op_converter.h 13.1 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
L
Luo Tao 已提交
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
23
#include "paddle/fluid/framework/scope.h"
24
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/tensorrt/engine.h"
26
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
27
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
39

40 41
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
42 43
                          const framework::Scope& scope,
                          bool test_mode = false) {}
44

45 46
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
47 48
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
49 50
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
51
    framework::OpDesc op_desc(op, nullptr);
52 53

    OpConverter* it{nullptr};
L
Luo Tao 已提交
54

55
    if (op_desc.Type() == "mul") {
S
Shang Zhizhou 已提交
56 57 58 59 60 61
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op mul's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
62 63
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
64
        it = Registry<OpConverter>::Global().Lookup("fc");
65 66
      }
    }
N
nhzlx 已提交
67 68 69 70 71 72
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
73
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
S
Shang Zhizhou 已提交
74 75 76 77 78 79
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
N
nhzlx 已提交
80 81 82 83
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
S
Shang Zhizhou 已提交
84 85 86 87
        PADDLE_ENFORCE_GT(
            add_weight_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
88 89
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
S
Shang Zhizhou 已提交
90 91 92
        PADDLE_ENFORCE_NOT_NULL(
            it, platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
N
nhzlx 已提交
93
      } else {
S
Shang Zhizhou 已提交
94 95 96 97
        PADDLE_ENFORCE_GT(
            add_tensor_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
98 99
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
100
      }
S
Shang Zhizhou 已提交
101 102 103
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
104 105 106
    }

    if (op_desc.Type() == "depthwise_conv2d") {
107
      it = Registry<OpConverter>::Global().Lookup("conv2d");
108 109 110 111 112 113
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "depthwise_conv2d_transpose") {
      it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
S
Shang Zhizhou 已提交
114 115 116
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
117
    }
118 119 120 121 122 123 124 125 126 127 128 129
    if (op_desc.Type() == "transpose2") {
      it = Registry<OpConverter>::Global().Lookup("transpose");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "flatten2") {
      it = Registry<OpConverter>::Global().Lookup("flatten");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
W
Wangzheee 已提交
130 131 132 133 134 135 136
    // reshape2 == reshape
    if (op_desc.Type() == "reshape2") {
      it = Registry<OpConverter>::Global().Lookup("reshape");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
137
    if (!it) {
138
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
139
    }
S
Shang Zhizhou 已提交
140 141 142
    PADDLE_ENFORCE_NOT_NULL(
        it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                            op_desc.Type()));
143

144
    it->SetEngine(engine);
145
    (*it)(op, scope, test_mode);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

    bool has_out_scale = op_desc.HasAttr("out_threshold");
    if (has_out_scale) {
      float out_scale =
          BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
L
Luo Tao 已提交
170 171
  }

Y
Yan Chunwei 已提交
172 173
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
174
  void ConvertBlock(const framework::proto::BlockDesc& block,
175 176
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
177
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
178
    for (int i = 0; i < block.ops_size(); i++) {
179
      const auto& op = block.ops(i);
180
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
181 182 183
    }
  }

N
nhzlx 已提交
184
  // The scope  here should be inited with the parameter vars.
185 186 187 188 189 190
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
191
    bool all_dynamic_shape_set = true;
192 193 194
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
195 196 197 198 199 200 201
      PADDLE_ENFORCE_NOT_NULL(
          var, platform::errors::NotFound("no variable called %s in block.",
                                          input.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
202
      auto var_shape = var->GetShape();
203 204 205 206 207 208
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
209 210 211 212 213 214 215
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        std::vector<int64_t> input_shape;
        input_shape.push_back(-1);
        for (size_t i = 1; i < ranks; i++) {
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
            PADDLE_ENFORCE_EQ(min_input_shape[i], optim_input_shape[i],
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(var_shape, input));
      }
241
    }
242 243 244 245
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set, true,
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
246 247 248 249 250 251
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
252
    engine->ClearWeights();
253 254
  }

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
L
Luo Tao 已提交
270 271
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
272 273
  virtual ~OpConverter() {}

L
Luo Tao 已提交
274 275 276
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

277 278 279
 protected:
  bool test_mode_;

L
Luo Tao 已提交
280 281 282 283 284
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
285
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
286
  std::mutex mut_;
L
Luo Tao 已提交
287 288
};

289 290 291 292
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

293 294 295
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
296 297 298
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
299 300 301 302 303 304 305 306
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

307 308 309
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
310
      TouchConverterRegister_##op_type__();