op_converter.h 22.7 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
21

L
Luo Tao 已提交
22
#include "paddle/fluid/framework/block_desc.h"
23
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/framework/scope.h"
25
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/tensorrt/engine.h"
27
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
28
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
40

41 42
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
43 44
                          const framework::Scope& scope,
                          bool test_mode = false) {}
45

46 47
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
48 49
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
50 51
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
52
    framework::OpDesc op_desc(op, nullptr);
53 54

    OpConverter* it{nullptr};
L
Luo Tao 已提交
55

56
    if (op_desc.Type() == "mul") {
S
Shang Zhizhou 已提交
57 58 59 60 61 62
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op mul's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
63 64
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
65
        it = Registry<OpConverter>::Global().Lookup("fc");
66 67
      }
    }
N
nhzlx 已提交
68 69 70
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
S
shentanyue 已提交
71 72
      static std::unordered_set<std::string> add_weight_op_set{
          "add", "mul", "sub", "div", "pow"};
S
Shang Zhizhou 已提交
73 74 75 76 77 78
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
N
nhzlx 已提交
79 80 81 82
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
S
Shang Zhizhou 已提交
83 84 85 86
        PADDLE_ENFORCE_GT(
            add_weight_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
87 88
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
S
Shang Zhizhou 已提交
89 90 91
        PADDLE_ENFORCE_NOT_NULL(
            it, platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
N
nhzlx 已提交
92
      } else {
S
Shang Zhizhou 已提交
93 94 95 96
        PADDLE_ENFORCE_GT(
            add_tensor_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
97 98
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
99
      }
S
Shang Zhizhou 已提交
100 101 102
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
103 104 105
    }

    if (op_desc.Type() == "depthwise_conv2d") {
106
      it = Registry<OpConverter>::Global().Lookup("conv2d");
107 108 109 110 111 112
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "depthwise_conv2d_transpose") {
      it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
S
Shang Zhizhou 已提交
113 114 115
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
116
    }
117 118 119 120 121 122 123 124 125 126 127 128
    if (op_desc.Type() == "transpose2") {
      it = Registry<OpConverter>::Global().Lookup("transpose");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "flatten2") {
      it = Registry<OpConverter>::Global().Lookup("flatten");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
W
Wangzheee 已提交
129 130 131 132 133 134 135
    // reshape2 == reshape
    if (op_desc.Type() == "reshape2") {
      it = Registry<OpConverter>::Global().Lookup("reshape");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
136
    if (!it) {
137
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
138
    }
S
Shang Zhizhou 已提交
139 140 141
    PADDLE_ENFORCE_NOT_NULL(
        it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                            op_desc.Type()));
142

143
    it->SetEngine(engine);
144
    (*it)(op, scope, test_mode);
145

146
    size_t output_num = op_desc.OutputNames().size();
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
          BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
        float out_scale = BOOST_GET_CONST(
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
177 178 179 180 181
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
209 210
      }
    }
L
Luo Tao 已提交
211 212
  }

Y
Yan Chunwei 已提交
213 214
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
215
  void ConvertBlock(const framework::proto::BlockDesc& block,
216 217
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
218
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
219
    for (int i = 0; i < block.ops_size(); i++) {
220
      const auto& op = block.ops(i);
221
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
222 223 224
    }
  }

N
nhzlx 已提交
225
  // The scope  here should be inited with the parameter vars.
226 227 228 229 230 231
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
232
    bool all_dynamic_shape_set = true;
233 234 235
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
236 237 238 239 240 241 242
      PADDLE_ENFORCE_NOT_NULL(
          var, platform::errors::NotFound("no variable called %s in block.",
                                          input.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
243
      auto var_shape = var->GetShape();
244 245 246 247 248 249
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
250 251 252 253 254 255 256
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        std::vector<int64_t> input_shape;
        input_shape.push_back(-1);
        for (size_t i = 1; i < ranks; i++) {
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
            PADDLE_ENFORCE_EQ(min_input_shape[i], optim_input_shape[i],
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
272 273 274
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
275 276 277 278
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
279 280 281
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
282 283
            Vec2TRT_Dims(var_shape, input));
      }
284
    }
285 286 287 288
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set, true,
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
289 290 291 292 293 294
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
295
    engine->ClearWeights();
296 297
  }

Z
zhoutianzi666 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  // rank(result) = rank(input)
  nvinfer1::ITensor* Gather(nvinfer1::ITensor* input,
                            const std::vector<int32_t> indices, int axis = 0) {
    auto* indices_tensor = Add1DConstantLayer(indices, " ");
    auto* result =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *input, *indices_tensor, axis)
            ->getOutput(0);
    return result;
  }

  // paddle allows negative index
  // for axis length = 5, paddle allows [-5, 4]
  nvinfer1::ITensor* FixNegIndices(nvinfer1::ITensor* input_shape,
                                   nvinfer1::ITensor* indices) {
    int rank = input_shape->getDimensions().nbDims;
    std::vector<int32_t> zero = std::vector<int32_t>(rank, 0);
    std::vector<int32_t> minus_one = std::vector<int32_t>(rank, -1);
    nvinfer1::ITensor* zero_tensor = Add1DConstantLayer(zero);
    nvinfer1::ITensor* minus_one_tensor = Add1DConstantLayer(minus_one);
    // -1, 0
    auto* sign = Max(Min(indices, zero_tensor), minus_one_tensor);
    return Sub(indices, Prod(sign, input_shape));
  }

  nvinfer1::ITensor* Shape(nvinfer1::ITensor* input) {
    return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
  }

  // Concat not make rank changed
  nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
                            int axis = 0) {
    auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Concatenation, inputs.data(),
                                       inputs.size());
    if (axis != 0) layer->setAxis(axis);
    nvinfer1::ITensor* c = layer->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sum(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *a, *b,
                             nvinfer1::ElementWiseOperation::kSUM)
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Prod(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *a, *b,
                             nvinfer1::ElementWiseOperation::kPROD)
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Min(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *a, *b,
                             nvinfer1::ElementWiseOperation::kMIN)
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Max(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *a, *b,
                             nvinfer1::ElementWiseOperation::kMAX)
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sub(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *a, *b,
                             nvinfer1::ElementWiseOperation::kSUB)
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Div(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *a, *b,
                             nvinfer1::ElementWiseOperation::kDIV)
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Act(nvinfer1::ITensor* a,
                         nvinfer1::ActivationType act_type) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, Activation, *a, act_type)->getOutput(0);
    return c;
  }

  // Get element tensor of 1D shape tensor
  nvinfer1::ITensor* GetEleTensorOfShape(nvinfer1::ITensor* shape_tensor,
                                         int index, bool is_scalar = false) {
    auto* tensor =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *shape_tensor,
                             *Add1DConstantLayer(index, " ", is_scalar), 0)
            ->getOutput(0);
    return tensor;
  }

  // Create and add Multi-D constant float layer
  nvinfer1::ITensor* AddConstantLayer(const float* data,
                                      const std::vector<int32_t>& weight_dims,
                                      const std::string& weight_name) {
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
    int data_size = std::accumulate(weight_dims.begin(), weight_dims.end(), 1,
                                    std::multiplies<int>());
    tmp_tensor->Resize({data_size});
    auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims trt_dims;
    trt_dims.nbDims = weight_dims.size();
    for (size_t i = 0; i < weight_dims.size(); i++)
      trt_dims.d[i] = weight_dims[i];
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_dims, weight.get());
    return const_layer->getOutput(0);
  }

  // Create and add 1D constant float layer
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<float>& data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
    auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  // Create and add 1D constant layer
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<int>& data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
    auto* tmp_data = tmp_tensor->mutable_data<int>(platform::CPUPlace());
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

    TensorRTEngine::Weight weight{nvinfer1::DataType::kINT32,
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  nvinfer1::ITensor* Add1DConstantLayer(nvinfer1::Dims data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    for (int i = 0; i < data.nbDims; i++) tmp_data.push_back(data.d[i]);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

  nvinfer1::ITensor* Add1DConstantLayer(int32_t data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    tmp_data.push_back(data);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

491 492 493 494 495
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
Z
zhoutianzi666 已提交
496
    std::string layer_name = layer_type + " (Output: ";
497 498 499 500 501 502
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
Z
zhoutianzi666 已提交
503 504
      layer_name += output_tensor_names[i];
      if (i != num_out - 1) layer_name += ", ";
505
    }
Z
zhoutianzi666 已提交
506
    layer->setName((layer_name + ")").c_str());
507
  }
L
Luo Tao 已提交
508 509
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
510 511
  virtual ~OpConverter() {}

L
Luo Tao 已提交
512 513 514
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

515 516 517
 protected:
  bool test_mode_;

L
Luo Tao 已提交
518 519 520 521 522
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
523
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
524
  std::mutex mut_;
L
Luo Tao 已提交
525 526
};

527 528 529 530
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

531 532 533
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
534 535 536
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
537 538 539 540 541 542 543 544
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

545 546 547
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
548
      TouchConverterRegister_##op_type__();