op_converter.h 27.7 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
21

L
Luo Tao 已提交
22
#include "paddle/fluid/framework/block_desc.h"
23
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/framework/scope.h"
25
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/tensorrt/engine.h"
27
#include "paddle/fluid/inference/tensorrt/helper.h"
W
weishengying 已提交
28
#include "paddle/fluid/inference/tensorrt/op_teller.h"
L
Luo Tao 已提交
29
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
41

42 43
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
44 45
                          const framework::Scope& scope,
                          bool test_mode = false) {}
46

47 48
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
49 50
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
51 52
                 const framework::Scope& scope,
                 TensorRTEngine* engine,
W
weishengying 已提交
53 54
                 bool test_mode = false,
                 const framework::proto::BlockDesc* block = nullptr) {
Y
Yan Chunwei 已提交
55
    framework::OpDesc op_desc(op, nullptr);
56 57

    OpConverter* it{nullptr};
L
Luo Tao 已提交
58

W
weishengying 已提交
59 60 61 62 63
    auto op_converter_type_map = OpTeller::Global().GetOpConverterTypeMap();
    switch (op_converter_type_map.at(op_desc.Type())) {
      case OpConverterType::Default:
        if (op_desc.Type().find("elementwise") != std::string::npos) {
          static std::unordered_set<std::string> add_tensor_op_set{
64
              "add", "mul", "sub", "div", "max", "min", "pow", "mod"};
W
weishengying 已提交
65
          static std::unordered_set<std::string> add_weight_op_set{
66
              "add", "mul", "sub", "div", "max", "min", "pow", "mod"};
W
weishengying 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
          PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                            1UL,
                            platform::errors::InvalidArgument(
                                "The input op's Input(\"Y\")."
                                "size() should equal to 1, but reveceid "
                                "Input(\"Y\").size() = %u.",
                                op_desc.Input("Y").size()));
          int op_type_len = op_desc.Type().size();
          std::string op_type =
              op_desc.Type().substr(op_type_len - 3, op_type_len);
          std::string Y = op_desc.Input("Y")[0];
          if (parameters.count(Y)) {
            PADDLE_ENFORCE_GT(
                add_weight_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_weight");
            PADDLE_ENFORCE_NOT_NULL(
                it,
                platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
          } else {
            PADDLE_ENFORCE_GT(
                add_tensor_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_tensor");
          }
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
N
nhzlx 已提交
104

W
weishengying 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        if (op_desc.Type() == "depthwise_conv2d") {
          it = Registry<OpConverter>::Global().Lookup("conv2d");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "depthwise_conv2d_transpose") {
          it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "transpose2") {
          it = Registry<OpConverter>::Global().Lookup("transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "flatten2") {
          it = Registry<OpConverter>::Global().Lookup("flatten");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        // reshape2 == reshape
        if (op_desc.Type() == "reshape2") {
          it = Registry<OpConverter>::Global().Lookup("reshape");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
141 142 143 144 145 146 147 148
        // lookup_table_v2 == lookup_table
        if (op_desc.Type() == "lookup_table_v2") {
          it = Registry<OpConverter>::Global().Lookup("lookup_table");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
W
weishengying 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        if (!it) {
          it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
        }
        break;

      case OpConverterType::GenericPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use generic_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("generic_plugin_creater");
        break;

      case OpConverterType::CustomPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use custom_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("custom_plugin_creater");
        break;

      default:
        CHECK(false) << "no OpConverter for optype " << op_desc.Type();
168
    }
W
weishengying 已提交
169

S
Shang Zhizhou 已提交
170
    PADDLE_ENFORCE_NOT_NULL(
171 172 173
        it,
        platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                        op_desc.Type()));
174

175
    it->SetEngine(engine);
176
    engine->SetScope(scope);
W
weishengying 已提交
177
    it->SetBlockDesc(block);
178
    (*it)(op, scope, test_mode);
179

180
    size_t output_num = op_desc.OutputNames().size();
181 182 183
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
R
Ruibiao Chen 已提交
184
          PADDLE_GET_CONST(float, op_desc.GetAttr("out_threshold"));
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
R
Ruibiao Chen 已提交
207
        float out_scale = PADDLE_GET_CONST(
208 209 210
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
211 212 213 214 215
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
216 217 218 219 220 221 222 223 224 225 226 227
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
R
Ruibiao Chen 已提交
228
            PADDLE_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
229 230 231 232 233 234 235 236 237 238
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
R
Ruibiao Chen 已提交
239
            PADDLE_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
240 241 242
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
243 244
      }
    }
L
Luo Tao 已提交
245 246
  }

Y
Yan Chunwei 已提交
247 248
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
249
  void ConvertBlock(const framework::proto::BlockDesc& block,
250
                    const std::unordered_set<std::string>& parameters,
251 252
                    const framework::Scope& scope,
                    TensorRTEngine* engine) {
N
nhzlx 已提交
253
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
254
    for (int i = 0; i < block.ops_size(); i++) {
255
      const auto& op = block.ops(i);
W
weishengying 已提交
256
      ConvertOp(op, parameters, scope, engine, false, &block);
L
Luo Tao 已提交
257
    }
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    for (int i = 0; i < engine->network()->getNbLayers(); i++) {
      auto layer = engine->network()->getLayer(i);
      if (layer->getType() == nvinfer1::LayerType::kSHUFFLE) {
        auto* input_tensor = layer->getInput(0);
        auto* output_tensor = layer->getOutput(0);
        auto output_tensor_name = output_tensor->getName();
        auto input_tensor_name = input_tensor->getName();
        if (engine->DynamicRangeIsSet(input_tensor) &&
            !engine->DynamicRangeIsSet(output_tensor)) {
          float output_scale = engine->GetTensorDynamicRange(input_tensor);
          VLOG(1) << "Set output tensor scale = " << output_scale
                  << " for tensor in TensorRT: " << output_tensor_name << ".";
          engine->SetTensorDynamicRange(output_tensor, output_scale);
        } else {
          VLOG(1) << "Failed to get input tensor scale for tensor in TensorRT: "
                  << input_tensor_name << ".";
        }
      }
    }
L
Luo Tao 已提交
277 278
  }

N
nhzlx 已提交
279
  // The scope  here should be inited with the parameter vars.
280
  void ConvertBlockToTRTEngine(
281 282
      framework::BlockDesc* block_desc,
      const framework::Scope& scope,
283 284
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
285 286
      const std::vector<std::string>& outputs,
      TensorRTEngine* engine) {
287
    engine->InitNetwork();
288
    bool all_dynamic_shape_set = true;
289 290 291
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
292
      PADDLE_ENFORCE_NOT_NULL(
293 294 295
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     input.c_str()));
S
Shang Zhizhou 已提交
296
      PADDLE_ENFORCE_EQ(
297 298
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
S
Shang Zhizhou 已提交
299 300
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
301
      auto var_shape = var->GetShape();
302 303 304 305 306 307
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
308 309 310 311 312 313 314
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
315
        std::vector<int64_t> input_shape;
316 317
        // input_shape.push_back(-1);
        for (size_t i = 0; i < ranks; i++) {
318 319 320 321 322
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
323 324
            PADDLE_ENFORCE_EQ(min_input_shape[i],
                              optim_input_shape[i],
325 326 327 328 329 330
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
331 332 333
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
334 335 336 337
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
338 339 340
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
341
            Vec2TRT_Dims(var_shape, input));
342 343
        VLOG(1) << "Set trt input [" << input << "] type is "
                << var->Proto()->type().lod_tensor().tensor().data_type();
344
      }
345
    }
346 347
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set,
                      true,
348 349 350
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
351 352
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
353

354
    for (auto& output : outputs) {
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
      auto* var = block_desc->FindVar(output);
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     output.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument(
              "The output tensor in TensorRT subgraph should be LoDTensor"));
      engine->DeclareOutput(
          output,
          FluidDataType2TRT(
              var->Proto()->type().lod_tensor().tensor().data_type()));
      VLOG(6) << "DeclareOutput(name: " << output << ", dtype: "
              << var->Proto()->type().lod_tensor().tensor().data_type() << ")";
371
    }
372

373
    engine->FreezeNetwork();
374
    engine->ClearWeights();
375 376
  }

Z
zhoutianzi666 已提交
377 378
  // rank(result) = rank(input)
  nvinfer1::ITensor* Gather(nvinfer1::ITensor* input,
379 380
                            const std::vector<int32_t> indices,
                            int axis = 0) {
Z
zhoutianzi666 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    auto* indices_tensor = Add1DConstantLayer(indices, " ");
    auto* result =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *input, *indices_tensor, axis)
            ->getOutput(0);
    return result;
  }

  // paddle allows negative index
  // for axis length = 5, paddle allows [-5, 4]
  nvinfer1::ITensor* FixNegIndices(nvinfer1::ITensor* input_shape,
                                   nvinfer1::ITensor* indices) {
    int rank = input_shape->getDimensions().nbDims;
    std::vector<int32_t> zero = std::vector<int32_t>(rank, 0);
    std::vector<int32_t> minus_one = std::vector<int32_t>(rank, -1);
    nvinfer1::ITensor* zero_tensor = Add1DConstantLayer(zero);
    nvinfer1::ITensor* minus_one_tensor = Add1DConstantLayer(minus_one);
    // -1, 0
    auto* sign = Max(Min(indices, zero_tensor), minus_one_tensor);
    return Sub(indices, Prod(sign, input_shape));
  }

  nvinfer1::ITensor* Shape(nvinfer1::ITensor* input) {
    return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
  }

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
  nvinfer1::ITensor* Reshape(nvinfer1::ITensor* input,
                             nvinfer1::ITensor* newShape) {
    nvinfer1::ITensor* oldShape = Shape(input);
    if (oldShape == newShape) {
      return input;
    }
    auto* shuffle = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
    shuffle->setInput(1, *newShape);
    return shuffle->getOutput(0);
  }

  nvinfer1::ITensor* BroadcastTensor(nvinfer1::ITensor* input,
                                     const int nbDims) {
    auto oldShape = Shape(input);
    auto oldShapeDims = oldShape->getDimensions();
    const int rank = oldShapeDims.nbDims;
    if (rank > nbDims) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Cannot broadcast a higher rank tensor to a lower rank tensor."));
    }
    if (rank < nbDims) {
      nvinfer1::ITensor* concat_shape_tensor;
      auto* one_rank_tensor =
          Add1DConstantLayer(std::vector<int32_t>(nbDims - rank, 1));
      std::vector<nvinfer1::ITensor*> itensors;
      itensors.push_back(one_rank_tensor);
      itensors.push_back(oldShape);
      concat_shape_tensor = Concat(itensors);
      input = Reshape(input, concat_shape_tensor);
    }
    return input;
  }

  nvinfer1::ITensor* BroadcastTensors(nvinfer1::ITensor* a,
                                      nvinfer1::ITensor* b) {
    const int aDims = a->getDimensions().nbDims;
    const int bDims = b->getDimensions().nbDims;
    if (aDims == bDims) {
      VLOG(3) << "Broadcast two equal rank tensors";
    }
    if (aDims > bDims) {
      return BroadcastTensor(b, aDims);
    }
    return BroadcastTensor(a, bDims);
  }

Z
zhoutianzi666 已提交
452 453 454
  // Concat not make rank changed
  nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
                            int axis = 0) {
455 456
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Concatenation, inputs.data(), inputs.size());
Z
zhoutianzi666 已提交
457 458 459 460 461 462 463
    if (axis != 0) layer->setAxis(axis);
    nvinfer1::ITensor* c = layer->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sum(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
464 465
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUM)
Z
zhoutianzi666 已提交
466 467 468 469 470 471
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Prod(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
472 473
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kPROD)
Z
zhoutianzi666 已提交
474 475 476 477 478 479
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Min(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
480 481
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMIN)
Z
zhoutianzi666 已提交
482 483 484 485 486 487
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Max(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
488 489
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMAX)
Z
zhoutianzi666 已提交
490 491 492 493 494 495
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sub(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
496 497
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUB)
Z
zhoutianzi666 已提交
498 499 500 501 502 503
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Div(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
504 505
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kDIV)
Z
zhoutianzi666 已提交
506 507 508 509
            ->getOutput(0);
    return c;
  }

510 511 512 513 514 515 516 517 518 519 520
  nvinfer1::ITensor* FloorDiv(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_,
                             ElementWise,
                             *a,
                             *b,
                             nvinfer1::ElementWiseOperation::kFLOOR_DIV)
            ->getOutput(0);
    return c;
  }

Z
zhoutianzi666 已提交
521 522 523 524 525 526 527 528 529
  nvinfer1::ITensor* Act(nvinfer1::ITensor* a,
                         nvinfer1::ActivationType act_type) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, Activation, *a, act_type)->getOutput(0);
    return c;
  }

  // Get element tensor of 1D shape tensor
  nvinfer1::ITensor* GetEleTensorOfShape(nvinfer1::ITensor* shape_tensor,
530 531
                                         int index,
                                         bool is_scalar = false) {
Z
zhoutianzi666 已提交
532
    auto* tensor =
533 534 535 536 537
        TRT_ENGINE_ADD_LAYER(engine_,
                             Gather,
                             *shape_tensor,
                             *Add1DConstantLayer(index, " ", is_scalar),
                             0)
Z
zhoutianzi666 已提交
538 539 540
            ->getOutput(0);
    return tensor;
  }
541 542 543
  template <typename T>
  // Create and add Multi-D constant float/int32 layer
  nvinfer1::ITensor* AddConstantLayer(const T* data,
544 545 546 547 548 549 550 551 552 553
                                      nvinfer1::Dims shape,
                                      const std::string& weight_name = "") {
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

554
    int data_size = std::accumulate(
555
        shape.d, shape.d + shape.nbDims, 1, std::multiplies<int>());
556
    std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
Z
zhoutianzi666 已提交
557
    tmp_tensor->Resize({data_size});
558
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
559 560 561 562 563
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

564 565 566 567 568 569
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
    }

    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
570 571
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
572

Z
zhoutianzi666 已提交
573
    auto const_layer =
574
        TRT_ENGINE_ADD_LAYER(engine_, Constant, shape, weight.get());
Z
zhoutianzi666 已提交
575 576 577
    return const_layer->getOutput(0);
  }

578 579 580
  // Create and add 1D constant float/int32 layer
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<T>& data,
Z
zhoutianzi666 已提交
581 582
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
583 584 585 586 587 588 589 590
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

591
    std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
Z
zhoutianzi666 已提交
592 593
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
594
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
595 596 597 598 599
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

600 601 602
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
Z
zhoutianzi666 已提交
603 604
    }

605
    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  nvinfer1::ITensor* Add1DConstantLayer(nvinfer1::Dims data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    for (int i = 0; i < data.nbDims; i++) tmp_data.push_back(data.d[i]);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

624 625
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(T data,
Z
zhoutianzi666 已提交
626 627
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
628 629 630
    std::vector<T> input_data;
    input_data.push_back(data);
    return Add1DConstantLayer(input_data, weight_name, scalar);
Z
zhoutianzi666 已提交
631 632
  }

633
  void RreplenishLayerAndOutput(
634 635
      nvinfer1::ILayer* layer,
      const std::string& layer_type,
636 637
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
638 639 640
    if (layer == nullptr) {
      return;
    }
641
    size_t num_out = output_tensor_names.size();
Z
zhoutianzi666 已提交
642
    std::string layer_name = layer_type + " (Output: ";
643 644 645 646 647 648
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
Z
zhoutianzi666 已提交
649 650
      layer_name += output_tensor_names[i];
      if (i != num_out - 1) layer_name += ", ";
651
    }
Z
zhoutianzi666 已提交
652
    layer->setName((layer_name + ")").c_str());
653
  }
L
Luo Tao 已提交
654 655
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

W
weishengying 已提交
656 657 658 659
  void SetBlockDesc(const framework::proto::BlockDesc* block) {
    block_ = block;
  }

L
Luo Tao 已提交
660 661
  virtual ~OpConverter() {}

L
Luo Tao 已提交
662 663
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};
W
weishengying 已提交
664 665
  // BlockDesc
  const framework::proto::BlockDesc* block_{nullptr};
L
Luo Tao 已提交
666

667 668 669
 protected:
  bool test_mode_;

L
Luo Tao 已提交
670 671 672 673 674
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
675
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
676
  std::mutex mut_;
L
Luo Tao 已提交
677 678
};

679 680 681 682
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

683 684 685
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
686 687 688
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
689 690 691 692 693 694 695 696
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

697 698 699
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
700
      TouchConverterRegister_##op_type__();