op_converter.h 13.9 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
L
Luo Tao 已提交
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
23
#include "paddle/fluid/framework/scope.h"
24
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/tensorrt/engine.h"
26
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
27
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
39

40 41
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
42 43
                          const framework::Scope& scope,
                          bool test_mode = false) {}
44

45 46
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
47 48
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
49 50
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
51
    framework::OpDesc op_desc(op, nullptr);
52 53

    OpConverter* it{nullptr};
L
Luo Tao 已提交
54

55
    if (op_desc.Type() == "mul") {
S
Shang Zhizhou 已提交
56 57 58 59 60 61
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op mul's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
62 63
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
64
        it = Registry<OpConverter>::Global().Lookup("fc");
65 66
      }
    }
N
nhzlx 已提交
67 68 69 70 71 72
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
73
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
S
Shang Zhizhou 已提交
74 75 76 77 78 79
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
N
nhzlx 已提交
80 81 82 83
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
S
Shang Zhizhou 已提交
84 85 86 87
        PADDLE_ENFORCE_GT(
            add_weight_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
88 89
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
S
Shang Zhizhou 已提交
90 91 92
        PADDLE_ENFORCE_NOT_NULL(
            it, platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
N
nhzlx 已提交
93
      } else {
S
Shang Zhizhou 已提交
94 95 96 97
        PADDLE_ENFORCE_GT(
            add_tensor_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
98 99
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
100
      }
S
Shang Zhizhou 已提交
101 102 103
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
104 105 106
    }

    if (op_desc.Type() == "depthwise_conv2d") {
107
      it = Registry<OpConverter>::Global().Lookup("conv2d");
108 109 110 111 112 113
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "depthwise_conv2d_transpose") {
      it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
S
Shang Zhizhou 已提交
114 115 116
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
117
    }
118 119 120 121 122 123 124 125 126 127 128 129
    if (op_desc.Type() == "transpose2") {
      it = Registry<OpConverter>::Global().Lookup("transpose");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "flatten2") {
      it = Registry<OpConverter>::Global().Lookup("flatten");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
W
Wangzheee 已提交
130 131 132 133 134 135 136
    // reshape2 == reshape
    if (op_desc.Type() == "reshape2") {
      it = Registry<OpConverter>::Global().Lookup("reshape");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
137
    if (!it) {
138
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
139
    }
S
Shang Zhizhou 已提交
140 141 142
    PADDLE_ENFORCE_NOT_NULL(
        it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                            op_desc.Type()));
143

144
    it->SetEngine(engine);
145
    (*it)(op, scope, test_mode);
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    size_t output_num = op_desc.OutputNames().size();
    if (output_num == 1) {  // The number of output is 1
      if (op_desc.HasAttr("out_threshold")) {
        float out_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
        std::string output_name = "";
        if (op_desc.HasOutput("Output")) {
          output_name = op_desc.Output("Output").front();
        } else if (op_desc.HasOutput("Out")) {
          output_name = op_desc.Output("Out").front();
        } else if (op_desc.HasOutput("Y")) {
          output_name = op_desc.Output("Y").front();
        } else {
          PADDLE_THROW(
              platform::errors::NotFound("Op %s has out threshold but doesn't "
                                         "have an output named \"Output\", "
                                         "\"Out\" or \"Y\".",
                                         op_desc.Type()));
        }
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
    } else if (output_num > 1) {  // The number of outputs greater than 1
      for (size_t i = 0; i < output_num; ++i) {
        if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
          float out_scale = BOOST_GET_CONST(
              float,
              op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
          std::string output_name =
              op_desc.Output(op_desc.OutputNames()[i]).front();
          auto* output_itensor = engine->GetITensor(output_name);
          engine->SetTensorDynamicRange(output_itensor, out_scale);
          VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                  << output_name << ".";
        }
184 185
      }
    }
L
Luo Tao 已提交
186 187
  }

Y
Yan Chunwei 已提交
188 189
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
190
  void ConvertBlock(const framework::proto::BlockDesc& block,
191 192
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
193
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
194
    for (int i = 0; i < block.ops_size(); i++) {
195
      const auto& op = block.ops(i);
196
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
197 198 199
    }
  }

N
nhzlx 已提交
200
  // The scope  here should be inited with the parameter vars.
201 202 203 204 205 206
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
207
    bool all_dynamic_shape_set = true;
208 209 210
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
211 212 213 214 215 216 217
      PADDLE_ENFORCE_NOT_NULL(
          var, platform::errors::NotFound("no variable called %s in block.",
                                          input.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
218
      auto var_shape = var->GetShape();
219 220 221 222 223 224
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
225 226 227 228 229 230 231
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        std::vector<int64_t> input_shape;
        input_shape.push_back(-1);
        for (size_t i = 1; i < ranks; i++) {
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
            PADDLE_ENFORCE_EQ(min_input_shape[i], optim_input_shape[i],
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(var_shape, input));
      }
257
    }
258 259 260 261
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set, true,
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
262 263 264 265 266 267
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
268
    engine->ClearWeights();
269 270
  }

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
L
Luo Tao 已提交
286 287
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
288 289
  virtual ~OpConverter() {}

L
Luo Tao 已提交
290 291 292
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

293 294 295
 protected:
  bool test_mode_;

L
Luo Tao 已提交
296 297 298 299 300
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
301
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
302
  std::mutex mut_;
L
Luo Tao 已提交
303 304
};

305 306 307 308
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

309 310 311
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
312 313 314
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
315 316 317 318 319 320 321 322
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

323 324 325
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
326
      TouchConverterRegister_##op_type__();