op_converter.h 27.6 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
21

L
Luo Tao 已提交
22
#include "paddle/fluid/framework/block_desc.h"
23
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/framework/scope.h"
25
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/tensorrt/engine.h"
27
#include "paddle/fluid/inference/tensorrt/helper.h"
W
weishengying 已提交
28
#include "paddle/fluid/inference/tensorrt/op_teller.h"
L
Luo Tao 已提交
29
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yuanle Liu 已提交
30
#include "paddle/phi/common/data_type.h"
L
Luo Tao 已提交
31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
42

43 44
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
45 46
                          const framework::Scope& scope,
                          bool test_mode = false) {}
47

48 49
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
50 51
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
52 53
                 const framework::Scope& scope,
                 TensorRTEngine* engine,
W
weishengying 已提交
54 55
                 bool test_mode = false,
                 const framework::proto::BlockDesc* block = nullptr) {
Y
Yan Chunwei 已提交
56
    framework::OpDesc op_desc(op, nullptr);
57 58

    OpConverter* it{nullptr};
L
Luo Tao 已提交
59

60 61 62
    auto converter_type = static_cast<OpConverterType>(
        PADDLE_GET_CONST(int, op_desc.GetAttr("converter_type")));
    switch (converter_type) {
W
weishengying 已提交
63 64 65
      case OpConverterType::Default:
        if (op_desc.Type().find("elementwise") != std::string::npos) {
          static std::unordered_set<std::string> add_tensor_op_set{
66
              "add", "mul", "sub", "div", "max", "min", "pow", "mod"};
W
weishengying 已提交
67
          static std::unordered_set<std::string> add_weight_op_set{
68
              "add", "mul", "sub", "div", "max", "min", "pow", "mod"};
W
weishengying 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
          PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                            1UL,
                            platform::errors::InvalidArgument(
                                "The input op's Input(\"Y\")."
                                "size() should equal to 1, but reveceid "
                                "Input(\"Y\").size() = %u.",
                                op_desc.Input("Y").size()));
          int op_type_len = op_desc.Type().size();
          std::string op_type =
              op_desc.Type().substr(op_type_len - 3, op_type_len);
          std::string Y = op_desc.Input("Y")[0];
          if (parameters.count(Y)) {
            PADDLE_ENFORCE_GT(
                add_weight_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_weight");
            PADDLE_ENFORCE_NOT_NULL(
                it,
                platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
          } else {
            PADDLE_ENFORCE_GT(
                add_tensor_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_tensor");
          }
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
N
nhzlx 已提交
106

W
weishengying 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        if (op_desc.Type() == "depthwise_conv2d") {
          it = Registry<OpConverter>::Global().Lookup("conv2d");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "depthwise_conv2d_transpose") {
          it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "transpose2") {
          it = Registry<OpConverter>::Global().Lookup("transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "flatten2") {
          it = Registry<OpConverter>::Global().Lookup("flatten");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        // reshape2 == reshape
        if (op_desc.Type() == "reshape2") {
          it = Registry<OpConverter>::Global().Lookup("reshape");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
143 144 145 146 147 148 149 150
        // lookup_table_v2 == lookup_table
        if (op_desc.Type() == "lookup_table_v2") {
          it = Registry<OpConverter>::Global().Lookup("lookup_table");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
W
weishengying 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        if (!it) {
          it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
        }
        break;

      case OpConverterType::GenericPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use generic_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("generic_plugin_creater");
        break;

      case OpConverterType::CustomPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use custom_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("custom_plugin_creater");
        break;

      default:
        CHECK(false) << "no OpConverter for optype " << op_desc.Type();
170
    }
W
weishengying 已提交
171

S
Shang Zhizhou 已提交
172
    PADDLE_ENFORCE_NOT_NULL(
173 174 175
        it,
        platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                        op_desc.Type()));
176

177
    it->SetEngine(engine);
178
    engine->SetScope(scope);
W
weishengying 已提交
179
    it->SetBlockDesc(block);
180
    (*it)(op, scope, test_mode);
181

182
    size_t output_num = op_desc.OutputNames().size();
183 184 185
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
R
Ruibiao Chen 已提交
186
          PADDLE_GET_CONST(float, op_desc.GetAttr("out_threshold"));
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
R
Ruibiao Chen 已提交
209
        float out_scale = PADDLE_GET_CONST(
210 211 212
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
213 214 215 216 217
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
218 219 220 221 222 223 224 225 226 227 228 229
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
R
Ruibiao Chen 已提交
230
            PADDLE_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
231 232 233 234 235 236 237 238 239 240
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
R
Ruibiao Chen 已提交
241
            PADDLE_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
242 243 244
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
245 246
      }
    }
L
Luo Tao 已提交
247 248
  }

Y
Yan Chunwei 已提交
249 250
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
251
  void ConvertBlock(const framework::proto::BlockDesc& block,
252
                    const std::unordered_set<std::string>& parameters,
253 254
                    const framework::Scope& scope,
                    TensorRTEngine* engine) {
N
nhzlx 已提交
255
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
256
    for (int i = 0; i < block.ops_size(); i++) {
257
      const auto& op = block.ops(i);
W
weishengying 已提交
258
      ConvertOp(op, parameters, scope, engine, false, &block);
L
Luo Tao 已提交
259
    }
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    for (int i = 0; i < engine->network()->getNbLayers(); i++) {
      auto layer = engine->network()->getLayer(i);
      if (layer->getType() == nvinfer1::LayerType::kSHUFFLE) {
        auto* input_tensor = layer->getInput(0);
        auto* output_tensor = layer->getOutput(0);
        auto output_tensor_name = output_tensor->getName();
        auto input_tensor_name = input_tensor->getName();
        if (engine->DynamicRangeIsSet(input_tensor) &&
            !engine->DynamicRangeIsSet(output_tensor)) {
          float output_scale = engine->GetTensorDynamicRange(input_tensor);
          VLOG(1) << "Set output tensor scale = " << output_scale
                  << " for tensor in TensorRT: " << output_tensor_name << ".";
          engine->SetTensorDynamicRange(output_tensor, output_scale);
        } else {
          VLOG(1) << "Failed to get input tensor scale for tensor in TensorRT: "
                  << input_tensor_name << ".";
        }
      }
    }
L
Luo Tao 已提交
279 280
  }

281
  // The scope here should be inited with the parameter vars.
282
  void ConvertBlockToTRTEngine(
283 284
      framework::BlockDesc* block_desc,
      const framework::Scope& scope,
285 286
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
287 288
      const std::vector<std::string>& outputs,
      TensorRTEngine* engine) {
289
    engine->InitNetwork();
290
    for (auto input : inputs) {
291
      if (parameters.count(input)) continue;
292 293 294 295 296 297
      // NOTE(liuyuanle): It is a trick. If you need a name [input], then you
      // need to use [input.substr(0, idx)].
      // Maybe we insert suffix of "_cast.tmp_" in auto_mixed_precision_pass.
      auto idx = input.find("_cast.tmp_");
      input = input.substr(0, idx);

298
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
299
      PADDLE_ENFORCE_NOT_NULL(
300 301 302
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     input.c_str()));
S
Shang Zhizhou 已提交
303
      PADDLE_ENFORCE_EQ(
304 305
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
S
Shang Zhizhou 已提交
306 307
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
308
      nvinfer1::DataType in_dtype = FluidDataType2TRT(var->GetDataType());
Y
Yuanle Liu 已提交
309
      if (engine->precision() == phi::DataType::FLOAT16 &&
310 311 312 313 314
          in_dtype == nvinfer1::DataType::kFLOAT &&
          engine->EnableLowPrecisionIO()) {
        in_dtype = nvinfer1::DataType::kHALF;
      }

N
nhzlx 已提交
315
      auto var_shape = var->GetShape();
316 317 318 319 320 321
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
322

323
        std::vector<int64_t> input_shape;
324 325
        // input_shape.push_back(-1);
        for (size_t i = 0; i < ranks; i++) {
326 327 328 329 330
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
331 332
            PADDLE_ENFORCE_EQ(min_input_shape[i],
                              optim_input_shape[i],
333 334 335 336 337 338
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
339
            input, in_dtype, Vec2TRT_Dims(input_shape, input, true));
340 341
#endif
      } else {
342
        engine->DeclareInput(input, in_dtype, Vec2TRT_Dims(var_shape, input));
343
      }
344
      VLOG(1) << "set trt engine input dtype " << static_cast<int>(in_dtype);
345
    }
346

347 348
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
349

350
    for (auto& output : outputs) {
351 352 353 354 355 356 357 358 359 360
      auto* var = block_desc->FindVar(output);
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     output.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument(
              "The output tensor in TensorRT subgraph should be LoDTensor"));
361 362 363 364 365 366 367 368
      nvinfer1::DataType out_dtype = FluidDataType2TRT(var->GetDataType());
      if (engine->WithFp16() && !engine->WithInt8() &&
          out_dtype == nvinfer1::DataType::kFLOAT &&
          engine->EnableLowPrecisionIO()) {
        out_dtype = nvinfer1::DataType::kHALF;
      }
      engine->DeclareOutput(output, out_dtype);
      VLOG(1) << "set trt engine output dtype " << static_cast<int>(out_dtype);
369
    }
370

371
    engine->FreezeNetwork();
372
    engine->ClearWeights();
373 374
  }

Z
zhoutianzi666 已提交
375 376
  // rank(result) = rank(input)
  nvinfer1::ITensor* Gather(nvinfer1::ITensor* input,
377 378
                            const std::vector<int32_t> indices,
                            int axis = 0) {
Z
zhoutianzi666 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    auto* indices_tensor = Add1DConstantLayer(indices, " ");
    auto* result =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *input, *indices_tensor, axis)
            ->getOutput(0);
    return result;
  }

  // paddle allows negative index
  // for axis length = 5, paddle allows [-5, 4]
  nvinfer1::ITensor* FixNegIndices(nvinfer1::ITensor* input_shape,
                                   nvinfer1::ITensor* indices) {
    int rank = input_shape->getDimensions().nbDims;
    std::vector<int32_t> zero = std::vector<int32_t>(rank, 0);
    std::vector<int32_t> minus_one = std::vector<int32_t>(rank, -1);
    nvinfer1::ITensor* zero_tensor = Add1DConstantLayer(zero);
    nvinfer1::ITensor* minus_one_tensor = Add1DConstantLayer(minus_one);
    // -1, 0
    auto* sign = Max(Min(indices, zero_tensor), minus_one_tensor);
    return Sub(indices, Prod(sign, input_shape));
  }

  nvinfer1::ITensor* Shape(nvinfer1::ITensor* input) {
    return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
  }

404
  nvinfer1::ITensor* Reshape(nvinfer1::ITensor* input,
405 406
                             nvinfer1::ITensor* newShape,
                             const std::string& name = "reshape") {
407 408
    auto* shuffle = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
    shuffle->setInput(1, *newShape);
409
    shuffle->setName(name.c_str());
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    return shuffle->getOutput(0);
  }

  nvinfer1::ITensor* BroadcastTensor(nvinfer1::ITensor* input,
                                     const int nbDims) {
    auto oldShape = Shape(input);
    auto oldShapeDims = oldShape->getDimensions();
    const int rank = oldShapeDims.nbDims;
    if (rank > nbDims) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Cannot broadcast a higher rank tensor to a lower rank tensor."));
    }
    if (rank < nbDims) {
      nvinfer1::ITensor* concat_shape_tensor;
      auto* one_rank_tensor =
          Add1DConstantLayer(std::vector<int32_t>(nbDims - rank, 1));
      std::vector<nvinfer1::ITensor*> itensors;
      itensors.push_back(one_rank_tensor);
      itensors.push_back(oldShape);
      concat_shape_tensor = Concat(itensors);
      input = Reshape(input, concat_shape_tensor);
    }
    return input;
  }

  nvinfer1::ITensor* BroadcastTensors(nvinfer1::ITensor* a,
                                      nvinfer1::ITensor* b) {
    const int aDims = a->getDimensions().nbDims;
    const int bDims = b->getDimensions().nbDims;
    if (aDims == bDims) {
      VLOG(3) << "Broadcast two equal rank tensors";
    }
    if (aDims > bDims) {
      return BroadcastTensor(b, aDims);
    }
    return BroadcastTensor(a, bDims);
  }

Z
zhoutianzi666 已提交
448 449 450
  // Concat not make rank changed
  nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
                            int axis = 0) {
451 452
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Concatenation, inputs.data(), inputs.size());
Z
zhoutianzi666 已提交
453 454 455 456 457 458 459
    if (axis != 0) layer->setAxis(axis);
    nvinfer1::ITensor* c = layer->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sum(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
460 461
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUM)
Z
zhoutianzi666 已提交
462 463 464 465 466 467
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Prod(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
468 469
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kPROD)
Z
zhoutianzi666 已提交
470 471 472 473 474 475
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Min(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
476 477
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMIN)
Z
zhoutianzi666 已提交
478 479 480 481 482 483
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Max(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
484 485
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMAX)
Z
zhoutianzi666 已提交
486 487 488 489 490 491
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sub(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
492 493
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUB)
Z
zhoutianzi666 已提交
494 495 496 497 498 499
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Div(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
500 501
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kDIV)
Z
zhoutianzi666 已提交
502 503 504 505
            ->getOutput(0);
    return c;
  }

506 507 508 509 510 511 512 513 514 515 516
  nvinfer1::ITensor* FloorDiv(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_,
                             ElementWise,
                             *a,
                             *b,
                             nvinfer1::ElementWiseOperation::kFLOOR_DIV)
            ->getOutput(0);
    return c;
  }

Z
zhoutianzi666 已提交
517 518 519 520 521 522 523 524 525
  nvinfer1::ITensor* Act(nvinfer1::ITensor* a,
                         nvinfer1::ActivationType act_type) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, Activation, *a, act_type)->getOutput(0);
    return c;
  }

  // Get element tensor of 1D shape tensor
  nvinfer1::ITensor* GetEleTensorOfShape(nvinfer1::ITensor* shape_tensor,
526 527
                                         int index,
                                         bool is_scalar = false) {
Z
zhoutianzi666 已提交
528
    auto* tensor =
529 530 531 532 533
        TRT_ENGINE_ADD_LAYER(engine_,
                             Gather,
                             *shape_tensor,
                             *Add1DConstantLayer(index, " ", is_scalar),
                             0)
Z
zhoutianzi666 已提交
534 535 536
            ->getOutput(0);
    return tensor;
  }
537 538 539
  template <typename T>
  // Create and add Multi-D constant float/int32 layer
  nvinfer1::ITensor* AddConstantLayer(const T* data,
540 541 542 543 544 545 546 547 548 549
                                      nvinfer1::Dims shape,
                                      const std::string& weight_name = "") {
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

550
    int data_size = std::accumulate(
551
        shape.d, shape.d + shape.nbDims, 1, std::multiplies<int>());
552
    std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
Z
zhoutianzi666 已提交
553
    tmp_tensor->Resize({data_size});
554
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
555 556 557 558 559
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

560 561 562 563 564 565
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
    }

    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
566 567
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
568

Z
zhoutianzi666 已提交
569
    auto const_layer =
570
        TRT_ENGINE_ADD_LAYER(engine_, Constant, shape, weight.get());
Z
zhoutianzi666 已提交
571 572 573
    return const_layer->getOutput(0);
  }

574 575 576
  // Create and add 1D constant float/int32 layer
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<T>& data,
Z
zhoutianzi666 已提交
577 578
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
579 580 581 582 583 584 585 586
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

587
    std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
Z
zhoutianzi666 已提交
588 589
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
590
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
591 592 593 594 595
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

596 597 598
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
Z
zhoutianzi666 已提交
599 600
    }

601
    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  nvinfer1::ITensor* Add1DConstantLayer(nvinfer1::Dims data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    for (int i = 0; i < data.nbDims; i++) tmp_data.push_back(data.d[i]);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

620 621
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(T data,
Z
zhoutianzi666 已提交
622 623
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
624 625 626
    std::vector<T> input_data;
    input_data.push_back(data);
    return Add1DConstantLayer(input_data, weight_name, scalar);
Z
zhoutianzi666 已提交
627 628
  }

629
  void RreplenishLayerAndOutput(
630 631
      nvinfer1::ILayer* layer,
      const std::string& layer_type,
632 633
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
634 635 636
    if (layer == nullptr) {
      return;
    }
637
    size_t num_out = output_tensor_names.size();
Z
zhoutianzi666 已提交
638
    std::string layer_name = layer_type + " (Output: ";
639 640 641 642 643 644
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
Z
zhoutianzi666 已提交
645 646
      layer_name += output_tensor_names[i];
      if (i != num_out - 1) layer_name += ", ";
647
    }
Z
zhoutianzi666 已提交
648
    layer->setName((layer_name + ")").c_str());
649
  }
L
Luo Tao 已提交
650 651
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

W
weishengying 已提交
652 653 654 655
  void SetBlockDesc(const framework::proto::BlockDesc* block) {
    block_ = block;
  }

L
Luo Tao 已提交
656 657
  virtual ~OpConverter() {}

L
Luo Tao 已提交
658 659
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};
W
weishengying 已提交
660 661
  // BlockDesc
  const framework::proto::BlockDesc* block_{nullptr};
L
Luo Tao 已提交
662

663 664 665
 protected:
  bool test_mode_;

L
Luo Tao 已提交
666 667 668 669 670
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
671
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
672
  std::mutex mut_;
L
Luo Tao 已提交
673 674
};

675 676 677 678
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

679 680 681
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
682 683 684
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
685 686 687 688 689 690 691 692
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

693 694 695
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
696
      TouchConverterRegister_##op_type__();