Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
81c56e27
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
81c56e27
编写于
8月 10, 2023
作者:
C
csy0225
提交者:
GitHub
8月 10, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] Add transfilter when conv2d op dilation > 1 (#55978)
上级
6b8ef2f2
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
409 addition
and
0 deletion
+409
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/conv2d_trans_filter_dilations_nxn_to_1x1_pass.cc
...ework/ir/conv2d_trans_filter_dilations_nxn_to_1x1_pass.cc
+196
-0
paddle/fluid/framework/ir/conv2d_trans_filter_dilations_nxn_to_1x1_pass.h
...mework/ir/conv2d_trans_filter_dilations_nxn_to_1x1_pass.h
+47
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+1
-0
test/ir/inference/test_xpu_conv2d_trans_filter_dilations_nxn_to_1x1_pass.py
...test_xpu_conv2d_trans_filter_dilations_nxn_to_1x1_pass.py
+164
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
81c56e27
...
...
@@ -103,6 +103,7 @@ pass_library(delete_quant_dequant_linear_op_pass inference)
pass_library
(
delete_assign_op_pass inference
)
pass_library
(
delete_dropout_op_pass inference
)
pass_library
(
delete_concat_op_pass inference
)
pass_library
(
conv2d_trans_filter_dilations_nxn_to_1x1_pass inference
)
pass_library
(
preln_residual_bias_fuse_pass inference
)
pass_library
(
constant_folding_pass inference
)
pass_library
(
auto_mixed_precision_pass inference
)
...
...
paddle/fluid/framework/ir/conv2d_trans_filter_dilations_nxn_to_1x1_pass.cc
0 → 100644
浏览文件 @
81c56e27
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/conv2d_trans_filter_dilations_nxn_to_1x1_pass.h"
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
Conv2dLargeDilationsPattern
:
public
PatternBase
{
Conv2dLargeDilationsPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
PATTERN_DECL_NODE
(
conv2d
);
};
Conv2dLargeDilationsPattern
::
Conv2dLargeDilationsPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
pattern
->
NewNode
(
conv2d_repr
())
->
assert_is_op
(
"conv2d"
)
->
assert_more
([](
Node
*
node
)
{
auto
data_format
=
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"data_format"
);
if
(
data_format
!=
"NCHW"
)
return
false
;
auto
dilations
=
node
->
Op
()
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"dilations"
);
if
(
dilations
.
size
()
!=
2
)
return
false
;
return
dilations
[
0
]
*
dilations
[
1
]
>
1
;
});
}
}
// namespace patterns
void
Conv2dTransFilterDilationsNxNTo1x1Pass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
conv2d_dilation_trans
(
graph
);
}
template
<
class
T
>
static
void
conv2d_dilation_trans_fn
(
const
T
*
weights_data
,
T
*
new_weights_data
,
int
kn
,
int
kc
,
int
kh
,
int
kw
,
int
new_kh
,
int
new_kw
,
int
dilation_h
,
int
dilation_w
)
{
for
(
int
n
=
0
;
n
<
kn
;
n
++
)
{
for
(
int
c
=
0
;
c
<
kc
;
c
++
)
{
for
(
int
h
=
0
;
h
<
kh
;
h
++
)
{
auto
h_offset
=
dilation_h
*
h
;
for
(
int
w
=
0
;
w
<
kw
;
w
++
)
{
auto
w_offset
=
dilation_w
*
w
;
auto
new_offset
=
n
*
kc
*
new_kh
*
new_kw
+
c
*
new_kh
*
new_kw
+
h_offset
*
new_kw
+
w_offset
;
auto
old_offset
=
n
*
kc
*
kh
*
kw
+
c
*
kh
*
kw
+
h
*
kw
+
w
;
new_weights_data
[
new_offset
]
=
weights_data
[
old_offset
];
}
}
}
}
}
void
Conv2dTransFilterDilationsNxNTo1x1Pass
::
conv2d_dilation_trans
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
Conv2dLargeDilationsPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle conv2d large dilation trans"
;
GET_IR_NODE_FROM_SUBGRAPH
(
conv2d
,
conv2d
,
pattern
);
auto
*
block
=
conv2d
->
Op
()
->
Block
();
auto
*
scope
=
param_scope
();
auto
weights_name
=
conv2d
->
Op
()
->
Input
(
"Filter"
)[
0
];
auto
dilations
=
conv2d
->
Op
()
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"dilations"
);
auto
*
weights
=
scope
->
FindVar
(
weights_name
)
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
weights_shape
=
weights
->
dims
();
int
kh
=
weights_shape
[
2
];
int
kw
=
weights_shape
[
3
];
int
new_kh
=
dilations
[
0
]
*
(
kh
-
1
)
+
1
;
int
new_kw
=
dilations
[
1
]
*
(
kw
-
1
)
+
1
;
// New weights
auto
new_weights_name
=
weights_name
+
"_dilation_trans"
;
auto
*
new_weights
=
scope
->
Var
(
new_weights_name
)
->
GetMutable
<
phi
::
DenseTensor
>
();
new_weights
->
Resize
({
weights_shape
[
0
],
weights_shape
[
1
],
new_kh
,
new_kw
});
if
(
weights
->
dtype
()
==
phi
::
DataType
::
FLOAT32
)
{
auto
weights_data
=
weights
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
new_weights_data
=
new_weights
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
memset
(
new_weights_data
,
0
,
new_weights
->
numel
()
*
sizeof
(
float
));
conv2d_dilation_trans_fn
<
float
>
(
weights_data
,
new_weights_data
,
weights_shape
[
0
],
weights_shape
[
1
],
kh
,
kw
,
new_kh
,
new_kw
,
dilations
[
0
],
dilations
[
1
]);
}
else
if
(
weights
->
dtype
()
==
phi
::
DataType
::
FLOAT16
)
{
auto
weights_data
=
weights
->
mutable_data
<
phi
::
dtype
::
float16
>
(
platform
::
CPUPlace
());
auto
*
new_weights_data
=
new_weights
->
mutable_data
<
phi
::
dtype
::
float16
>
(
platform
::
CPUPlace
());
memset
(
new_weights_data
,
0
,
new_weights
->
numel
()
*
sizeof
(
phi
::
dtype
::
float16
));
conv2d_dilation_trans_fn
<
phi
::
dtype
::
float16
>
(
weights_data
,
new_weights_data
,
weights_shape
[
0
],
weights_shape
[
1
],
kh
,
kw
,
new_kh
,
new_kw
,
dilations
[
0
],
dilations
[
1
]);
}
else
{
VLOG
(
3
)
<<
"Transfilter only support float32/float16 dtype of weights -- do "
"nothing and break."
;
return
;
// Only support fp32/fp16 dtype
}
VarDesc
new_weights_desc
(
new_weights_name
);
new_weights_desc
.
SetPersistable
(
true
);
new_weights_desc
.
SetShape
(
vectorize
(
new_weights
->
dims
()));
new_weights_desc
.
SetDataType
(
framework
::
TransToProtoVarType
(
new_weights
->
dtype
()));
auto
*
new_weights_node
=
graph
->
CreateVarNode
(
&
new_weights_desc
);
auto
*
block_new_weights_desc
=
block
->
Var
(
new_weights_name
);
block_new_weights_desc
->
SetPersistable
(
new_weights_desc
.
Persistable
());
block_new_weights_desc
->
SetShape
(
new_weights_desc
.
GetShape
());
block_new_weights_desc
->
SetDataType
(
new_weights_desc
.
GetDataType
());
// Update conv2d node
conv2d
->
Op
()
->
SetAttr
(
"dilations"
,
std
::
vector
<
int
>
({
1
,
1
}));
conv2d
->
Op
()
->
RenameInput
(
weights_name
,
new_weights_name
);
IR_NODE_LINK_TO
(
new_weights_node
,
conv2d
);
found_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv2d_trans_filter_dilations_nxn_to_1x1_pass
,
paddle
::
framework
::
ir
::
Conv2dTransFilterDilationsNxNTo1x1Pass
);
REGISTER_PASS_CAPABILITY
(
conv2d_trans_filter_dilations_nxn_to_1x1_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
LE
(
"conv2d"
,
1
));
paddle/fluid/framework/ir/conv2d_trans_filter_dilations_nxn_to_1x1_pass.h
0 → 100644
浏览文件 @
81c56e27
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Conv2dTransFilterDilationsNxNTo1x1Pass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
conv2d_dilation_trans
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"conv2d_trans_filter_dilations_nxn_to_1x1_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
81c56e27
...
...
@@ -531,6 +531,7 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"reduce_ops_fuse_pass"
,
"delete_cast_op_pass"
,
"xpu_delete_cast_op_pass"
,
"conv2d_trans_filter_dilations_nxn_to_1x1_pass"
,
"stack_fuse_pass"
,
"fused_multi_transformer_xpu_pass"
,
"relu6_fuse_pass"
,
...
...
test/ir/inference/test_xpu_conv2d_trans_filter_dilations_nxn_to_1x1_pass.py
0 → 100644
浏览文件 @
81c56e27
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
import
hypothesis.strategies
as
st
import
numpy
as
np
from
auto_scan_test
import
PassAutoScanTest
from
program_config
import
OpConfig
,
ProgramConfig
,
TensorConfig
class
TestConv2dTransFilterDilationsNxNTo1x1PassPass
(
PassAutoScanTest
):
def
sample_predictor_configs
(
self
,
program_config
):
config
=
self
.
create_inference_config
(
use_xpu
=
True
)
yield
config
,
[
"conv2d"
],
(
1e-3
,
1e-3
)
def
is_program_valid
(
self
,
prog_config
):
paddings
=
prog_config
.
ops
[
0
].
attrs
[
"paddings"
]
strides
=
prog_config
.
ops
[
0
].
attrs
[
"strides"
]
groups
=
prog_config
.
ops
[
0
].
attrs
[
"groups"
]
padding_algorithm
=
prog_config
.
ops
[
0
].
attrs
[
"padding_algorithm"
]
dilations
=
prog_config
.
ops
[
0
].
attrs
[
"dilations"
]
data_format
=
prog_config
.
ops
[
0
].
attrs
[
"data_format"
]
filter_shape
=
prog_config
.
weights
[
"conv2d_weight"
].
shape
input_shape
=
prog_config
.
inputs
[
"conv2d_input"
].
shape
if
data_format
!=
"NCHW"
:
return
False
if
padding_algorithm
==
"VALID"
:
if
(
(
input_shape
[
2
]
-
(
dilations
[
0
]
*
(
filter_shape
[
2
]
-
1
)
+
1
))
/
strides
[
0
]
+
1
)
<
1
or
(
(
input_shape
[
3
]
-
(
dilations
[
1
]
*
(
filter_shape
[
3
]
-
1
)
+
1
))
/
strides
[
1
]
+
1
)
<
1
:
return
False
if
padding_algorithm
==
"EXPLICIT"
:
if
(
(
input_shape
[
2
]
+
2
*
paddings
[
0
]
-
(
dilations
[
0
]
*
(
filter_shape
[
2
]
-
1
)
+
1
)
)
/
strides
[
0
]
+
1
)
<
1
or
(
(
input_shape
[
3
]
+
2
*
paddings
[
1
]
-
(
dilations
[
1
]
*
(
filter_shape
[
3
]
-
1
)
+
1
)
)
/
strides
[
1
]
+
1
)
<
1
:
return
False
if
data_format
==
"NCHW"
:
if
input_shape
[
1
]
!=
filter_shape
[
1
]
*
groups
:
return
False
if
filter_shape
[
0
]
%
groups
!=
0
:
return
False
return
True
def
sample_program_config
(
self
,
draw
):
data_format
=
draw
(
st
.
sampled_from
([
"NCHW"
]))
x_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
12
,
max_value
=
12
),
min_size
=
4
,
max_size
=
4
)
)
x_shape
[
1
]
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
10
))
# 3. Generate legal shape of input:Y of conv2d
w_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
3
,
max_value
=
3
),
min_size
=
4
,
max_size
=
4
)
)
if
data_format
==
"NCHW"
:
w_shape
[
1
]
=
x_shape
[
1
]
padding_algorithm
=
draw
(
st
.
sampled_from
([
"EXPLICIT"
,
"VALID"
]))
groups
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
1
))
paddings
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
1
),
min_size
=
2
,
max_size
=
2
)
)
strides
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
1
),
min_size
=
2
,
max_size
=
2
)
)
dilations
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
5
),
min_size
=
2
,
max_size
=
2
)
)
def
generate_data
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
# Here we will compose a program
# Still has some risks that the program is invalid or cause bug while running
# Use function `is_program_valid` to filter the invalid programs before running
# Use function `add_skip_pass_case` to ignore the programs even if they cause bug while runing
conv2d_op
=
OpConfig
(
"conv2d"
,
inputs
=
{
"Input"
:
[
"conv2d_input"
],
"Filter"
:
[
"conv2d_weight"
],
},
outputs
=
{
"Output"
:
[
"conv2d_out"
]},
data_format
=
data_format
,
dilations
=
dilations
,
padding_algorithm
=
padding_algorithm
,
groups
=
groups
,
paddings
=
paddings
,
strides
=
strides
,
has_bias
=
False
,
)
program_config
=
ProgramConfig
(
ops
=
[
conv2d_op
],
inputs
=
{
"conv2d_input"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
x_shape
)
),
},
weights
=
{
"conv2d_weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
w_shape
)
),
},
outputs
=
[
"conv2d_out"
],
)
return
program_config
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
max_examples
=
25
,
passes
=
[
"conv2d_trans_filter_dilations_nxn_to_1x1_pass"
],
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录