tensor.py 48.7 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16 17 18
import numpy
import warnings

Y
Yu Yang 已提交
19
from ..layer_helper import LayerHelper
20
from ..param_attr import ParamAttr
21
from ..initializer import Initializer
22 23 24 25 26 27 28 29 30 31
from ..framework import (
    _current_expected_place,
    convert_np_dtype_to_dtype_,
    _non_static_mode,
    _varbase_creator,
    device_guard,
    _in_legacy_dygraph,
    in_dygraph_mode,
    _get_paddle_place,
)
X
xuwei06 已提交
32
from ..framework import Variable
33
from ..initializer import Constant
34
from ..core import VarDesc
35
from .. import core
36
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
37
from . import utils
38 39 40 41 42 43
from ..data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
44
from paddle.utils import deprecated
45

46
from .utils import check_shape
47
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
48 49

__all__ = [
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    'create_tensor',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'zeros',
    'linspace',
    'diag',
Y
Yu Yang 已提交
65 66 67
]


X
xuwei06 已提交
68
def create_tensor(dtype, name=None, persistable=False):
69
    """
W
wangchaochaohu 已提交
70
    Create a variable, which will hold a Tensor with data type dtype.
71 72

    Args:
W
wangchaochaohu 已提交
73 74
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
75
        name(string, optional): The default value is None.  Normally there is no need for
W
wangchaochaohu 已提交
76
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
77
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
78
            default value is False.
79 80

    Returns:
W
wangchaochaohu 已提交
81
        Variable: The tensor to be created according to dtype.
82 83 84 85

    Examples:
        .. code-block:: python

86
          import paddle.fluid as fluid
87 88
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
Y
Yu Yang 已提交
104
    helper = LayerHelper("create_tensor", **locals())
105 106 107
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )
Y
Yu Yang 已提交
108 109


110 111 112
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
113
    """
114
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
115

116
    Parameters:
117
        shape (list[int]|tuple[int]): Shape of the variable
118
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
119
                      variable will be filled with it.
120 121
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
122
                           Default: False
123
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
124
                         Default: False
125 126
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
127 128

    Returns:
129
        Variable: The created Variable
F
fengjiayi 已提交
130 131 132 133

    Examples:
        .. code-block:: python

134 135 136
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
137
                                           persistable=True, force_cpu=True, name='new_var')
138
    """
139 140 141
    check_type(
        shape, 'shape', (list, tuple, numpy.ndarray), 'create_global_var'
    )
142
    for item in shape:
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        check_type(
            item,
            'item of shape',
            (
                int,
                numpy.uint8,
                numpy.int8,
                numpy.int16,
                numpy.int32,
                numpy.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )
174

Q
Qiao Longfei 已提交
175
    helper = LayerHelper("global_var", **locals())
176 177 178 179 180 181 182 183 184 185
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
        var, initializer=Constant(value=float(value), force_cpu=force_cpu)
    )
M
minqiyang 已提交
186

Q
Qiao Longfei 已提交
187 188 189
    return var


190
def cast(x, dtype):
Y
Yu Yang 已提交
191
    """
S
swtkiwi 已提交
192

193
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
194 195
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
196 197

    Args:
198
        x(Tensor): An input N-D Tensor with data type bool, float16,
199
            float32, float64, int32, int64, uint8.
200
        dtype(np.dtype|str): Data type of the output:
201
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
202 203

    Returns:
204
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
205 206 207

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
208

209
            import paddle
210

211 212
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
213
    """
H
hong 已提交
214 215 216
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
217
        return _C_ops.cast(x, dtype)
H
hong 已提交
218

J
Jiabin Yang 已提交
219
    if _non_static_mode():
220 221
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
222
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
223
        return out
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
258 259

    helper = LayerHelper('cast', **locals())
260
    out = helper.create_variable_for_type_inference(
261 262 263 264 265 266 267 268
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
Y
Yu Yang 已提交
269 270 271
    return out


272
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
273
    """
274
    This OP concatenates the input along the axis.
275 276

    Args:
277
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
278
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type.
279 280
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
281
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
282
            as ``axis+R``. Default is 0.
283 284 285
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
286 287

    Returns:
288
        Tensor: A Tensor with the same data type as ``input``.
289 290 291

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
292

293
            import paddle.fluid as fluid
294 295
            import numpy as np

296 297 298 299 300 301
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
302 303 304 305
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
306 307
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
308 309
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
310 311 312 313 314 315 316 317
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
318
    """
319

320 321 322 323 324 325
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
326
        out = _C_ops.concat(input, axis)
327
        return out
328 329

    if _in_legacy_dygraph():
S
songyouwei 已提交
330 331
        if isinstance(axis, Variable):
            axis = axis.numpy()
332
            axis = axis.item(0)
333 334
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
335
        out = _varbase_creator()
336
        _legacy_C_ops.concat(input, out, 'axis', axis)
337
        return out
338

339 340 341 342
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
343 344
                x,
                'input[' + str(id) + ']',
345
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
346 347
                'concat',
            )
348 349
            if x.dtype != input[0].dtype:
                raise TypeError(
350 351
                    "All the Tensors in the input must have the same data type."
                )
352
    else:
353
        input = [input]
354
    check_type(axis, 'axis', (int, Variable), 'concat')
355

356 357
    if isinstance(axis, Variable):
        check_dtype(
358 359 360 361 362
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
363
        )
364

365
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
366
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
367 368

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
369 370 371 372
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

373 374 375 376
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
377
        out_index = helper.create_variable_for_type_inference(dtype="int32")
378 379 380 381 382 383
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
384 385 386 387 388
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
389
        attrs['axis'] = axis
390

391 392 393
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
Y
Yu Yang 已提交
394 395 396
    return out


G
Guo Sheng 已提交
397
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
398
    r"""
G
Guo Sheng 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
449 450

    Args:
G
Guo Sheng 已提交
451 452 453 454 455 456 457
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
458 459

    Returns:
G
Guo Sheng 已提交
460 461 462
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
463 464 465 466

    Examples:
        .. code-block:: python

467
            import paddle.fluid as fluid
468
            import numpy as np
G
Guo Sheng 已提交
469 470 471 472 473 474 475
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
476
    """
J
Jiabin Yang 已提交
477
    if _non_static_mode():
478
        assert isinstance(
479 480
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
481
        from .nn import concat
482
        from ..dygraph import to_variable
483
        from paddle import stack
484

485 486 487
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
488 489
            numpy.array(list(map(lambda x: int(x.shape[axis]), input)))
        )
490 491
        return res, sizes

492 493 494
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
495 496 497 498 499 500
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'tensor_array_to_tensor',
            )
L
li099 已提交
501
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
502 503
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
504 505 506 507 508 509
    helper.append_op(
        type='tensor_array_to_tensor',
        inputs={'X': input},
        outputs={'Out': [out], 'OutIndex': [out_index]},
        attrs={'axis': axis, 'use_stack': use_stack},
    )
L
li099 已提交
510 511 512
    return out, out_index


513
def sums(input, out=None):
514
    r"""
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
536 537

    Args:
538 539 540 541
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
542 543

    Returns:
544 545
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
546 547

    Examples:
F
fengjiayi 已提交
548
        .. code-block:: python
K
kavyasrinet 已提交
549

550 551 552 553 554 555 556 557 558
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
559

560 561
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
562
    """
563 564 565
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
566 567 568 569 570 571
            check_variable_and_dtype(
                input_section,
                "input",
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'sums',
            )
572
    else:
573 574 575 576 577 578
        check_variable_and_dtype(
            input,
            "input",
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'sums',
        )
579

Y
Yu Yang 已提交
580 581
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
582
        out = helper.create_variable_for_type_inference(
583 584
            dtype=helper.input_dtype()
        )
585
    else:
586 587 588 589 590 591 592 593 594 595
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums'
        )

    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False},
    )
Y
Yu Yang 已提交
596 597 598
    return out


F
fengjiayi 已提交
599
def assign(input, output=None):
600
    """
S
swtkiwi 已提交
601

602
    The OP copies the :attr:`input` to the :attr:`output`.
603

604
    Parameters:
605 606 607 608
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
609
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
610
            be created as :attr:`output`. Default: None.
611 612

    Returns:
613
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
614 615 616

    Examples:
        .. code-block:: python
617

618
          import paddle
619
          import numpy as np
620
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
621 622 623 624
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
625 626 627
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
628
    """
Y
Yu Yang 已提交
629
    helper = LayerHelper('assign', **locals())
630 631 632 633 634 635
    check_type(
        input,
        'input',
        (Variable, numpy.ndarray, list, tuple, float, int, bool),
        'assign',
    )
636 637
    is_inplace = True if output is not None else False

638 639 640 641
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
642 643
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
644
    # but _non_static_mode()==False under @to_static, which means
645 646 647
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
648
        if _non_static_mode():
C
chentianyu03 已提交
649
            if in_dygraph_mode() and output is None:
650
                output = _C_ops.assign(input)
651 652
            elif in_dygraph_mode() and output is not None:
                _C_ops.assign_out_(input, output)
C
chentianyu03 已提交
653 654 655 656 657 658
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
659
                _legacy_C_ops.assign(input, output)
660
        else:
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
677 678
            if output is None:
                output = helper.create_variable_for_type_inference(
679 680 681 682 683
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
X
xuwei06 已提交
684
    elif isinstance(input, numpy.ndarray):
685 686 687 688 689
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
690
        dtype = convert_np_dtype_to_dtype_(input.dtype)
691 692 693 694 695 696
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
697 698
                "it to float32"
            )
699
            dtype = VarDesc.VarType.FP32
700 701
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
702
            values = [int(v) for v in input.flat]
703
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
704
            value_name = "fp32_values"
705
            values = [float(v) for v in input.flat]
706
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
707
            value_name = "int32_values"
708
            values = [int(v) for v in input.flat]
709 710 711
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
712
        else:
713 714
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
715
                "the data type of 'input' must be bool, float32, int32 or int64, but "
716 717
                "received %s." % convert_dtype(dtype)
            )
718
        if input.size > 1024 * 1024:
719 720 721 722
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
723 724 725
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
726 727 728 729 730 731 732
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
733 734 735
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
736 737 738 739 740 741 742 743 744
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
745
        else:
746 747
            if output is None:
                output = helper.create_variable_for_type_inference(
748 749 750 751 752 753 754 755 756 757 758
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
X
xuwei06 已提交
759

J
Jiabin Yang 已提交
760
    if is_inplace and _non_static_mode():
761
        output._bump_inplace_version()
762

Y
Yu Yang 已提交
763 764 765
    return output


766
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
767
    """
S
swtkiwi 已提交
768

W
wangchaochaohu 已提交
769
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
770
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
771

T
tianshuo78520a 已提交
772
    The attribute `stop_gradient` of the created Tensor is set to True.
773 774

    Args:
775 776 777
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
778
        dtype(np.dtype|str): Data type of the output Tensor which can
779
            be float16, float32, float64, uint8, int16, int32, int64.
780
        value(bool|float|int|Tensor): The constant value used to initialize
781 782
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
783
        out(Tensor, optional): Optional output which can be any created
784 785
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
786 787
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
788 789

    Returns:
790
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
791

792 793 794
    Examples:
        .. code-block:: python

795
          import paddle.fluid as fluid
796
          # attr shape is a list which doesn't contain  Tensor.
797 798
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
799
          # data1=[[5], [5]] data2=[[5], [5]]
800

801
          # attr shape is a list which contains Tensor.
802
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
803
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
804

805
          # attr shape is a Tensor.
806
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
807
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
808

809
          # attr value is a Tensor.
W
wangchaochaohu 已提交
810 811
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
812
    """
813

W
wangchaochaohu 已提交
814
    attrs = {'force_cpu': force_cpu}
815
    dtype = convert_dtype(dtype)
816
    if not isinstance(value, Variable):
817
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
818
            attrs['str_value'] = str(int(value))
819
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
820 821
        else:
            attrs['str_value'] = str(float(value))
822
            attrs['value'] = float(value)
823

824 825 826 827 828
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
829
            shape = utils.convert_shape_to_list(shape)
830 831 832 833 834

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
835
            out = _C_ops.full(shape, float(value), dtype, place)
836 837 838
            out.stop_gradient = True
            return out

839 840
        if out is not None:
            # final state mode is support out is not None.
841
            _C_ops.full_(out, shape, float(value), dtype, place)
842 843
            out.stop_gradient = True
            return out
844

845 846 847 848 849 850 851 852 853 854 855
    if _in_legacy_dygraph():
        shape = utils.convert_shape_to_list(shape)
        if out is None:
            out = _varbase_creator(dtype=dtype)

        if isinstance(value, Variable):
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
                attrs['str_value'] = str(int(value.numpy().item(0)))
            else:
                attrs['str_value'] = str(float(value.numpy().item(0)))

856 857 858 859 860 861 862 863 864 865 866 867 868
        _legacy_C_ops.fill_constant(
            out,
            'value',
            float(value),
            'force_cpu',
            force_cpu,
            'dtype',
            out.dtype,
            'str_value',
            attrs['str_value'],
            'shape',
            shape,
        )
869 870 871
        out.stop_gradient = True
        return out

872 873 874
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
875 876
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
877 878
        inputs['ValueTensor'] = value

879
    check_shape(shape)
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'uint8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'fill_constant',
    )
897
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
898

899
    if out is not None:
900 901 902
        check_variable_and_dtype(
            out, 'out', [convert_dtype(dtype)], 'fill_constant'
        )
903 904

    helper = LayerHelper("fill_constant", **locals())
905 906 907
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
    )
L
liym27 已提交
908

Y
Yu Yang 已提交
909
    if out is None:
X
Xin Pan 已提交
910
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
911
    attrs['dtype'] = out.dtype
912 913 914 915 916 917 918
    helper.append_op(
        type='fill_constant',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
Y
Yu Yang 已提交
919 920 921 922
    out.stop_gradient = True
    return out


923
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
924
@templatedoc()
925 926 927 928 929 930 931 932 933
def fill_constant_batch_size_like(
    input,
    shape,
    dtype,
    value,
    input_dim_idx=0,
    output_dim_idx=0,
    force_cpu=False,
):
934
    """
T
tianshuo78520a 已提交
935
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
936 937 938 939
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
940 941

    Args:
W
wangchaochaohu 已提交
942 943 944 945 946
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
947
        value(float|int): The constant value used to initialize the Tensor to be created.
W
wangchaochaohu 已提交
948 949 950 951 952
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
953
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
954 955

    Returns:
W
wangchaochaohu 已提交
956
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
957 958 959 960 961

    Examples:

        .. code-block:: python

962
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
963
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
964
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
965
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
966

967
    """
968 969 970 971 972 973 974
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
975 976 977
        out = _C_ops.full_batch_size_like(
            input, shape, dtype, value, input_dim_idx, output_dim_idx, place
        )
978 979 980
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
981
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
982
    out = helper.create_variable_for_type_inference(dtype=dtype)
983 984 985 986 987 988
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
989
        'force_cpu': force_cpu,
990 991 992 993 994
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
995 996 997 998 999 1000
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs=attrs,
    )
Y
Yu Yang 已提交
1001 1002 1003 1004
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
1005 1006
def argmin(x, axis=0):
    """
1007 1008 1009
        :alias_main: paddle.argmin
        :alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
        :old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
1010

S
sneaxiy 已提交
1011 1012
    **argmin**

1013 1014
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1015 1016

    Args:
1017 1018 1019 1020 1021
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1022

S
sneaxiy 已提交
1023
    Returns:
1024
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1025

S
sneaxiy 已提交
1026 1027
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1028

1029
            import paddle.fluid as fluid
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
1057
    """
1058
    check_variable_and_dtype(
1059 1060 1061 1062 1063
        x,
        'x',
        ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin',
    )
S
sneaxiy 已提交
1064
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
1065
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1066 1067 1068 1069 1070 1071
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis},
    )
1072
    out.stop_gradient = True
S
sneaxiy 已提交
1073 1074 1075 1076 1077 1078 1079
    return out


def argmax(x, axis=0):
    """
    **argmax**

1080 1081
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1082 1083

    Args:
1084 1085 1086 1087 1088
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1089

S
sneaxiy 已提交
1090
    Returns:
1091
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1092

S
sneaxiy 已提交
1093 1094
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1095

1096
            import paddle.fluid as fluid
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1124
    """
1125
    check_variable_and_dtype(
1126 1127 1128 1129 1130
        x,
        'x',
        ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax',
    )
S
sneaxiy 已提交
1131
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1132
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1133 1134 1135 1136 1137 1138
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis},
    )
1139
    out.stop_gradient = True
S
sneaxiy 已提交
1140 1141 1142
    return out


1143
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1144
    """
1145 1146 1147
        :alias_main: paddle.argsort
        :alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
        :old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1148

1149 1150 1151
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1152 1153

    Args:
1154 1155 1156 1157 1158
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1159 1160 1161
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1162 1163 1164
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1165 1166

    Returns:
1167 1168 1169
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1170 1171 1172 1173

    Examples:
        .. code-block:: python

1174
            import paddle.fluid as fluid
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1216
    """
1217
    check_variable_and_dtype(
1218 1219 1220 1221 1222
        input,
        'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort',
    )
Y
Yibing Liu 已提交
1223
    helper = LayerHelper("argsort", **locals())
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True
    )
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True
    )
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out, 'Indices': ids},
        attrs={'axis': axis, 'descending': descending},
    )
Y
Yibing Liu 已提交
1236 1237 1238
    return out, ids


1239
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1240
    """
1241 1242
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1243

1244
    Parameters:
1245
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1246
        dtype (np.dtype|str): Data type of output Tensor, it supports
1247
            bool, float16, float32, float64, int32 and int64.
1248 1249
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1250
            Default: False.
1251 1252
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1253 1254

    Returns:
1255
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1256 1257 1258 1259

    Examples:
        .. code-block:: python

1260
          import paddle.fluid as fluid
1261
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1262

1263 1264 1265
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1266 1267
    """
    return fill_constant(value=0.0, **locals())
1268 1269


1270
def linspace(start, stop, num, dtype=None, name=None):
1271
    r"""
1272
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1273 1274

    Args:
1275 1276 1277 1278
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1279
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1280
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1281
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1282
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1283
        name(str, optional): Normally there is no need for user to set this property.
1284
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1285 1286

    Returns:
1287
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1288
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
1289
        the value with input :attr:`start`.
Z
zhoukunsheng 已提交
1290

Z
zhoukunsheng 已提交
1291
    Examples:
Z
zhoukunsheng 已提交
1292 1293
        .. code-block:: python

1294 1295 1296
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1297 1298

    """
1299 1300
    if dtype is None:
        dtype = 'float32'
1301 1302 1303
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1304 1305
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1306 1307
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1308
    if not isinstance(start, Variable):
1309 1310
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1311
    if not isinstance(stop, Variable):
1312 1313
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1314
    if not isinstance(num, Variable):
1315 1316
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1317
    if in_dygraph_mode():
1318 1319 1320 1321 1322 1323 1324
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
1325
    if _in_legacy_dygraph():
1326 1327 1328
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
1329 1330
    helper = LayerHelper("linspace", **locals())

1331 1332 1333
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1334
    if isinstance(start, Variable):
1335 1336 1337 1338 1339 1340
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
1341 1342
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1343

1344
    if isinstance(stop, Variable):
1345 1346 1347 1348 1349 1350
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
1351 1352 1353 1354
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
1365 1366
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
1367 1368 1369 1370
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
1371 1372

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1373

1374 1375 1376 1377 1378 1379
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
1380
    if isinstance(num, int):
1381
        out.desc.set_shape((num,))
Z
zhoukunsheng 已提交
1382
    return out
1383 1384


1385
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1386
def diag(diagonal):
1387
    r"""
1388 1389 1390
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1391

1392
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1393 1394

    Args:
1395 1396
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1397 1398

    Returns:
1399 1400
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1401 1402 1403 1404 1405 1406

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
1407
          #  [0, 0, 5]
1408 1409 1410

          import paddle.fluid as fluid
          import numpy as np
1411 1412 1413
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1414 1415

    """
1416
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
1417 1418 1419 1420 1421 1422
    check_dtype(
        diagonal.dtype,
        'diagonal',
        ['float32', 'float64', 'int32', 'int64'],
        'diag',
    )
Z
zhoukunsheng 已提交
1423 1424 1425 1426 1427 1428 1429
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1430 1431 1432
    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]}
    )
Z
zhoukunsheng 已提交
1433 1434 1435

    out.stop_gradient = True
    return out