_threshold"));
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
R
Ruibiao Chen 已提交
186
        float out_scale = PADDLE_GET_CONST(
187 188 189
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
190 191 192 193 194
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
195 196 197 198 199 200 201 202 203 204 205 206
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
R
Ruibiao Chen 已提交
207
            PADDLE_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
208 209 210 211 212 213 214 215 216 217
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
R
Ruibiao Chen 已提交
218
            PADDLE_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
219 220 221
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
222 223
      }
    }
L
Luo Tao 已提交
224 225
  }

Y
Yan Chunwei 已提交
226 227
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
228
  void ConvertBlock(const framework::proto::BlockDesc& block,
229
                    const std::unordered_set<std::string>& parameters,
230 231
                    const framework::Scope& scope,
                    TensorRTEngine* engine) {
N
nhzlx 已提交
232
    std::unique_lock<std::mutex> lk(mut_);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    for (int i = 0; i < block.ops_size(); i++) {
      SetEngine(engine);
      const auto& op = block.ops(i);
      framework::OpDesc op_desc(op, nullptr);
      framework::Variable* X_v = nullptr;
      std::string X_name;
      // inputs : string -> std::vector<string>
      auto inputs = op_desc.Inputs();
      if (inputs.count("X")) {
        X_name = op_desc.Input("X")[0];
      } else if (inputs.count("Input")) {
        X_name = op_desc.Input("Input")[0];
      } else if (inputs.count("Y")) {
        X_name = op_desc.Input("Y")[0];
      }
      X_v = scope.FindVar(X_name);
      // If this weight is shared between ops, it needn't to be convtered to
      // itensor once again
      if (engine->GetITensorMap()->count(X_name)) {
        continue;
      }
      if (X_v) {
        ConvertWeight2ITensor(scope, X_name);
      }
    }
K
Kexin Zhao 已提交
258
    for (int i = 0; i < block.ops_size(); i++) {
259
      const auto& op = block.ops(i);
260
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
261
    }
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    for (int i = 0; i < engine->network()->getNbLayers(); i++) {
      auto layer = engine->network()->getLayer(i);
      if (layer->getType() == nvinfer1::LayerType::kSHUFFLE) {
        auto* input_tensor = layer->getInput(0);
        auto* output_tensor = layer->getOutput(0);
        auto output_tensor_name = output_tensor->getName();
        auto input_tensor_name = input_tensor->getName();
        if (engine->DynamicRangeIsSet(input_tensor) &&
            !engine->DynamicRangeIsSet(output_tensor)) {
          float output_scale = engine->GetTensorDynamicRange(input_tensor);
          VLOG(1) << "Set output tensor scale = " << output_scale
                  << " for tensor in TensorRT: " << output_tensor_name << ".";
          engine->SetTensorDynamicRange(output_tensor, output_scale);
        } else {
          VLOG(1) << "Failed to get input tensor scale for tensor in TensorRT: "
                  << input_tensor_name << ".";
        }
      }
    }
L
Luo Tao 已提交
281 282
  }

N
nhzlx 已提交
283
  // The scope  here should be inited with the parameter vars.
284
  void ConvertBlockToTRTEngine(
285 286
      framework::BlockDesc* block_desc,
      const framework::Scope& scope,
287 288
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
289 290
      const std::vector<std::string>& outputs,
      TensorRTEngine* engine) {
291
    engine->InitNetwork();
292
    bool all_dynamic_shape_set = true;
293 294 295
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
296
      PADDLE_ENFORCE_NOT_NULL(
297 298 299
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     input.c_str()));
S
Shang Zhizhou 已提交
300
      PADDLE_ENFORCE_EQ(
301 302
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
S
Shang Zhizhou 已提交
303 304
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
305
      auto var_shape = var->GetShape();
306 307 308 309 310 311
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
312 313 314 315 316 317 318
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
319
        std::vector<int64_t> input_shape;
320 321
        // input_shape.push_back(-1);
        for (size_t i = 0; i < ranks; i++) {
322 323 324 325 326
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
327 328
            PADDLE_ENFORCE_EQ(min_input_shape[i],
                              optim_input_shape[i],
329 330 331 332 333 334
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
335 336 337
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
338 339 340 341
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
342 343 344
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
345
            Vec2TRT_Dims(var_shape, input));
346 347
        VLOG(1) << "Set trt input [" << input << "] type is "
                << var->Proto()->type().lod_tensor().tensor().data_type();
348
      }
349
    }
350 351
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set,
                      true,
352 353 354
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
355 356 357 358 359 360
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
361
    engine->ClearWeights();
362 363
  }

Z
zhoutianzi666 已提交
364 365
  // rank(result) = rank(input)
  nvinfer1::ITensor* Gather(nvinfer1::ITensor* input,
366 367
                            const std::vector<int32_t> indices,
                            int axis = 0) {
Z
zhoutianzi666 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    auto* indices_tensor = Add1DConstantLayer(indices, " ");
    auto* result =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *input, *indices_tensor, axis)
            ->getOutput(0);
    return result;
  }

  // paddle allows negative index
  // for axis length = 5, paddle allows [-5, 4]
  nvinfer1::ITensor* FixNegIndices(nvinfer1::ITensor* input_shape,
                                   nvinfer1::ITensor* indices) {
    int rank = input_shape->getDimensions().nbDims;
    std::vector<int32_t> zero = std::vector<int32_t>(rank, 0);
    std::vector<int32_t> minus_one = std::vector<int32_t>(rank, -1);
    nvinfer1::ITensor* zero_tensor = Add1DConstantLayer(zero);
    nvinfer1::ITensor* minus_one_tensor = Add1DConstantLayer(minus_one);
    // -1, 0
    auto* sign = Max(Min(indices, zero_tensor), minus_one_tensor);
    return Sub(indices, Prod(sign, input_shape));
  }

  nvinfer1::ITensor* Shape(nvinfer1::ITensor* input) {
    return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
  }

  // Concat not make rank changed
  nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
                            int axis = 0) {
396 397
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Concatenation, inputs.data(), inputs.size());
Z
zhoutianzi666 已提交
398 399 400 401 402 403 404
    if (axis != 0) layer->setAxis(axis);
    nvinfer1::ITensor* c = layer->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sum(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
405 406
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUM)
Z
zhoutianzi666 已提交
407 408 409 410 411 412
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Prod(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
413 414
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kPROD)
Z
zhoutianzi666 已提交
415 416 417 418 419 420
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Min(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
421 422
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMIN)
Z
zhoutianzi666 已提交
423 424 425 426 427 428
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Max(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
429 430
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMAX)
Z
zhoutianzi666 已提交
431 432 433 434 435 436
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sub(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
437 438
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUB)
Z
zhoutianzi666 已提交
439 440 441 442 443 444
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Div(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
445 446
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kDIV)
Z
zhoutianzi666 已提交
447 448 449 450
            ->getOutput(0);
    return c;
  }

451 452 453 454 455 456 457 458 459 460 461
  nvinfer1::ITensor* FloorDiv(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_,
                             ElementWise,
                             *a,
                             *b,
                             nvinfer1::ElementWiseOperation::kFLOOR_DIV)
            ->getOutput(0);
    return c;
  }

Z
zhoutianzi666 已提交
462 463 464 465 466 467 468 469 470
  nvinfer1::ITensor* Act(nvinfer1::ITensor* a,
                         nvinfer1::ActivationType act_type) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, Activation, *a, act_type)->getOutput(0);
    return c;
  }

  // Get element tensor of 1D shape tensor
  nvinfer1::ITensor* GetEleTensorOfShape(nvinfer1::ITensor* shape_tensor,
471 472
                                         int index,
                                         bool is_scalar = false) {
Z
zhoutianzi666 已提交
473
    auto* tensor =
474 475 476 477 478
        TRT_ENGINE_ADD_LAYER(engine_,
                             Gather,
                             *shape_tensor,
                             *Add1DConstantLayer(index, " ", is_scalar),
                             0)
Z
zhoutianzi666 已提交
479 480 481
            ->getOutput(0);
    return tensor;
  }
482 483 484
  template <typename T>
  // Create and add Multi-D constant float/int32 layer
  nvinfer1::ITensor* AddConstantLayer(const T* data,
Z
zhoutianzi666 已提交
485 486
                                      const std::vector<int32_t>& weight_dims,
                                      const std::string& weight_name) {
487 488
    int data_size = std::accumulate(
        weight_dims.begin(), weight_dims.end(), 1, std::multiplies<int>());
489
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
Z
zhoutianzi666 已提交
490
    tmp_tensor->Resize({data_size});
491
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
492 493 494 495 496
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

497 498 499 500 501 502
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
    }

    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
503 504 505 506 507 508 509 510 511 512 513
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims trt_dims;
    trt_dims.nbDims = weight_dims.size();
    for (size_t i = 0; i < weight_dims.size(); i++)
      trt_dims.d[i] = weight_dims[i];
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_dims, weight.get());
    return const_layer->getOutput(0);
  }

514 515 516
  // Create and add 1D constant float/int32 layer
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<T>& data,
Z
zhoutianzi666 已提交
517 518 519 520 521
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
522
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
523 524 525 526 527
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

528 529 530
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
Z
zhoutianzi666 已提交
531 532
    }

533
    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  nvinfer1::ITensor* Add1DConstantLayer(nvinfer1::Dims data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    for (int i = 0; i < data.nbDims; i++) tmp_data.push_back(data.d[i]);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

  nvinfer1::ITensor* Add1DConstantLayer(int32_t data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    tmp_data.push_back(data);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

560 561 562 563 564 565
  // For cases when input is not middle-tensor , but persistable tensor
  // you should call this.
  nvinfer1::ITensor* ConvertWeight2ITensor(const framework::Scope& scope,
                                           const std::string& name) {
    auto* var_v = scope.FindVar(name);
    auto* var_t = var_v->GetMutable<framework::LoDTensor>();
566 567
    auto weight = engine_->GetTrtWeight(name, *var_t);

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    // Now we have create weights, then we need create a itensor
    auto var_dims = var_t->dims();
    nvinfer1::Dims trt_in_shape;
    trt_in_shape.nbDims = var_t->dims().size();
    for (int64_t i = 0; i < trt_in_shape.nbDims; i++) {
      trt_in_shape.d[i] = var_dims[i];
    }
    // In fact , this is not always right, because we can't determine if the 0th
    // dimension is batch. Just for run chenqu's model
    if (!engine_->with_dynamic_shape()) {
      trt_in_shape.nbDims--;
      for (int i = 0; i < trt_in_shape.nbDims; i++) {
        trt_in_shape.d[i] = trt_in_shape.d[i + 1];
      }
    }
    nvinfer1::ILayer* layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_in_shape, weight.get());
    engine_->SetITensor(name, layer->getOutput(0));
    return layer->getOutput(0);
  }

589
  void RreplenishLayerAndOutput(
590 591
      nvinfer1::ILayer* layer,
      const std::string& layer_type,
592 593 594
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
Z
zhoutianzi666 已提交
595
    std::string layer_name = layer_type + " (Output: ";
596 597 598 599 600 601
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
Z
zhoutianzi666 已提交
602 603
      layer_name += output_tensor_names[i];
      if (i != num_out - 1) layer_name += ", ";
604
    }
Z
zhoutianzi666 已提交
605
    layer->setName((layer_name + ")").c_str());
606
  }
L
Luo Tao 已提交
607 608
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
609 610
  virtual ~OpConverter() {}

L
Luo Tao 已提交
611 612 613
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

614 615 616
 protected:
  bool test_mode_;

L
Luo Tao 已提交
617 618 619 620 621
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
622
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
623
  std::mutex mut_;
L
Luo Tao 已提交
624 625
};

626 627 628 629
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

630 631 632
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
633 634 635
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
636 637 638 639 640 641 642 643
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

644 645 646
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
647
      TouchConverterRegister_##op_type__();