op_converter.h 22.9 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
21

L
Luo Tao 已提交
22
#include "paddle/fluid/framework/block_desc.h"
23
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/framework/scope.h"
25
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/tensorrt/engine.h"
27
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
28
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
40

41 42
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
43 44
                          const framework::Scope& scope,
                          bool test_mode = false) {}
45

46 47
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
48 49
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
50 51
                 const framework::Scope& scope,
                 TensorRTEngine* engine,
52
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
53
    framework::OpDesc op_desc(op, nullptr);
54 55

    OpConverter* it{nullptr};
L
Luo Tao 已提交
56

57
    if (op_desc.Type() == "mul") {
58 59
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                        1UL,
S
Shang Zhizhou 已提交
60 61 62 63 64
                        platform::errors::InvalidArgument(
                            "The input op mul's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
65 66
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
67
        it = Registry<OpConverter>::Global().Lookup("fc");
68 69
      }
    }
N
nhzlx 已提交
70 71 72
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
S
shentanyue 已提交
73 74
      static std::unordered_set<std::string> add_weight_op_set{
          "add", "mul", "sub", "div", "pow"};
75 76
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                        1UL,
S
Shang Zhizhou 已提交
77 78 79 80 81
                        platform::errors::InvalidArgument(
                            "The input op's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
N
nhzlx 已提交
82 83 84 85
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
S
Shang Zhizhou 已提交
86
        PADDLE_ENFORCE_GT(
87 88
            add_weight_op_set.count(op_type),
            0,
S
Shang Zhizhou 已提交
89 90
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
91 92
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
S
Shang Zhizhou 已提交
93
        PADDLE_ENFORCE_NOT_NULL(
94 95 96
            it,
            platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                            op_desc.Type()));
N
nhzlx 已提交
97
      } else {
S
Shang Zhizhou 已提交
98
        PADDLE_ENFORCE_GT(
99 100
            add_tensor_op_set.count(op_type),
            0,
S
Shang Zhizhou 已提交
101 102
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
103 104
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
105
      }
S
Shang Zhizhou 已提交
106
      PADDLE_ENFORCE_NOT_NULL(
107 108 109
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
N
nhzlx 已提交
110 111 112
    }

    if (op_desc.Type() == "depthwise_conv2d") {
113
      it = Registry<OpConverter>::Global().Lookup("conv2d");
114
      PADDLE_ENFORCE_NOT_NULL(
115 116 117
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
118 119 120
    }
    if (op_desc.Type() == "depthwise_conv2d_transpose") {
      it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
S
Shang Zhizhou 已提交
121
      PADDLE_ENFORCE_NOT_NULL(
122 123 124
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
N
nhzlx 已提交
125
    }
126 127 128
    if (op_desc.Type() == "transpose2") {
      it = Registry<OpConverter>::Global().Lookup("transpose");
      PADDLE_ENFORCE_NOT_NULL(
129 130 131
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
132 133 134 135
    }
    if (op_desc.Type() == "flatten2") {
      it = Registry<OpConverter>::Global().Lookup("flatten");
      PADDLE_ENFORCE_NOT_NULL(
136 137 138
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
139
    }
W
Wangzheee 已提交
140 141 142 143
    // reshape2 == reshape
    if (op_desc.Type() == "reshape2") {
      it = Registry<OpConverter>::Global().Lookup("reshape");
      PADDLE_ENFORCE_NOT_NULL(
144 145 146
          it,
          platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                          op_desc.Type()));
W
Wangzheee 已提交
147
    }
148
    if (!it) {
149
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
150
    }
S
Shang Zhizhou 已提交
151
    PADDLE_ENFORCE_NOT_NULL(
152 153 154
        it,
        platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                        op_desc.Type()));
155

156
    it->SetEngine(engine);
157
    (*it)(op, scope, test_mode);
158

159
    size_t output_num = op_desc.OutputNames().size();
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
          BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
        float out_scale = BOOST_GET_CONST(
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
190 191 192 193 194
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
222 223
      }
    }
L
Luo Tao 已提交
224 225
  }

Y
Yan Chunwei 已提交
226 227
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
228
  void ConvertBlock(const framework::proto::BlockDesc& block,
229
                    const std::unordered_set<std::string>& parameters,
230 231
                    const framework::Scope& scope,
                    TensorRTEngine* engine) {
N
nhzlx 已提交
232
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
233
    for (int i = 0; i < block.ops_size(); i++) {
234
      const auto& op = block.ops(i);
235
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
236 237 238
    }
  }

N
nhzlx 已提交
239
  // The scope  here should be inited with the parameter vars.
240
  void ConvertBlockToTRTEngine(
241 242
      framework::BlockDesc* block_desc,
      const framework::Scope& scope,
243 244
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
245 246
      const std::vector<std::string>& outputs,
      TensorRTEngine* engine) {
247
    engine->InitNetwork();
248
    bool all_dynamic_shape_set = true;
249 250 251
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
252
      PADDLE_ENFORCE_NOT_NULL(
253 254 255
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     input.c_str()));
S
Shang Zhizhou 已提交
256
      PADDLE_ENFORCE_EQ(
257 258
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
S
Shang Zhizhou 已提交
259 260
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
261
      auto var_shape = var->GetShape();
262 263 264 265 266 267
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
268 269 270 271 272 273 274
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
275 276 277 278 279 280 281 282
        std::vector<int64_t> input_shape;
        input_shape.push_back(-1);
        for (size_t i = 1; i < ranks; i++) {
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
283 284
            PADDLE_ENFORCE_EQ(min_input_shape[i],
                              optim_input_shape[i],
285 286 287 288 289 290
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
291 292 293
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
294 295 296 297
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
298 299 300
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
301 302
            Vec2TRT_Dims(var_shape, input));
      }
303
    }
304 305
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set,
                      true,
306 307 308
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
309 310 311 312 313 314
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
315
    engine->ClearWeights();
316 317
  }

Z
zhoutianzi666 已提交
318 319
  // rank(result) = rank(input)
  nvinfer1::ITensor* Gather(nvinfer1::ITensor* input,
320 321
                            const std::vector<int32_t> indices,
                            int axis = 0) {
Z
zhoutianzi666 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    auto* indices_tensor = Add1DConstantLayer(indices, " ");
    auto* result =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *input, *indices_tensor, axis)
            ->getOutput(0);
    return result;
  }

  // paddle allows negative index
  // for axis length = 5, paddle allows [-5, 4]
  nvinfer1::ITensor* FixNegIndices(nvinfer1::ITensor* input_shape,
                                   nvinfer1::ITensor* indices) {
    int rank = input_shape->getDimensions().nbDims;
    std::vector<int32_t> zero = std::vector<int32_t>(rank, 0);
    std::vector<int32_t> minus_one = std::vector<int32_t>(rank, -1);
    nvinfer1::ITensor* zero_tensor = Add1DConstantLayer(zero);
    nvinfer1::ITensor* minus_one_tensor = Add1DConstantLayer(minus_one);
    // -1, 0
    auto* sign = Max(Min(indices, zero_tensor), minus_one_tensor);
    return Sub(indices, Prod(sign, input_shape));
  }

  nvinfer1::ITensor* Shape(nvinfer1::ITensor* input) {
    return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
  }

  // Concat not make rank changed
  nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
                            int axis = 0) {
350 351
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Concatenation, inputs.data(), inputs.size());
Z
zhoutianzi666 已提交
352 353 354 355 356 357 358
    if (axis != 0) layer->setAxis(axis);
    nvinfer1::ITensor* c = layer->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sum(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
359 360
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUM)
Z
zhoutianzi666 已提交
361 362 363 364 365 366
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Prod(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
367 368
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kPROD)
Z
zhoutianzi666 已提交
369 370 371 372 373 374
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Min(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
375 376
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMIN)
Z
zhoutianzi666 已提交
377 378 379 380 381 382
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Max(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
383 384
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMAX)
Z
zhoutianzi666 已提交
385 386 387 388 389 390
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sub(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
391 392
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUB)
Z
zhoutianzi666 已提交
393 394 395 396 397 398
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Div(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
399 400
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kDIV)
Z
zhoutianzi666 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Act(nvinfer1::ITensor* a,
                         nvinfer1::ActivationType act_type) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, Activation, *a, act_type)->getOutput(0);
    return c;
  }

  // Get element tensor of 1D shape tensor
  nvinfer1::ITensor* GetEleTensorOfShape(nvinfer1::ITensor* shape_tensor,
414 415
                                         int index,
                                         bool is_scalar = false) {
Z
zhoutianzi666 已提交
416
    auto* tensor =
417 418 419 420 421
        TRT_ENGINE_ADD_LAYER(engine_,
                             Gather,
                             *shape_tensor,
                             *Add1DConstantLayer(index, " ", is_scalar),
                             0)
Z
zhoutianzi666 已提交
422 423 424 425 426 427 428 429 430
            ->getOutput(0);
    return tensor;
  }

  // Create and add Multi-D constant float layer
  nvinfer1::ITensor* AddConstantLayer(const float* data,
                                      const std::vector<int32_t>& weight_dims,
                                      const std::string& weight_name) {
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
431 432
    int data_size = std::accumulate(
        weight_dims.begin(), weight_dims.end(), 1, std::multiplies<int>());
Z
zhoutianzi666 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    tmp_tensor->Resize({data_size});
    auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims trt_dims;
    trt_dims.nbDims = weight_dims.size();
    for (size_t i = 0; i < weight_dims.size(); i++)
      trt_dims.d[i] = weight_dims[i];
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_dims, weight.get());
    return const_layer->getOutput(0);
  }

  // Create and add 1D constant float layer
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<float>& data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
    auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  // Create and add 1D constant layer
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<int>& data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
    auto* tmp_data = tmp_tensor->mutable_data<int>(platform::CPUPlace());
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

    TensorRTEngine::Weight weight{nvinfer1::DataType::kINT32,
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  nvinfer1::ITensor* Add1DConstantLayer(nvinfer1::Dims data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    for (int i = 0; i < data.nbDims; i++) tmp_data.push_back(data.d[i]);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

  nvinfer1::ITensor* Add1DConstantLayer(int32_t data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    tmp_data.push_back(data);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

516
  void RreplenishLayerAndOutput(
517 518
      nvinfer1::ILayer* layer,
      const std::string& layer_type,
519 520 521
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
Z
zhoutianzi666 已提交
522
    std::string layer_name = layer_type + " (Output: ";
523 524 525 526 527 528
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
Z
zhoutianzi666 已提交
529 530
      layer_name += output_tensor_names[i];
      if (i != num_out - 1) layer_name += ", ";
531
    }
Z
zhoutianzi666 已提交
532
    layer->setName((layer_name + ")").c_str());
533
  }
L
Luo Tao 已提交
534 535
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
536 537
  virtual ~OpConverter() {}

L
Luo Tao 已提交
538 539 540
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

541 542 543
 protected:
  bool test_mode_;

L
Luo Tao 已提交
544 545 546 547 548
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
549
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
550
  std::mutex mut_;
L
Luo Tao 已提交
551 552
};

553 554 555 556
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

557 558 559
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
560 561 562
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
563 564 565 566 567 568 569 570
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

571 572 573
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
574
      TouchConverterRegister_##op_type__();