paddle_pass_builder.cc 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21
#ifdef PADDLE_WITH_HIP
#include <miopen/miopen.h>
#endif
L
Leo Chen 已提交
22 23 24
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif
25

26
#include <glog/logging.h>
27

28
#include <algorithm>
29
#include <sstream>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
59
  deleted_passes_.insert(pass_type);
60 61 62 63 64 65 66 67 68 69
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

70 71 72 73 74 75
size_t PaddlePassBuilder::GetPassIndex(const std::string &pass_type) {
  auto iter = std::find(std::begin(passes_), std::end(passes_), pass_type);
  if (iter == std::end(passes_)) return -1;
  return std::distance(std::begin(passes_), iter);
}

76 77 78 79 80 81 82 83
void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
84 85
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
86 87
}

W
Wojciech Uss 已提交
88 89
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

90
const std::vector<std::string> kTRTSubgraphPasses({
Y
Yuanle Liu 已提交
91
  "trt_support_nhwc_pass",
92 93 94 95 96 97 98 99
      "adaptive_pool2d_convert_global_pass",          //
      "trt_map_ops_to_matrix_multiply_pass",          //
      "shuffle_channel_detect_pass",                  //
      "quant_conv2d_dequant_fuse_pass",               //
      "delete_quant_dequant_op_pass",                 //
      "delete_quant_dequant_filter_op_pass",          //
      "trt_delete_weight_dequant_linear_op_pass",     //
      "delete_quant_dequant_linear_op_pass",          //
100
      "identity_op_clean_pass",                       //
101
      "add_support_int8_pass",                        //
102
      "simplify_with_basic_ops_pass",                 //
103
      "trt_embedding_eltwise_layernorm_fuse_pass",    //
104
      "preln_embedding_eltwise_layernorm_fuse_pass",  //
105 106 107 108
      "trt_multihead_matmul_fuse_pass_v2",            //
      "trt_multihead_matmul_fuse_pass_v3",            //
      "multihead_matmul_roformer_fuse_pass",          //
      "constant_folding_pass",                        //
L
Leo Chen 已提交
109 110 111 112 113 114 115 116 117 118
#ifdef PADDLE_WITH_TENSORRT
#if !IS_TRT_VERSION_GE(8610)
      "trt_flash_multihead_matmul_fuse_pass",  //
      "trt_cross_multihead_matmul_fuse_pass",  //
#endif
#endif
      "vit_attention_fuse_pass",              //
      "trt_qk_multihead_matmul_fuse_pass",    //
      "layernorm_shift_partition_fuse_pass",  //
      "merge_layernorm_fuse_pass",            //
W
wenbin 已提交
119 120 121
#if !defined _WIN32
      "split_layernorm_to_math_ops_pass",  //
#endif
122 123
#if defined _WIN32  // Windows CI is TensorRT7.0. Remove this after upgrading.
#else
W
wenbin 已提交
124 125
      "trt_skip_layernorm_fuse_pass",          //
      "preln_skip_layernorm_fuse_pass",        //
126
#endif
127 128 129 130 131
      "preln_residual_bias_fuse_pass",   //
      "preln_layernorm_x_fuse_pass",     //
      "reverse_roll_fuse_pass",          //
      "conv_bn_fuse_pass",               //
      "conv_elementwise_add_fuse_pass",  //
132 133 134 135
#if defined _WIN32  // Windows CI is TensorRT7.0. Remove this after upgrading.
#else
      "trans_layernorm_fuse_pass",             //
#endif
136 137
      "remove_padding_recover_padding_pass",         //
      "delete_remove_padding_recover_padding_pass",  //
138
      // "yolo_box_fuse_pass",      //
139 140
      "dense_fc_to_sparse_pass",                //
      "dense_multihead_matmul_to_sparse_pass",  //
W
wenbin 已提交
141 142 143 144
#if defined _WIN32  // Windows CI is TensorRT7.0. Remove this after upgrading.
#else
      "elementwise_groupnorm_act_pass",        //
      "preln_elementwise_groupnorm_act_pass",  //
W
wenbin 已提交
145
      "groupnorm_act_pass",                    //
146
      "elementwiseadd_transpose_pass",         //
W
wenbin 已提交
147 148 149
#endif
      "tensorrt_subgraph_pass",  //
      "conv_bn_fuse_pass",       //
150 151
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
152 153 154
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
155 156
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
157 158
#endif
#endif
159 160
      "transpose_flatten_concat_fuse_pass",  //
      "auto_mixed_precision_pass",
161 162
});

D
denglin-github 已提交
163 164
const std::vector<std::string> kDlnneSubgraphPasses({
    "is_test_pass",                  //
M
ming1753 已提交
165
    "delete_dropout_op_pass",        //
D
denglin-github 已提交
166 167 168 169 170 171 172
    "simplify_with_basic_ops_pass",  //
    "conv_bn_fuse_pass",             //
    "depthwise_conv_bn_fuse_pass",   //
    "shuffle_channel_detect_pass",   //
    "dlnne_subgraph_pass",           //
});

石晓伟 已提交
173 174 175 176 177 178
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

179 180 181 182
// TODO(inference): Most of the existing pass fusion operators do not
// support fp16/bf16 precision, temporarily use low precision pass to prevent
// running errors. After fusion operator supports low precision, delete this.
const std::vector<std::string> kGpuLowerPrecisionPasses{
G
gem5 已提交
183
    "map_op_to_another_pass",
184
    "identity_op_clean_pass",
W
Wilber 已提交
185
    "simplify_with_basic_ops_pass",
186
    "silu_fuse_pass",
187
    "delete_quant_dequant_linear_op_pass",
188
    "delete_weight_dequant_linear_op_pass",
189 190 191 192
    "conv_bn_fuse_pass",
    "conv_eltwiseadd_bn_fuse_pass",
    "conv_elementwise_add_act_fuse_pass",
    "conv_elementwise_add2_act_fuse_pass",
M
ming1753 已提交
193
    "conv_elementwise_add_fuse_pass",
194
    "conv2d_fusion_layout_transfer_pass",
W
Wilber 已提交
195
    "multihead_matmul_fuse_pass_v2",
196 197 198 199
    "fused_multi_transformer_encoder_pass",
    "fused_multi_transformer_decoder_pass",
    "fused_multi_transformer_encoder_fuse_qkv_pass",
    "fused_multi_transformer_decoder_fuse_qkv_pass",
200
    "multi_devices_fused_multi_transformer_encoder_pass",
201 202
    "multi_devices_fused_multi_transformer_encoder_fuse_qkv_pass",
    "multi_devices_fused_multi_transformer_decoder_fuse_qkv_pass",
203
    "fuse_multi_transformer_layer_pass",
W
Wilber 已提交
204 205
    "gpu_cpu_map_matmul_v2_to_mul_pass",
    "gpu_cpu_map_matmul_v2_to_matmul_pass",
206
    "gpu_cpu_map_matmul_to_mul_pass",
207
    "fc_fuse_pass",
208
    // "fc_elementwise_layernorm_fuse_pass",
209
    "embedding_eltwise_layernorm_fuse_pass",
210
    "inplace_op_var_pass"};
211

212
const std::vector<std::string> kTrtLowerPrecisionPasses{
W
Wilber 已提交
213
    "simplify_with_basic_ops_pass",
214 215
    // "conv_bn_fuse_pass",
    // "conv_eltwiseadd_bn_fuse_pass",
216 217
    "trt_embedding_eltwise_layernorm_fuse_pass",
    "trt_skip_layernorm_fuse_pass",
218 219 220
    "tensorrt_subgraph_pass",
};

221 222 223 224 225 226 227
const std::vector<std::string> kCINNCompilerPasses{
    "gpu_cpu_map_matmul_v2_to_mul_pass",
    "gpu_cpu_map_matmul_v2_to_matmul_pass",
    "gpu_cpu_map_matmul_to_mul_pass",
    "build_cinn_pass",
};

228 229
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
G
gem5 已提交
230
    "map_op_to_another_pass",                                           //
231
        "is_test_pass",                                                 //
232 233
        "simplify_with_basic_ops_pass",                                 //
        "delete_quant_dequant_linear_op_pass",                          //
234
        "delete_weight_dequant_linear_op_pass",                         //
235
        "constant_folding_pass",                                        //
236
        "silu_fuse_pass",                                               //
237 238 239 240
        "conv_bn_fuse_pass",                                            //
        "conv_eltwiseadd_bn_fuse_pass",                                 //
        "embedding_eltwise_layernorm_fuse_pass",                        //
        "multihead_matmul_fuse_pass_v2",                                //
241
        "vit_attention_fuse_pass",                                      //
242 243 244 245
        "fused_multi_transformer_encoder_pass",                         //
        "fused_multi_transformer_decoder_pass",                         //
        "fused_multi_transformer_encoder_fuse_qkv_pass",                //
        "fused_multi_transformer_decoder_fuse_qkv_pass",                //
246
        "multi_devices_fused_multi_transformer_encoder_pass",           //
247 248
        "multi_devices_fused_multi_transformer_encoder_fuse_qkv_pass",  //
        "multi_devices_fused_multi_transformer_decoder_fuse_qkv_pass",  //
249
        "fuse_multi_transformer_layer_pass",                            //
250 251 252 253 254 255 256 257 258 259
        "gpu_cpu_squeeze2_matmul_fuse_pass",                            //
        "gpu_cpu_reshape2_matmul_fuse_pass",                            //
        "gpu_cpu_flatten2_matmul_fuse_pass",                            //
        "gpu_cpu_map_matmul_v2_to_mul_pass",                            //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",                         //
        "matmul_scale_fuse_pass",                                       //
        "multihead_matmul_fuse_pass_v3",                                //
        "gpu_cpu_map_matmul_to_mul_pass",                               //
        "fc_fuse_pass",                                                 //
        "fc_elementwise_layernorm_fuse_pass",                           //
260 261
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
262 263 264
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
265 266
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
267 268 269 270
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
271
        "identity_op_clean_pass",              //
272
        "conv2d_fusion_layout_transfer_pass",  //
273 274 275
        "transfer_layout_elim_pass",
        "auto_mixed_precision_pass",  //
        "inplace_op_var_pass",        // should be the last pass.
276 277 278 279 280
  });

  use_gpu_ = true;
}

281 282 283 284 285 286 287
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

W
Wojciech Uss 已提交
288 289
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
290 291
}

W
Wojciech Uss 已提交
292 293
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
294 295
}

296 297 298 299
void GpuPassStrategy::EnableMkldnnBfloat16() {
  LOG(ERROR) << "GPU not support MKL-DNN bfloat16";
}

B
baoachun 已提交
300 301 302 303
void GpuPassStrategy::EnableMkldnnInt8() {
  LOG(ERROR) << "GPU not support MKL-DNN int8";
}

P
Paulina Gacek 已提交
304 305 306 307
void GpuPassStrategy::DisableMkldnnFcPasses() {
  LOG(ERROR) << "GPU not support MKL-DNN fc";
}

308 309 310
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
311 312
  passes_.assign({"simplify_with_basic_ops_pass",  //
                  "layer_norm_fuse_pass",
313
                  "attention_lstm_fuse_pass",       //
314 315
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
316
                  "seqpool_cvm_concat_fuse_pass",  //
317
                  // "embedding_fc_lstm_fuse_pass", //
318
                  // TODO(wilber): fix correctness problem.
319
                  // "fc_lstm_fuse_pass",                    //
320 321 322 323
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
324 325 326
                  "gpu_cpu_squeeze2_matmul_fuse_pass",       //
                  "gpu_cpu_reshape2_matmul_fuse_pass",       //
                  "gpu_cpu_flatten2_matmul_fuse_pass",       //
H
heliqi 已提交
327
                  "matmul_v2_scale_fuse_pass",               //
328 329
                  "gpu_cpu_map_matmul_v2_to_mul_pass",       //
                  "gpu_cpu_map_matmul_v2_to_matmul_pass",    //
H
heliqi 已提交
330
                  "matmul_scale_fuse_pass",                  //
331
                  "gpu_cpu_map_matmul_to_mul_pass",          //
332 333 334 335 336 337 338 339
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
340
                  "constant_folding_pass"});
Y
Yan Chunwei 已提交
341

342 343
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
344

345 346
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
347 348
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
349
#ifdef PADDLE_WITH_DNNL
W
Wojciech Uss 已提交
350 351 352
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

353
    for (auto &pass : std::vector<std::string>({
354
             "squeeze2_transpose2_onednn_fuse_pass",
355 356 357
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
358 359
             "conv_affine_channel_mkldnn_fuse_pass",    //
             "conv_transpose_bn_fuse_pass",             //
360 361
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
362
             "conv_transpose_bias_mkldnn_fuse_pass",
363 364
             // TODO(baoachun): Need to support 5-dimensional input.
             // "conv3d_bias_mkldnn_fuse_pass",  //
365
             "conv_elementwise_add_mkldnn_fuse_pass",
366 367 368 369 370 371
             "conv_activation_mkldnn_fuse_pass",           //
             "scale_matmul_fuse_pass",                     //
             "reshape_transpose_matmul_mkldnn_fuse_pass",  //
             "matmul_transpose_reshape_mkldnn_fuse_pass",  //
             "matmul_elementwise_add_mkldnn_fuse_pass",    //
             "matmul_activation_mkldnn_fuse_pass",         //
372
             // Disabled due to topology-dependent speed-up
P
Paulina Gacek 已提交
373 374
             "fc_mkldnn_pass",
             "fc_act_mkldnn_fuse_pass",
375
             "self_attention_fuse_pass",              //
376
             "batch_norm_act_fuse_pass",              //
S
Sławomir Siwek 已提交
377
             "softplus_activation_onednn_fuse_pass",  //
378
             "shuffle_channel_mkldnn_detect_pass",    //
379
             "elementwise_act_onednn_fuse_pass",      //
380
             "operator_scale_onednn_fuse_pass",       //
381 382
             "operator_unsqueeze2_onednn_fuse_pass",  //
             "operator_reshape2_onednn_fuse_pass",    //
383
         })) {
W
Wojciech Uss 已提交
384 385 386 387 388 389 390 391 392 393
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
394
#ifdef PADDLE_WITH_DNNL
W
Wojciech Uss 已提交
395
  if (!use_mkldnn_quantizer_) {
396
    passes_.emplace_back("cpu_quantize_placement_pass");
W
Wojciech Uss 已提交
397 398 399 400 401 402 403
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

404
void CpuPassStrategy::EnableMkldnnBfloat16() {
405
#ifdef PADDLE_WITH_DNNL
406
  if (!use_mkldnn_bfloat16_) {
407 408
    passes_.emplace_back("fc_mkldnn_pass");
    passes_.emplace_back("fc_act_mkldnn_fuse_pass");
T
Tomasz Socha 已提交
409

410 411 412
    passes_.emplace_back("cpu_bfloat16_placement_pass");
    passes_.emplace_back("cpu_bfloat16_pass");
    passes_.emplace_back("cpu_quantize_squash_pass");
413
  }
414 415 416 417 418 419
  use_mkldnn_bfloat16_ = true;
#else
  use_mkldnn_bfloat16_ = false;
#endif
}

B
baoachun 已提交
420
void CpuPassStrategy::EnableMkldnnInt8() {
421
#ifdef PADDLE_WITH_DNNL
B
baoachun 已提交
422 423
  if (!use_mkldnn_int8_) {
    passes_.clear();
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    passes_.emplace_back("simplify_with_basic_ops_pass");
    passes_.emplace_back("quant_dequant_mkldnn_pass");
    passes_.emplace_back("mkldnn_placement_pass");
    passes_.emplace_back("constant_folding_pass");
    passes_.emplace_back("squeeze2_transpose2_onednn_fuse_pass");
    passes_.emplace_back("layer_norm_fuse_pass");
    passes_.emplace_back("attention_lstm_fuse_pass");
    passes_.emplace_back("seqconv_eltadd_relu_fuse_pass");
    passes_.emplace_back("fc_lstm_fuse_pass");
    passes_.emplace_back("mul_lstm_fuse_pass");
    passes_.emplace_back("fc_gru_fuse_pass");
    passes_.emplace_back("mul_gru_fuse_pass");
    passes_.emplace_back("multi_gru_fuse_pass");
    passes_.emplace_back("multi_gru_seq_fuse_pass");
    passes_.emplace_back("seq_concat_fc_fuse_pass");
    passes_.emplace_back("gpu_cpu_squeeze2_matmul_fuse_pass");
    passes_.emplace_back("gpu_cpu_reshape2_matmul_fuse_pass");
    passes_.emplace_back("gpu_cpu_flatten2_matmul_fuse_pass");
    passes_.emplace_back("matmul_v2_scale_fuse_pass");
    passes_.emplace_back("squared_mat_sub_fuse_pass");
    passes_.emplace_back("is_test_pass");
    passes_.emplace_back("gpu_cpu_map_matmul_v2_to_mul_pass");
    passes_.emplace_back("gpu_cpu_map_matmul_v2_to_matmul_pass");
    passes_.emplace_back("matmul_scale_fuse_pass");
    passes_.emplace_back("gpu_cpu_map_matmul_to_mul_pass");
    passes_.emplace_back("repeated_fc_relu_fuse_pass");
    passes_.emplace_back("depthwise_conv_mkldnn_pass");
    passes_.emplace_back("conv_bn_fuse_pass");
    passes_.emplace_back("conv_eltwiseadd_bn_fuse_pass");
    passes_.emplace_back("conv_affine_channel_mkldnn_fuse_pass");
    passes_.emplace_back("conv_transpose_bn_fuse_pass");
    passes_.emplace_back("conv_transpose_eltwiseadd_bn_fuse_pass");
    passes_.emplace_back("conv_bias_mkldnn_fuse_pass");
    passes_.emplace_back("conv_transpose_bias_mkldnn_fuse_pass");
    passes_.emplace_back("conv_elementwise_add_mkldnn_fuse_pass");
    passes_.emplace_back("conv_activation_mkldnn_fuse_pass");
    passes_.emplace_back("fc_fuse_pass");
    passes_.emplace_back("repeated_fc_relu_fuse_pass");
    passes_.emplace_back("fc_mkldnn_pass");
    passes_.emplace_back("fc_act_mkldnn_fuse_pass");
    passes_.emplace_back("matmul_transpose_reshape_mkldnn_fuse_pass");
    passes_.emplace_back("batch_norm_act_fuse_pass");
    passes_.emplace_back("softplus_activation_onednn_fuse_pass");
    passes_.emplace_back("compute_propagate_scales_mkldnn_pass");
    passes_.emplace_back("scale_matmul_fuse_pass");
    passes_.emplace_back("reshape_transpose_matmul_mkldnn_fuse_pass");
    passes_.emplace_back("matmul_elementwise_add_mkldnn_fuse_pass");
    passes_.emplace_back("operator_scale_onednn_fuse_pass");
    passes_.emplace_back("operator_unsqueeze2_onednn_fuse_pass");
    passes_.emplace_back("operator_reshape2_onednn_fuse_pass");
    passes_.emplace_back("cpu_quantize_placement_pass");
    passes_.emplace_back("cpu_quantize_pass");
    passes_.emplace_back("cpu_quantize_squash_pass");
    passes_.emplace_back("quant_transpose2_dequant_onednn_fuse_pass");
B
baoachun 已提交
478 479 480 481 482 483 484
  }
  use_mkldnn_int8_ = true;
#else
  use_mkldnn_int8_ = false;
#endif
}

P
Paulina Gacek 已提交
485
void CpuPassStrategy::DisableMkldnnFcPasses() {
486
#ifdef PADDLE_WITH_DNNL
P
Paulina Gacek 已提交
487 488 489 490 491 492 493 494 495 496 497
  if (!disable_mkldnn_fc_passes_) {
    EraseFcMkldnnPasses();
  }
  disable_mkldnn_fc_passes_ = true;
#else
  disable_mkldnn_fc_passes_ = false;
#endif
}

void CpuPassStrategy::EraseFcMkldnnPasses() {
  std::vector<std::string> fc_passes_to_erase(
498
      {"fc_mkldnn_pass", "fc_act_mkldnn_fuse_pass"});
P
Paulina Gacek 已提交
499 500 501 502 503 504 505 506
  for (const auto &pass : fc_passes_to_erase) {
    int idx = GetPassIndex(pass);
    if (idx != -1) {
      passes_.erase(std::begin(passes_) + idx);
    }
  }
}

507 508
XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
Z
zhupengyang 已提交
509
      "delete_assign_op_pass",
510
      "delete_dropout_op_pass",
511
      "delete_concat_op_pass",
512
      "gather_squeeze_pass",
513
      "delete_repeated_ops_pass",
514 515
      "identity_op_clean_pass",
      "fused_continuous_same_ops_pass",
516
      "reshape_unstack_concat_fuse_pass",
Z
zhupengyang 已提交
517 518
      "delete_op_device_pass",
      "constant_folding_pass",
C
csy0225 已提交
519
      "cast_embedding_trans_ids_to_int32_pass",
520
      "delete_elementwise_mul_op_pass",
521
      "generate_sequence_xpu_fuse_pass",
522
      "embedding_with_eltwise_add_xpu_fuse_pass",
523
      "multi_encoder_xpu_fuse_pass",
524
      "multi_encoder_xpu_adaptive_seqlen_fuse_pass",
525
      "multi_encoder_xpu_slice_fuse_pass",
526
      "fused_multi_transformer_cachekv_layout_trans_pass",
527
      "one_beam_size_fuse_pass",
528
      "fold_interp_outsize_fuse_pass",
529
      "fold_two_squeeze2_fuse_pass",
W
wz1qqx 已提交
530
      "conv1d_xpu_fuse_pass",
531
      "duplicated_transpose_fuse_pass",
W
wz1qqx 已提交
532
      "redundant_unsqueeze_squeeze_elimination_pass",
W
wz1qqx 已提交
533
      "reduce_ops_fuse_pass",
534
      "delete_cast_op_pass",
535
      "xpu_delete_cast_op_pass",
536
      "conv2d_trans_filter_dilations_nxn_to_1x1_pass",
Z
zhupengyang 已提交
537
      "stack_fuse_pass",
538
      "fused_multi_transformer_xpu_pass",
W
wz1qqx 已提交
539
      "relu6_fuse_pass",
540
      "sigmoid_elementmul_fuse_pass",
W
wz1qqx 已提交
541
      "layer_norm_fuse_pass",
542 543 544
      "matmul_weight_trans_pass",
      "map_matmulv2_to_matmul_xpu_pass",
      "reshape2_matmul_xpu_fuse_pass",
W
wz1qqx 已提交
545
      "squeeze2_matmul_xpu_fuse_pass",
546
      "redundant_squeeze_unsqueeze_elimination_pass",
547
      "fc_xpu_fuse_pass",
548
      "conv2d_xpu_fuse_pass",
549
      "conv2d_transpose_xpu_fuse_pass",
W
wz1qqx 已提交
550
      "add_activation_xpu_fuse_pass",
W
wz1qqx 已提交
551
      "add_layernorm_xpu_fuse_pass",
552
      "fast_layernorm_xpu_fuse_pass",
553
      "yolo_box_xpu_fuse_pass",
554
      "fast_where_xpu_fuse_pass",
555
      "link_xpu_op_max_pass",
556
      "delete_isolated_node_pass",
557 558 559
      // "auto_mixed_precision_pass",
      "cast_mixed_precision_op_fuse_pass",
      "inplace_op_var_pass",
560 561 562 563
  });
  use_xpu_ = true;
}

J
jianghaicheng 已提交
564 565 566 567
IpuPassStrategy::IpuPassStrategy() : PassStrategy({}) {
  passes_.assign({"inference_process_pass"});
}

568
}  // namespace paddle