Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
720b14e3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
720b14e3
编写于
3月 22, 2023
作者:
Z
zhupengyang
提交者:
GitHub
3月 22, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] optimize graph if beam_size=1 (#51732)
上级
2922aa67
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
849 addition
and
55 deletion
+849
-55
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+5
-0
paddle/fluid/framework/ir/pass.cc
paddle/fluid/framework/ir/pass.cc
+3
-1
paddle/fluid/framework/ir/pass_tester_helper.h
paddle/fluid/framework/ir/pass_tester_helper.h
+99
-4
paddle/fluid/framework/ir/xpu/fused_multi_transformer_xpu_quant_pass.cc
...ramework/ir/xpu/fused_multi_transformer_xpu_quant_pass.cc
+3
-24
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.cc
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.cc
+0
-11
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h
+0
-11
paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass.cc
paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass.cc
+470
-0
paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass.h
paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass.h
+111
-0
paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass_test.cc
...le/fluid/framework/ir/xpu/one_beam_size_fuse_pass_test.cc
+154
-0
paddle/fluid/framework/ir/xpu/pass_utils.cc
paddle/fluid/framework/ir/xpu/pass_utils.cc
+3
-4
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+1
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
720b14e3
...
@@ -233,6 +233,7 @@ if(WITH_XPU)
...
@@ -233,6 +233,7 @@ if(WITH_XPU)
pass_library
(
generate_sequence_xpu_fuse_pass inference DIR xpu DEPS
pass_library
(
generate_sequence_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
${
XPU_PASS_DEPS
}
)
pass_library
(
link_xpu_op_max_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
link_xpu_op_max_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
one_beam_size_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
delete_isolated_node_pass inference DIR xpu DEPS
pass_library
(
delete_isolated_node_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
${
XPU_PASS_DEPS
}
)
pass_library
(
fused_multi_transformer_xpu_quant_pass inference DIR xpu DEPS
pass_library
(
fused_multi_transformer_xpu_quant_pass inference DIR xpu DEPS
...
@@ -499,4 +500,8 @@ if(WITH_XPU)
...
@@ -499,4 +500,8 @@ if(WITH_XPU)
test_fused_multi_transformer_xpu_quant_pass
test_fused_multi_transformer_xpu_quant_pass
SRCS xpu/fused_multi_transformer_xpu_quant_pass_tester.cc
SRCS xpu/fused_multi_transformer_xpu_quant_pass_tester.cc
DEPS fused_multi_transformer_xpu_quant_pass
)
DEPS fused_multi_transformer_xpu_quant_pass
)
cc_test
(
test_one_beam_size_fuse_pass
SRCS xpu/one_beam_size_fuse_pass_test.cc
DEPS one_beam_size_fuse_pass
)
endif
()
endif
()
paddle/fluid/framework/ir/pass.cc
浏览文件 @
720b14e3
...
@@ -49,9 +49,11 @@ static const std::vector<std::string> support_subgraph_passes = {
...
@@ -49,9 +49,11 @@ static const std::vector<std::string> support_subgraph_passes = {
"fuse_multi_transformer_layer_pass"
,
"fuse_multi_transformer_layer_pass"
,
"delete_quant_dequant_linear_op_pass"
,
"delete_quant_dequant_linear_op_pass"
,
"delete_weight_dequant_linear_op_pass"
,
"delete_weight_dequant_linear_op_pass"
,
"one_beam_size_fuse_pass"
,
"fused_multi_transformer_xpu_quant_pass"
,
"fused_multi_transformer_xpu_quant_pass"
,
"fc_xpu_fuse_pass"
,
"fc_xpu_fuse_pass"
,
"delete_op_device_pass"
};
"delete_op_device_pass"
,
};
Graph
*
Pass
::
Apply
(
Graph
*
graph
)
const
{
Graph
*
Pass
::
Apply
(
Graph
*
graph
)
const
{
VLOG
(
10
)
<<
"start to apply pass "
<<
Type
()
<<
" to graph"
;
VLOG
(
10
)
<<
"start to apply pass "
<<
Type
()
<<
" to graph"
;
...
...
paddle/fluid/framework/ir/pass_tester_helper.h
浏览文件 @
720b14e3
...
@@ -33,6 +33,8 @@ struct Layers {
...
@@ -33,6 +33,8 @@ struct Layers {
public:
public:
const
ProgramDesc
&
main_program
()
{
return
program_
;
}
const
ProgramDesc
&
main_program
()
{
return
program_
;
}
BlockDesc
*
Block
()
{
return
program_
.
MutableBlock
(
0
);
}
VarDesc
*
data
(
std
::
string
name
,
VarDesc
*
data
(
std
::
string
name
,
std
::
vector
<
int64_t
>
shape
=
{},
std
::
vector
<
int64_t
>
shape
=
{},
bool
is_persistable
=
false
,
bool
is_persistable
=
false
,
...
@@ -132,7 +134,7 @@ struct Layers {
...
@@ -132,7 +134,7 @@ struct Layers {
return
out
;
return
out
;
}
}
VarDesc
*
unsqueeze2
(
VarDesc
*
x
,
const
std
::
vector
<
int
>
axes
)
{
VarDesc
*
unsqueeze2
(
VarDesc
*
x
,
const
std
::
vector
<
int
>
axes
=
{
-
1
}
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"unsqueeze2"
);
op
->
SetType
(
"unsqueeze2"
);
...
@@ -294,6 +296,13 @@ struct Layers {
...
@@ -294,6 +296,13 @@ struct Layers {
return
binary_op
(
"elementwise_mul"
,
x
,
y
,
out
,
attrs
);
return
binary_op
(
"elementwise_mul"
,
x
,
y
,
out
,
attrs
);
}
}
VarDesc
*
elementwise_div
(
VarDesc
*
x
,
VarDesc
*
y
,
VarDesc
*
out
=
nullptr
,
const
AttributeMap
*
attrs
=
nullptr
)
{
return
binary_op
(
"elementwise_div"
,
x
,
y
,
out
,
attrs
);
}
VarDesc
*
dropout
(
VarDesc
*
x
,
VarDesc
*
dropout
(
VarDesc
*
x
,
float
dropout_prob
,
float
dropout_prob
,
std
::
string
dropout_implementation
)
{
std
::
string
dropout_implementation
)
{
...
@@ -458,7 +467,10 @@ struct Layers {
...
@@ -458,7 +467,10 @@ struct Layers {
return
out
;
return
out
;
}
}
VarDesc
*
scale
(
VarDesc
*
x
,
float
scale
,
float
bias
,
bool
bias_after
)
{
VarDesc
*
scale
(
VarDesc
*
x
,
float
scale
=
1.
,
float
bias
=
0.
,
bool
bias_after
=
true
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"scale"
);
op
->
SetType
(
"scale"
);
...
@@ -713,6 +725,88 @@ struct Layers {
...
@@ -713,6 +725,88 @@ struct Layers {
}
}
}
}
VarDesc
*
cast
(
VarDesc
*
input
,
int
in_dtype
=
5
,
int
out_dtype
=
5
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"cast"
);
op
->
SetInput
(
"X"
,
{
input
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
op
->
SetAttr
(
"in_dtype"
,
in_dtype
);
op
->
SetAttr
(
"out_dtype"
,
out_dtype
);
return
out
;
}
VarDesc
*
range
(
VarDesc
*
start
,
VarDesc
*
end
,
VarDesc
*
step
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"range"
);
op
->
SetInput
(
"Start"
,
{
start
->
Name
()});
op
->
SetInput
(
"End"
,
{
end
->
Name
()});
op
->
SetInput
(
"Step"
,
{
step
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
VarDesc
*
flatten_contiguous_range
(
VarDesc
*
input
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"flatten_contiguous_range"
);
op
->
SetInput
(
"X"
,
{
input
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
std
::
vector
<
VarDesc
*>
beam_search
(
VarDesc
*
ids
,
VarDesc
*
scores
,
VarDesc
*
pre_ids
,
VarDesc
*
pre_scores
,
int
beam_size
=
1
)
{
VarDesc
*
parent_idx
=
lod_tensor
(
unique_name
());
VarDesc
*
selected_ids
=
lod_tensor
(
unique_name
());
VarDesc
*
selected_scores
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"beam_search"
);
op
->
SetInput
(
"ids"
,
{
ids
->
Name
()});
op
->
SetInput
(
"scores"
,
{
scores
->
Name
()});
op
->
SetInput
(
"pre_ids"
,
{
pre_ids
->
Name
()});
op
->
SetInput
(
"pre_scores"
,
{
pre_scores
->
Name
()});
op
->
SetOutput
(
"parent_idx"
,
{
parent_idx
->
Name
()});
op
->
SetOutput
(
"selected_ids"
,
{
selected_ids
->
Name
()});
op
->
SetOutput
(
"selected_scores"
,
{
selected_scores
->
Name
()});
op
->
SetAttr
(
"beam_size"
,
1
);
return
{
parent_idx
,
selected_ids
,
selected_scores
};
}
VarDesc
*
lod_reset
(
VarDesc
*
x
,
VarDesc
*
y
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"lod_reset"
);
op
->
SetInput
(
"X"
,
{
x
->
Name
()});
op
->
SetInput
(
"Y"
,
{
y
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
VarDesc
*
write_to_array
(
std
::
vector
<
VarDesc
*>
x
,
VarDesc
*
i
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"write_to_array"
);
std
::
vector
<
std
::
string
>
x_names
;
for
(
auto
k
:
x
)
{
x_names
.
push_back
(
k
->
Name
());
}
op
->
SetInput
(
"X"
,
x_names
);
op
->
SetInput
(
"I"
,
{
i
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
VarDesc
*
is_empty
(
VarDesc
*
input
)
{
return
unary_op
(
"is_empty"
,
input
);
}
VarDesc
*
logical_not
(
VarDesc
*
input
)
{
return
unary_op
(
"logical_not"
,
input
);
}
private:
private:
VarDesc
*
lod_tensor
(
std
::
string
name
,
VarDesc
*
lod_tensor
(
std
::
string
name
,
std
::
vector
<
int64_t
>
shape
=
{},
std
::
vector
<
int64_t
>
shape
=
{},
...
@@ -927,10 +1021,11 @@ static std::vector<ir::Node*> GetOpNodes(const std::unique_ptr<Graph>& graph,
...
@@ -927,10 +1021,11 @@ static std::vector<ir::Node*> GetOpNodes(const std::unique_ptr<Graph>& graph,
}
}
static
int
GetNumOpNodes
(
const
std
::
unique_ptr
<
Graph
>&
graph
,
static
int
GetNumOpNodes
(
const
std
::
unique_ptr
<
Graph
>&
graph
,
std
::
string
op_type
)
{
std
::
string
op_type
=
""
)
{
int
num_nodes
=
0
;
int
num_nodes
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
&&
node
->
Op
()
->
Type
()
==
op_type
)
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
&&
(
node
->
Op
()
->
Type
()
==
op_type
||
op_type
.
empty
()))
{
num_nodes
++
;
num_nodes
++
;
}
}
}
}
...
...
paddle/fluid/framework/ir/xpu/fused_multi_transformer_xpu_quant_pass.cc
浏览文件 @
720b14e3
...
@@ -39,7 +39,6 @@ namespace patterns {
...
@@ -39,7 +39,6 @@ namespace patterns {
struct
FusedMultiTransformerPattern
:
public
PatternBase
{
struct
FusedMultiTransformerPattern
:
public
PatternBase
{
FusedMultiTransformerPattern
(
PDPattern
*
pattern
,
FusedMultiTransformerPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
const
std
::
string
&
name_scope
,
bool
with_cache_kv
,
bool
with_pre_caches
,
bool
with_pre_caches
,
bool
with_rotary_pos_emb
,
bool
with_rotary_pos_emb
,
bool
with_time_step
,
bool
with_time_step
,
...
@@ -54,7 +53,6 @@ struct FusedMultiTransformerPattern : public PatternBase {
...
@@ -54,7 +53,6 @@ struct FusedMultiTransformerPattern : public PatternBase {
PATTERN_DECL_NODE
(
ln_bias
);
PATTERN_DECL_NODE
(
ln_bias
);
PATTERN_DECL_NODE
(
qkv_w
);
PATTERN_DECL_NODE
(
qkv_w
);
PATTERN_DECL_NODE
(
qkv_bias
);
PATTERN_DECL_NODE
(
qkv_bias
);
PATTERN_DECL_NODE
(
cache_kv
);
PATTERN_DECL_NODE
(
pre_caches
);
PATTERN_DECL_NODE
(
pre_caches
);
PATTERN_DECL_NODE
(
rotary_pos_emb
);
PATTERN_DECL_NODE
(
rotary_pos_emb
);
PATTERN_DECL_NODE
(
time_step
);
PATTERN_DECL_NODE
(
time_step
);
...
@@ -68,11 +66,9 @@ struct FusedMultiTransformerPattern : public PatternBase {
...
@@ -68,11 +66,9 @@ struct FusedMultiTransformerPattern : public PatternBase {
PATTERN_DECL_NODE
(
ffn1_bias
);
PATTERN_DECL_NODE
(
ffn1_bias
);
PATTERN_DECL_NODE
(
ffn2_w
);
PATTERN_DECL_NODE
(
ffn2_w
);
PATTERN_DECL_NODE
(
ffn2_bias
);
PATTERN_DECL_NODE
(
ffn2_bias
);
PATTERN_DECL_NODE
(
cache_kv_out
);
PATTERN_DECL_NODE
(
out
);
PATTERN_DECL_NODE
(
out
);
private:
private:
bool
with_cache_kv_
{
false
};
bool
with_pre_caches_
{
false
};
bool
with_pre_caches_
{
false
};
bool
with_rotary_pos_emb_
{
false
};
bool
with_rotary_pos_emb_
{
false
};
bool
with_time_step_
{
false
};
bool
with_time_step_
{
false
};
...
@@ -83,14 +79,12 @@ struct FusedMultiTransformerPattern : public PatternBase {
...
@@ -83,14 +79,12 @@ struct FusedMultiTransformerPattern : public PatternBase {
FusedMultiTransformerPattern
::
FusedMultiTransformerPattern
(
FusedMultiTransformerPattern
::
FusedMultiTransformerPattern
(
PDPattern
*
pattern
,
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
const
std
::
string
&
name_scope
,
bool
with_cache_kv
,
bool
with_pre_caches
,
bool
with_pre_caches
,
bool
with_rotary_pos_emb
,
bool
with_rotary_pos_emb
,
bool
with_time_step
,
bool
with_time_step
,
bool
with_seq_lengths
,
bool
with_seq_lengths
,
bool
with_src_mask
)
bool
with_src_mask
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
),
:
PatternBase
(
pattern
,
name_scope
,
name_scope
),
with_cache_kv_
(
with_cache_kv
),
with_pre_caches_
(
with_pre_caches
),
with_pre_caches_
(
with_pre_caches
),
with_rotary_pos_emb_
(
with_rotary_pos_emb
),
with_rotary_pos_emb_
(
with_rotary_pos_emb
),
with_time_step_
(
with_time_step
),
with_time_step_
(
with_time_step
),
...
@@ -102,9 +96,6 @@ FusedMultiTransformerPattern::FusedMultiTransformerPattern(
...
@@ -102,9 +96,6 @@ FusedMultiTransformerPattern::FusedMultiTransformerPattern(
auto
*
x
=
pattern
->
NewNode
(
x_repr
())
auto
*
x
=
pattern
->
NewNode
(
x_repr
())
->
assert_is_op_input
(
op_type
,
"X"
)
->
assert_is_op_input
(
op_type
,
"X"
)
->
assert_var_not_persistable
();
->
assert_var_not_persistable
();
auto
*
cache_kv_out
=
pattern
->
NewNode
(
cache_kv_out_repr
())
->
assert_is_op_output
(
op_type
,
"CacheKVOut"
)
->
assert_var_not_persistable
();
auto
*
out
=
pattern
->
NewNode
(
out_repr
())
auto
*
out
=
pattern
->
NewNode
(
out_repr
())
->
assert_is_op_output
(
op_type
,
"Out"
)
->
assert_is_op_output
(
op_type
,
"Out"
)
->
assert_var_not_persistable
();
->
assert_var_not_persistable
();
...
@@ -195,21 +186,14 @@ FusedMultiTransformerPattern::FusedMultiTransformerPattern(
...
@@ -195,21 +186,14 @@ FusedMultiTransformerPattern::FusedMultiTransformerPattern(
ffn1_bias
,
ffn1_bias
,
ffn2_w
,
ffn2_w
,
ffn2_bias
};
ffn2_bias
};
std
::
vector
<
PDNode
*>
output_vars
{
cache_kv_out
,
out
};
std
::
vector
<
PDNode
*>
output_vars
{
out
};
// optional node
// optional node
PDNode
*
cache_kv
=
nullptr
;
PDNode
*
pre_caches
=
nullptr
;
PDNode
*
pre_caches
=
nullptr
;
PDNode
*
rotary_pos_emb
=
nullptr
;
PDNode
*
rotary_pos_emb
=
nullptr
;
PDNode
*
time_step
=
nullptr
;
PDNode
*
time_step
=
nullptr
;
PDNode
*
seq_lengths
=
nullptr
;
PDNode
*
seq_lengths
=
nullptr
;
PDNode
*
src_mask
=
nullptr
;
PDNode
*
src_mask
=
nullptr
;
if
(
with_cache_kv_
)
{
cache_kv
=
pattern
->
NewNode
(
cache_kv_repr
())
->
assert_is_op_input
(
op_type
,
"CacheKV"
)
->
assert_var_not_persistable
();
input_vars
.
push_back
(
cache_kv
);
}
if
(
with_pre_caches_
)
{
if
(
with_pre_caches_
)
{
pre_caches
=
pattern
->
NewNode
(
pre_caches_repr
())
pre_caches
=
pattern
->
NewNode
(
pre_caches_repr
())
->
assert_is_op_input
(
op_type
,
"PreCaches"
)
->
assert_is_op_input
(
op_type
,
"PreCaches"
)
...
@@ -256,7 +240,6 @@ class FusedMultiTransformerXPUQuantPass : public FusePassBase {
...
@@ -256,7 +240,6 @@ class FusedMultiTransformerXPUQuantPass : public FusePassBase {
private:
private:
int
ApplyImpl
(
ir
::
Graph
*
graph
,
int
ApplyImpl
(
ir
::
Graph
*
graph
,
bool
with_cache_kv
,
bool
with_pre_caches
,
bool
with_pre_caches
,
bool
with_rotary_pos_emb
,
bool
with_rotary_pos_emb
,
bool
with_time_step
,
bool
with_time_step
,
...
@@ -275,13 +258,12 @@ void FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph) const {
...
@@ -275,13 +258,12 @@ void FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph) const {
int
found_subgraph_count
=
0
;
int
found_subgraph_count
=
0
;
for
(
bool
with_time_step
:
{
true
,
false
})
{
for
(
bool
with_time_step
:
{
true
,
false
})
{
found_subgraph_count
+=
found_subgraph_count
+=
ApplyImpl
(
graph
,
true
,
false
,
false
,
with_time_step
,
false
,
true
);
ApplyImpl
(
graph
,
false
,
false
,
with_time_step
,
false
,
true
);
}
}
AddStatis
(
found_subgraph_count
);
AddStatis
(
found_subgraph_count
);
}
}
int
FusedMultiTransformerXPUQuantPass
::
ApplyImpl
(
ir
::
Graph
*
graph
,
int
FusedMultiTransformerXPUQuantPass
::
ApplyImpl
(
ir
::
Graph
*
graph
,
bool
with_cache_kv
,
bool
with_pre_caches
,
bool
with_pre_caches
,
bool
with_rotary_pos_emb
,
bool
with_rotary_pos_emb
,
bool
with_time_step
,
bool
with_time_step
,
...
@@ -290,7 +272,6 @@ int FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph,
...
@@ -290,7 +272,6 @@ int FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph,
GraphPatternDetector
gpd
;
GraphPatternDetector
gpd
;
patterns
::
FusedMultiTransformerPattern
pattern
(
gpd
.
mutable_pattern
(),
patterns
::
FusedMultiTransformerPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
,
name_scope_
,
with_cache_kv
,
with_pre_caches
,
with_pre_caches
,
with_rotary_pos_emb
,
with_rotary_pos_emb
,
with_time_step
,
with_time_step
,
...
@@ -307,7 +288,6 @@ int FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph,
...
@@ -307,7 +288,6 @@ int FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph,
GET_IR_NODE
(
ln_bias
);
GET_IR_NODE
(
ln_bias
);
GET_IR_NODE
(
qkv_w
);
GET_IR_NODE
(
qkv_w
);
GET_IR_NODE
(
qkv_bias
);
GET_IR_NODE
(
qkv_bias
);
GET_IR_NODE
(
cache_kv
);
GET_IR_NODE
(
pre_caches
);
GET_IR_NODE
(
pre_caches
);
GET_IR_NODE
(
rotary_pos_emb
);
GET_IR_NODE
(
rotary_pos_emb
);
GET_IR_NODE
(
time_step
);
GET_IR_NODE
(
time_step
);
...
@@ -321,7 +301,6 @@ int FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph,
...
@@ -321,7 +301,6 @@ int FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph,
GET_IR_NODE
(
ffn1_bias
);
GET_IR_NODE
(
ffn1_bias
);
GET_IR_NODE
(
ffn2_w
);
GET_IR_NODE
(
ffn2_w
);
GET_IR_NODE
(
ffn2_bias
);
GET_IR_NODE
(
ffn2_bias
);
GET_IR_NODE
(
cache_kv_out
);
GET_IR_NODE
(
out
);
GET_IR_NODE
(
out
);
GET_IR_NODE
(
fused_mt
);
GET_IR_NODE
(
fused_mt
);
auto
*
block
=
fused_mt
->
Op
()
->
Block
();
auto
*
block
=
fused_mt
->
Op
()
->
Block
();
...
@@ -469,7 +448,7 @@ int FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph,
...
@@ -469,7 +448,7 @@ int FusedMultiTransformerXPUQuantPass::ApplyImpl(ir::Graph* graph,
fused_mt_xpu_op_desc
->
SetInput
(
"ln_scale"
,
name_caches
.
at
(
"LnScale"
));
fused_mt_xpu_op_desc
->
SetInput
(
"ln_scale"
,
name_caches
.
at
(
"LnScale"
));
fused_mt_xpu_op_desc
->
SetInput
(
"ln_bias"
,
name_caches
.
at
(
"LnBias"
));
fused_mt_xpu_op_desc
->
SetInput
(
"ln_bias"
,
name_caches
.
at
(
"LnBias"
));
fused_mt_xpu_op_desc
->
SetInput
(
"qkv_bias"
,
name_caches
.
at
(
"QKVBias"
));
fused_mt_xpu_op_desc
->
SetInput
(
"qkv_bias"
,
name_caches
.
at
(
"QKVBias"
));
if
(
cache_kv
)
{
if
(
name_caches
.
count
(
"CacheKV"
)
>
0
)
{
fused_mt_xpu_op_desc
->
SetInput
(
"cache_kv"
,
name_caches
.
at
(
"CacheKV"
));
fused_mt_xpu_op_desc
->
SetInput
(
"cache_kv"
,
name_caches
.
at
(
"CacheKV"
));
}
}
if
(
pre_caches
)
{
if
(
pre_caches
)
{
...
...
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.cc
浏览文件 @
720b14e3
...
@@ -12,17 +12,6 @@
...
@@ -12,17 +12,6 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h"
#include "paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h"
#include <string>
#include <string>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
...
...
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h
浏览文件 @
720b14e3
...
@@ -12,17 +12,6 @@
...
@@ -12,17 +12,6 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#pragma once
#include <string>
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
...
...
paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass.cc
0 → 100644
浏览文件 @
720b14e3
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
AssignPattern
:
public
PatternBase
{
AssignPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
assign
);
// declare variable node's name
PATTERN_DECL_NODE
(
assign_out
);
};
AssignPattern
::
AssignPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
assign
=
pattern
->
NewNode
(
assign_repr
())
->
assert_is_op
(
"assign"
)
->
assert_more
([
&
](
Node
*
node
)
{
auto
pre_op_nodes
=
node
->
inputs
[
0
]
->
inputs
;
return
pre_op_nodes
.
size
()
==
1
&&
pre_op_nodes
[
0
]
->
Op
()
->
Type
()
==
"fused_multi_transformer"
;
});
auto
*
assign_out
=
pattern
->
NewNode
(
assign_out_repr
())
->
assert_is_op_output
(
"assign"
,
"Out"
);
assign
->
LinksTo
({
assign_out
});
}
struct
ShapeAssociatedOpsPattern
:
public
PatternBase
{
ShapeAssociatedOpsPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
shape
);
PATTERN_DECL_NODE
(
slice
);
PATTERN_DECL_NODE
(
div
);
PATTERN_DECL_NODE
(
cast_0
);
PATTERN_DECL_NODE
(
cast_1
);
PATTERN_DECL_NODE
(
scale_0
);
PATTERN_DECL_NODE
(
cast_2
);
PATTERN_DECL_NODE
(
range
);
PATTERN_DECL_NODE
(
unsqueeze2
);
PATTERN_DECL_NODE
(
scale_1
);
PATTERN_DECL_NODE
(
add
);
PATTERN_DECL_NODE
(
flatten_contiguous_range
);
// declare variable node's name
PATTERN_DECL_NODE
(
shape_out
);
PATTERN_DECL_NODE
(
slice_out
);
PATTERN_DECL_NODE
(
div_out
);
PATTERN_DECL_NODE
(
cast_0_out
);
PATTERN_DECL_NODE
(
cast_1_out
);
PATTERN_DECL_NODE
(
scale_0_out
);
PATTERN_DECL_NODE
(
cast_2_out
);
PATTERN_DECL_NODE
(
range_out
);
PATTERN_DECL_NODE
(
unsqueeze2_out
);
PATTERN_DECL_NODE
(
scale_1_out
);
PATTERN_DECL_NODE
(
add_x
);
PATTERN_DECL_NODE
(
add_out
);
};
ShapeAssociatedOpsPattern
::
ShapeAssociatedOpsPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
shape
=
pattern
->
NewNode
(
shape_repr
())
->
assert_is_op
(
"shape"
);
auto
*
shape_out
=
pattern
->
NewNode
(
shape_out_repr
())
->
assert_is_op_output
(
"shape"
,
"Out"
)
->
assert_is_op_input
(
"slice"
,
"Input"
);
auto
*
slice
=
pattern
->
NewNode
(
slice_repr
())
->
assert_is_op
(
"slice"
)
->
assert_more
([
&
](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
return
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"axes"
)
==
std
::
vector
<
int
>
{
0
}
&&
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"starts"
)
==
std
::
vector
<
int
>
{
0
}
&&
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"ends"
)
==
std
::
vector
<
int
>
{
1
};
});
auto
*
slice_out
=
pattern
->
NewNode
(
slice_out_repr
())
->
assert_is_op_output
(
"slice"
,
"Out"
)
->
assert_is_op_input
(
"elementwise_div"
,
"X"
)
->
assert_is_op_input
(
"elementwise_div"
,
"Y"
)
->
assert_is_op_input
(
"cast"
,
"X"
)
->
assert_is_op_input
(
"scale"
,
"X"
);
auto
*
div
=
pattern
->
NewNode
(
div_repr
())
->
assert_is_op
(
"elementwise_div"
);
auto
*
div_out
=
pattern
->
NewNode
(
div_out_repr
())
->
assert_is_op_output
(
"elementwise_div"
,
"Out"
)
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
cast_0
=
pattern
->
NewNode
(
cast_0_repr
())
->
assert_is_op
(
"cast"
);
auto
*
cast_0_out
=
pattern
->
NewNode
(
cast_0_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"range"
,
"Step"
);
auto
*
cast_1
=
pattern
->
NewNode
(
cast_1_repr
())
->
assert_is_op
(
"cast"
);
auto
*
cast_1_out
=
pattern
->
NewNode
(
cast_1_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"range"
,
"End"
);
auto
*
scale_0
=
pattern
->
NewNode
(
scale_0_repr
())
->
assert_is_op
(
"scale"
);
auto
*
scale_0_out
=
pattern
->
NewNode
(
scale_0_out_repr
())
->
assert_is_op_output
(
"scale"
,
"Out"
)
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
cast_2
=
pattern
->
NewNode
(
cast_2_repr
())
->
assert_is_op
(
"cast"
);
auto
*
cast_2_out
=
pattern
->
NewNode
(
cast_2_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"range"
,
"Start"
);
auto
*
range
=
pattern
->
NewNode
(
range_repr
())
->
assert_is_op
(
"range"
);
auto
*
range_out
=
pattern
->
NewNode
(
range_out_repr
())
->
assert_is_op_output
(
"range"
,
"Out"
)
->
assert_is_op_input
(
"unsqueeze2"
,
"X"
);
auto
*
unsqueeze2
=
pattern
->
NewNode
(
unsqueeze2_repr
())
->
assert_is_op
(
"unsqueeze2"
);
auto
*
unsqueeze2_out
=
pattern
->
NewNode
(
unsqueeze2_out_repr
())
->
assert_is_op_output
(
"unsqueeze2"
,
"Out"
)
->
assert_is_op_input
(
"scale"
,
"X"
);
auto
*
scale_1
=
pattern
->
NewNode
(
scale_1_repr
())
->
assert_is_op
(
"scale"
);
auto
*
scale_1_out
=
pattern
->
NewNode
(
scale_1_out_repr
())
->
assert_is_op_output
(
"scale"
,
"Out"
)
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
auto
*
add_x
=
pattern
->
NewNode
(
add_x_repr
())
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
auto
*
add
=
pattern
->
NewNode
(
add_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
add_out
=
pattern
->
NewNode
(
add_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
,
"Out"
)
->
assert_is_op_input
(
"flatten_contiguous_range"
,
"X"
);
auto
*
flatten_contiguous_range
=
pattern
->
NewNode
(
flatten_contiguous_range_repr
())
->
assert_is_op
(
"flatten_contiguous_range"
);
shape
->
LinksTo
({
shape_out
});
slice
->
LinksFrom
({
shape_out
}).
LinksTo
({
slice_out
});
div
->
LinksFrom
({
slice_out
}).
LinksTo
({
div_out
});
cast_0
->
LinksFrom
({
div_out
}).
LinksTo
({
cast_0_out
});
cast_1
->
LinksFrom
({
slice_out
}).
LinksTo
({
cast_1_out
});
scale_0
->
LinksFrom
({
slice_out
}).
LinksTo
({
scale_0_out
});
cast_2
->
LinksFrom
({
scale_0_out
}).
LinksTo
({
cast_2_out
});
range
->
LinksFrom
({
cast_0_out
,
cast_1_out
,
cast_2_out
}).
LinksTo
({
range_out
});
unsqueeze2
->
LinksFrom
({
range_out
}).
LinksTo
({
unsqueeze2_out
});
scale_1
->
LinksFrom
({
unsqueeze2_out
}).
LinksTo
({
scale_1_out
});
add
->
LinksFrom
({
scale_1_out
,
add_x
}).
LinksTo
({
add_out
});
flatten_contiguous_range
->
LinksFrom
({
add_out
});
}
struct
BeamSearchAssociatedOpsPattern
:
public
PatternBase
{
BeamSearchAssociatedOpsPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
lod_reset_0
);
PATTERN_DECL_NODE
(
lod_reset_1
);
PATTERN_DECL_NODE
(
beam_search
);
PATTERN_DECL_NODE
(
write_to_array_0
);
PATTERN_DECL_NODE
(
write_to_array_1
);
PATTERN_DECL_NODE
(
is_empty
);
PATTERN_DECL_NODE
(
logical_not
);
PATTERN_DECL_NODE
(
cast
);
// declare variable node's name
PATTERN_DECL_NODE
(
lod_reset_0_out
);
PATTERN_DECL_NODE
(
lod_reset_1_out
);
PATTERN_DECL_NODE
(
beam_search_parent_idx
);
PATTERN_DECL_NODE
(
beam_search_selected_ids
);
PATTERN_DECL_NODE
(
beam_search_selected_scores
);
PATTERN_DECL_NODE
(
is_empty_out
);
PATTERN_DECL_NODE
(
logical_not_out
);
PATTERN_DECL_NODE
(
cast_out
);
};
BeamSearchAssociatedOpsPattern
::
BeamSearchAssociatedOpsPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
lod_reset_0
=
pattern
->
NewNode
(
lod_reset_0_repr
())
->
assert_is_op
(
"lod_reset"
);
auto
*
lod_reset_0_out
=
pattern
->
NewNode
(
lod_reset_0_out_repr
())
->
assert_is_op_output
(
"lod_reset"
,
"Out"
)
->
assert_is_op_input
(
"beam_search"
,
"ids"
);
auto
*
lod_reset_1
=
pattern
->
NewNode
(
lod_reset_1_repr
())
->
assert_is_op
(
"lod_reset"
);
auto
*
lod_reset_1_out
=
pattern
->
NewNode
(
lod_reset_1_out_repr
())
->
assert_is_op_output
(
"lod_reset"
,
"Out"
)
->
assert_is_op_input
(
"beam_search"
,
"scores"
);
auto
*
beam_search
=
pattern
->
NewNode
(
beam_search_repr
())
->
assert_is_op
(
"beam_search"
);
auto
*
beam_search_selected_ids
=
pattern
->
NewNode
(
beam_search_selected_ids_repr
())
->
assert_is_op_output
(
"beam_search"
,
"selected_ids"
)
->
assert_is_op_input
(
"write_to_array"
,
"X"
)
->
assert_is_op_input
(
"is_empty"
,
"X"
);
auto
*
beam_search_selected_scores
=
pattern
->
NewNode
(
beam_search_selected_scores_repr
())
->
assert_is_op_output
(
"beam_search"
,
"selected_scores"
)
->
assert_is_op_input
(
"write_to_array"
,
"X"
);
auto
*
beam_search_parent_idx
=
pattern
->
NewNode
(
beam_search_parent_idx_repr
())
->
assert_is_op_output
(
"beam_search"
,
"parent_idx"
)
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
write_to_array_0
=
pattern
->
NewNode
(
write_to_array_0_repr
())
->
assert_is_op
(
"write_to_array"
);
auto
*
write_to_array_1
=
pattern
->
NewNode
(
write_to_array_1_repr
())
->
assert_is_op
(
"write_to_array"
);
auto
*
is_empty
=
pattern
->
NewNode
(
is_empty_repr
())
->
assert_is_op
(
"is_empty"
);
auto
*
is_empty_out
=
pattern
->
NewNode
(
is_empty_out_repr
())
->
assert_is_op_output
(
"is_empty"
,
"Out"
)
->
assert_is_op_input
(
"logical_not"
,
"X"
);
auto
*
logical_not
=
pattern
->
NewNode
(
logical_not_repr
())
->
assert_is_op
(
"logical_not"
);
auto
*
logical_not_out
=
pattern
->
NewNode
(
logical_not_out_repr
())
->
assert_is_op_output
(
"logical_not"
,
"Out"
);
auto
*
cast
=
pattern
->
NewNode
(
cast_repr
())
->
assert_is_op
(
"cast"
);
auto
*
cast_out
=
pattern
->
NewNode
(
cast_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
);
lod_reset_0
->
LinksTo
({
lod_reset_0_out
});
lod_reset_1
->
LinksTo
({
lod_reset_1_out
});
beam_search
->
LinksFrom
({
lod_reset_0_out
,
lod_reset_1_out
})
.
LinksTo
({
beam_search_selected_ids
,
beam_search_selected_scores
,
beam_search_parent_idx
});
write_to_array_0
->
LinksFrom
({
beam_search_selected_ids
});
write_to_array_1
->
LinksFrom
({
beam_search_selected_scores
});
is_empty
->
LinksFrom
({
beam_search_selected_ids
}).
LinksTo
({
is_empty_out
});
logical_not
->
LinksFrom
({
is_empty_out
}).
LinksTo
({
logical_not_out
});
cast
->
LinksFrom
({
beam_search_parent_idx
}).
LinksTo
({
cast_out
});
}
}
// namespace patterns
bool
OnlyOneBeamSearchAndOneBeamSize
(
ir
::
Graph
*
graph
)
{
std
::
vector
<
Node
*>
beam_search_nodes
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
->
Type
()
==
"beam_search"
)
{
beam_search_nodes
.
push_back
(
node
);
}
}
return
beam_search_nodes
.
size
()
==
1
&&
beam_search_nodes
[
0
]
->
Op
()
->
GetAttrIfExists
<
int
>
(
"beam_size"
)
==
1
;
}
Node
*
FindOpNodeByInputName
(
Graph
*
graph
,
const
std
::
string
&
op_type
,
const
std
::
string
&
arg_name
,
const
std
::
string
&
var_name
)
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
!
node
->
IsOp
()
||
node
->
Op
()
->
Type
()
!=
op_type
)
continue
;
auto
inputs
=
node
->
Op
()
->
Inputs
();
if
(
inputs
.
count
(
arg_name
)
==
0
)
continue
;
auto
in_names
=
inputs
.
at
(
arg_name
);
if
(
std
::
find
(
in_names
.
begin
(),
in_names
.
end
(),
var_name
)
==
in_names
.
end
())
continue
;
return
node
;
}
return
nullptr
;
}
void
OneBeamSizeFusePass
::
RemoveAssignGather
(
ir
::
Graph
*
graph
)
const
{
// detect assign + gather
GraphPatternDetector
gpd
;
patterns
::
AssignPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle RemoveAssignGather"
;
GET_IR_NODE
(
assign
);
GET_IR_NODE
(
assign_out
);
// Assign_out may not link to gather, so we find gather by input name.
auto
*
gather
=
FindOpNodeByInputName
(
graph
,
"gather"
,
"X"
,
assign_out
->
Name
());
if
(
gather
==
nullptr
)
return
;
// "assign_out" is used in multi blocks. "assign_out" should be reserved.
auto
*
assign_in
=
assign
->
inputs
[
0
];
auto
*
fused_multi_transformer
=
assign_in
->
inputs
[
0
];
fused_multi_transformer
->
Op
()
->
Rename
(
assign_in
->
Name
(),
assign_out
->
Name
());
IR_NODE_LINK_TO
(
fused_multi_transformer
,
assign_out
);
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
assign
,
assign_in
,
gather
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
OneBeamSizeFusePass
::
FoldShapeAssociatedOps
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
ShapeAssociatedOpsPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle FoldShapeAssociatedOps"
;
GET_IR_NODE
(
shape
);
GET_IR_NODE
(
slice
);
GET_IR_NODE
(
div
);
GET_IR_NODE
(
cast_0
);
GET_IR_NODE
(
cast_1
);
GET_IR_NODE
(
scale_0
);
GET_IR_NODE
(
cast_2
);
GET_IR_NODE
(
range
);
GET_IR_NODE
(
unsqueeze2
);
GET_IR_NODE
(
scale_1
);
GET_IR_NODE
(
add
);
GET_IR_NODE
(
flatten_contiguous_range
);
GET_IR_NODE
(
shape_out
);
GET_IR_NODE
(
slice_out
);
GET_IR_NODE
(
div_out
);
GET_IR_NODE
(
cast_0_out
);
GET_IR_NODE
(
cast_1_out
);
GET_IR_NODE
(
scale_0_out
);
GET_IR_NODE
(
cast_2_out
);
GET_IR_NODE
(
range_out
);
GET_IR_NODE
(
unsqueeze2_out
);
GET_IR_NODE
(
scale_1_out
);
GET_IR_NODE
(
add_x
);
GET_IR_NODE
(
add_out
);
flatten_contiguous_range
->
Op
()
->
RenameInput
(
add_out
->
Name
(),
add_x
->
Name
());
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
shape
,
slice
,
div
,
cast_0
,
cast_1
,
scale_0
,
cast_2
,
range
,
unsqueeze2
,
scale_1
,
add
,
shape_out
,
slice_out
,
div_out
,
cast_0_out
,
cast_1_out
,
scale_0_out
,
cast_2_out
,
range_out
,
unsqueeze2_out
,
scale_1_out
,
add_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
OneBeamSizeFusePass
::
RemoveBeamSearchAssociatedOps
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
BeamSearchAssociatedOpsPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle RemoveBeamSearchAssociatedOps"
;
GET_IR_NODE
(
lod_reset_0
);
GET_IR_NODE
(
lod_reset_1
);
GET_IR_NODE
(
beam_search
);
GET_IR_NODE
(
write_to_array_0
);
GET_IR_NODE
(
write_to_array_1
);
GET_IR_NODE
(
is_empty
);
GET_IR_NODE
(
logical_not
);
GET_IR_NODE
(
cast
);
GET_IR_NODE
(
lod_reset_0_out
);
GET_IR_NODE
(
lod_reset_1_out
);
GET_IR_NODE
(
beam_search_parent_idx
);
GET_IR_NODE
(
beam_search_selected_ids
);
GET_IR_NODE
(
beam_search_selected_scores
);
GET_IR_NODE
(
is_empty_out
);
GET_IR_NODE
(
logical_not_out
);
GET_IR_NODE
(
cast_out
);
auto
*
block
=
lod_reset_0
->
Op
()
->
Block
();
auto
*
scope
=
param_scope
();
write_to_array_0
->
Op
()
->
RenameInput
(
beam_search_selected_ids
->
Name
(),
lod_reset_0_out
->
Name
());
IR_NODE_LINK_TO
(
lod_reset_0_out
,
write_to_array_0
);
write_to_array_1
->
Op
()
->
RenameInput
(
beam_search_selected_scores
->
Name
(),
lod_reset_1_out
->
Name
());
IR_NODE_LINK_TO
(
lod_reset_1_out
,
write_to_array_1
);
// Transform is_empty to not_equal
is_empty
->
RenameOp
(
"not_equal"
);
auto
*
not_equal
=
is_empty
;
auto
*
not_equal_desc
=
not_equal
->
Op
();
not_equal_desc
->
RenameInput
(
beam_search_selected_ids
->
Name
(),
lod_reset_0_out
->
Name
());
not_equal_desc
->
RenameOutput
(
is_empty_out
->
Name
(),
logical_not_out
->
Name
());
std
::
string
not_equal_y_name
=
lod_reset_0_out
->
Name
()
+
"_not_equal_y"
;
not_equal_desc
->
SetInput
(
"Y"
,
{
not_equal_y_name
});
VarDesc
not_equal_y_desc
(
not_equal_y_name
);
not_equal_y_desc
.
SetPersistable
(
true
);
not_equal_y_desc
.
SetShape
({
static_cast
<
int64_t
>
(
1
)});
not_equal_y_desc
.
SetDataType
(
proto
::
VarType
::
Type
::
VarType_Type_INT64
);
auto
*
not_equal_y
=
graph
->
CreateVarNode
(
&
not_equal_y_desc
);
auto
*
block_not_equal_y_desc
=
block
->
Var
(
not_equal_y_name
);
block_not_equal_y_desc
->
SetPersistable
(
not_equal_y_desc
.
Persistable
());
block_not_equal_y_desc
->
SetShape
(
not_equal_y_desc
.
GetShape
());
block_not_equal_y_desc
->
SetDataType
(
not_equal_y_desc
.
GetDataType
());
auto
*
not_equal_y_tensor
=
scope
->
Var
(
not_equal_y_name
)
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
*
cpu_ctx
=
static_cast
<
phi
::
CPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
phi
::
CPUPlace
()));
not_equal_y_tensor
->
Resize
({
1
});
not_equal_y_tensor
->
set_type
(
phi
::
DataType
::
INT64
);
auto
*
not_equal_y_data
=
cpu_ctx
->
Alloc
<
int64_t
>
(
not_equal_y_tensor
);
not_equal_y_data
[
0
]
=
beam_search
->
Op
()
->
GetAttrIfExists
<
int
>
(
"end_id"
);
IR_NODE_LINK_TO
(
not_equal_y
,
not_equal
);
// cast_out is 0
cast_out
->
Var
()
->
SetPersistable
(
true
);
auto
*
cast_out_tensor
=
scope
->
Var
(
cast_out
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
cast_out_tensor
->
Resize
({
1
});
cast_out_tensor
->
set_type
(
phi
::
DataType
::
INT64
);
auto
*
cast_out_data
=
cpu_ctx
->
Alloc
<
int64_t
>
(
cast_out_tensor
);
cast_out_data
[
0
]
=
0
;
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
beam_search
,
logical_not
,
cast
,
beam_search_parent_idx
,
beam_search_selected_ids
,
beam_search_selected_scores
,
is_empty_out
,
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
OneBeamSizeFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
if
(
!
OnlyOneBeamSearchAndOneBeamSize
(
graph
))
return
;
RemoveAssignGather
(
graph
);
FoldShapeAssociatedOps
(
graph
);
RemoveBeamSearchAssociatedOps
(
graph
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
one_beam_size_fuse_pass
,
paddle
::
framework
::
ir
::
OneBeamSizeFusePass
);
REGISTER_PASS_CAPABILITY
(
one_beam_size_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
EQ
(
"beam_search"
,
0
));
paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass.h
0 → 100644
浏览文件 @
720b14e3
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
OneBeamSizeFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
/*
Origin subgraph:
fused_multi_transformer
| | |
assign assign ...
| | |
gather gather ...
Fused subgraph:
fused_multi_transformer
*/
void
RemoveAssignGather
(
ir
::
Graph
*
graph
)
const
;
/*
Origin subgraph:
shape
/ | \
/ | \
elementwise_div | scale
| | |
cast cast cast
\ | /
range
|
unsqueeze2
|
scale (add_x)
| /
elementwise_add
|
flatten_contiguous_range
Fused subgraph:
(add_x)
|
flatten_contiguous_range
*/
void
FoldShapeAssociatedOps
(
ir
::
Graph
*
graph
)
const
;
/*
Origin subgraph:
lod_reset lod_reset
| |
(ids) (scores)
\ |
beam_search
/ | \
/ | \
/ | \
(selected_ids) (selected_scores) (parent_idx)
/ | | |
write_to_array is_empty write_to_array cast
| |
| (cast_out)
| |
logical_not write_to_array
Fused subgraph:
lod_reset lod_reset (cast_out: fill 0)
| | |
(ids) (scores) write_to_array
/ \ |
write_to_array not_equal write_to_array
*/
void
RemoveBeamSearchAssociatedOps
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"one_beam_size_fuse_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/one_beam_size_fuse_pass_test.cc
0 → 100644
浏览文件 @
720b14e3
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
VarDesc
*
Data
(
paddle
::
framework
::
BlockDesc
*
block
,
std
::
string
name
,
std
::
vector
<
int64_t
>
shape
=
{},
bool
is_persistable
=
false
,
proto
::
VarType
::
Type
data_type
=
proto
::
VarType
::
FP32
)
{
auto
*
var
=
block
->
Var
(
name
);
var
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
var
->
SetDataType
(
data_type
);
var
->
SetShape
(
shape
);
var
->
SetPersistable
(
is_persistable
);
return
var
;
}
TEST
(
RemoveAssignGather
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
OpDesc
*
beam_search_op
=
block
->
AppendOp
();
beam_search_op
->
SetType
(
"beam_search"
);
beam_search_op
->
SetAttr
(
"beam_size"
,
1
);
auto
*
x
=
Data
(
block
,
"fused_multi_transformer_x"
,
{
1
,
1
,
1536
});
auto
*
cache_kv
=
Data
(
block
,
"fused_multi_transformer_cache_kv"
,
{
2
,
1
,
24
,
512
,
64
});
OpDesc
*
fused_multi_transformer_op
=
block
->
AppendOp
();
fused_multi_transformer_op
->
SetType
(
"fused_multi_transformer"
);
fused_multi_transformer_op
->
SetInput
(
"X"
,
{
x
->
Name
()});
fused_multi_transformer_op
->
SetInput
(
"CacheKV"
,
{
cache_kv
->
Name
()});
fused_multi_transformer_op
->
SetOutput
(
"CacheKVOut"
,
{
cache_kv
->
Name
()});
auto
*
assign_out
=
Data
(
block
,
"assign_out"
,
cache_kv
->
GetShape
());
OpDesc
*
assign_op
=
block
->
AppendOp
();
assign_op
->
SetType
(
"assign"
);
assign_op
->
SetInput
(
"X"
,
{
cache_kv
->
Name
()});
assign_op
->
SetOutput
(
"Out"
,
{
assign_out
->
Name
()});
OpDesc
*
gather_op
=
block
->
AppendOp
();
gather_op
->
SetType
(
"gather"
);
gather_op
->
SetInput
(
"X"
,
{
assign_out
->
Name
()});
gather_op
->
SetOutput
(
"Out"
,
{
cache_kv
->
Name
()});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"one_beam_size_fuse_pass"
);
pass
->
Apply
(
graph
.
get
());
auto
assign_num
=
GetNumOpNodes
(
graph
,
"assign"
);
auto
gather_num
=
GetNumOpNodes
(
graph
,
"gather"
);
PADDLE_ENFORCE_EQ
(
assign_num
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"assign op should be removed from the graph."
));
PADDLE_ENFORCE_EQ
(
gather_num
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"gather op should be removed from the graph."
));
}
TEST
(
FoldShapeAssociatedOps
,
basic
)
{
Layers
layers
;
auto
*
block
=
layers
.
Block
();
OpDesc
*
beam_search_op
=
block
->
AppendOp
();
beam_search_op
->
SetType
(
"beam_search"
);
beam_search_op
->
SetAttr
(
"beam_size"
,
1
);
auto
*
shape_x
=
layers
.
data
(
"shape_x"
,
{
1
,
46256
});
auto
*
shape_out
=
layers
.
shape
(
shape_x
);
auto
*
slice_out
=
layers
.
slice
(
shape_out
,
{
0
},
{
0
},
{
1
});
auto
*
div_out
=
layers
.
elementwise_div
(
slice_out
,
slice_out
);
auto
*
cast0_out
=
layers
.
cast
(
div_out
);
auto
*
cast1_out
=
layers
.
cast
(
slice_out
);
auto
*
scale0_out
=
layers
.
scale
(
slice_out
);
auto
*
cast2_out
=
layers
.
cast
(
scale0_out
);
auto
*
range_out
=
layers
.
range
(
cast2_out
,
cast1_out
,
cast0_out
);
auto
*
unsqueeze2_out
=
layers
.
unsqueeze2
(
range_out
);
auto
*
scale1_out
=
layers
.
scale
(
unsqueeze2_out
);
auto
*
add_x
=
layers
.
data
(
"add_x"
,
{
1
,
2
});
auto
*
add_out
=
layers
.
elementwise_add
(
add_x
,
scale1_out
);
layers
.
flatten_contiguous_range
(
add_out
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"one_beam_size_fuse_pass"
);
pass
->
Apply
(
graph
.
get
());
auto
ops_num
=
GetNumOpNodes
(
graph
);
PADDLE_ENFORCE_EQ
(
ops_num
,
2
,
platform
::
errors
::
PreconditionNotMet
(
"graph should only have 2 op nodes, but received %d."
,
ops_num
));
}
TEST
(
RemoveBeamSearchAssociatedOps
,
basic
)
{
Layers
layers
;
auto
*
lod_reset_0_x
=
layers
.
data
(
"lod_reset_0_x"
);
auto
*
lod_reset_0_y
=
layers
.
data
(
"lod_reset_0_y"
);
auto
*
lod_reset_0_out
=
layers
.
lod_reset
(
lod_reset_0_x
,
lod_reset_0_y
);
auto
*
lod_reset_1_x
=
layers
.
data
(
"lod_reset_1_x"
);
auto
*
lod_reset_1_y
=
layers
.
data
(
"lod_reset_1_y"
);
auto
*
lod_reset_1_out
=
layers
.
lod_reset
(
lod_reset_1_x
,
lod_reset_1_y
);
auto
*
pre_ids
=
layers
.
data
(
"pre_ids"
);
auto
*
pre_scores
=
layers
.
data
(
"pre_scores"
);
auto
beam_search_outs
=
layers
.
beam_search
(
lod_reset_0_out
,
lod_reset_1_out
,
pre_ids
,
pre_scores
);
auto
*
parent_idx
=
beam_search_outs
[
0
];
auto
*
selected_ids
=
beam_search_outs
[
1
];
auto
*
selected_scores
=
beam_search_outs
[
2
];
auto
*
write_to_array_0_i
=
layers
.
data
(
"write_to_array_0_i"
);
layers
.
write_to_array
({
selected_ids
},
write_to_array_0_i
);
auto
*
write_to_array_1_i
=
layers
.
data
(
"write_to_array_1_i"
);
layers
.
write_to_array
({
selected_scores
},
write_to_array_1_i
);
auto
*
is_empty_out
=
layers
.
is_empty
(
selected_ids
);
layers
.
logical_not
(
is_empty_out
);
layers
.
cast
(
parent_idx
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
*
param_scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
param_scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"one_beam_size_fuse_pass"
);
pass
->
Apply
(
graph
.
get
());
auto
beam_search_num
=
GetNumOpNodes
(
graph
,
"beam_search"
);
PADDLE_ENFORCE_EQ
(
beam_search_num
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"beam_search op should be removed from the graph."
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
one_beam_size_fuse_pass
);
paddle/fluid/framework/ir/xpu/pass_utils.cc
浏览文件 @
720b14e3
...
@@ -105,8 +105,7 @@ size_t HashTensor(const phi::DenseTensor& in) {
...
@@ -105,8 +105,7 @@ size_t HashTensor(const phi::DenseTensor& in) {
template
size_t
HashTensor
<
int16_t
>(
const
phi
::
DenseTensor
&
in
);
template
size_t
HashTensor
<
int16_t
>(
const
phi
::
DenseTensor
&
in
);
template
size_t
HashTensor
<
float
>(
const
phi
::
DenseTensor
&
in
);
template
size_t
HashTensor
<
float
>(
const
phi
::
DenseTensor
&
in
);
std
::
string
GetPrefixWithoutHash
(
const
std
::
string
&
name
,
std
::
string
GetPrefixWithoutHash
(
const
std
::
string
&
name
)
{
const
phi
::
DenseTensor
&
tensor
)
{
std
::
size_t
found
=
name
.
find
(
"_#"
);
std
::
size_t
found
=
name
.
find
(
"_#"
);
return
found
==
std
::
string
::
npos
?
name
:
name
.
substr
(
0
,
found
);
return
found
==
std
::
string
::
npos
?
name
:
name
.
substr
(
0
,
found
);
}
}
...
@@ -128,7 +127,7 @@ void PrepareWeight(Graph* graph,
...
@@ -128,7 +127,7 @@ void PrepareWeight(Graph* graph,
size_t
dst_hash
=
HashTensor
<
T
>
(
dst_tensor
);
size_t
dst_hash
=
HashTensor
<
T
>
(
dst_tensor
);
size_t
dst_max_hash
=
HashTensor
<
float
>
(
dst_max_tensor
);
size_t
dst_max_hash
=
HashTensor
<
float
>
(
dst_max_tensor
);
std
::
string
pre_name
=
GetPrefixWithoutHash
(
src_name
,
*
src_tensor
);
std
::
string
pre_name
=
GetPrefixWithoutHash
(
src_name
);
std
::
string
dst_name
=
pre_name
+
"_#"
+
std
::
to_string
(
dst_hash
);
std
::
string
dst_name
=
pre_name
+
"_#"
+
std
::
to_string
(
dst_hash
);
std
::
string
dst_max_name
=
pre_name
+
"_max_#"
+
std
::
to_string
(
dst_max_hash
);
std
::
string
dst_max_name
=
pre_name
+
"_max_#"
+
std
::
to_string
(
dst_max_hash
);
*
dst
=
FindNodeWithName
(
graph
,
dst_name
);
*
dst
=
FindNodeWithName
(
graph
,
dst_name
);
...
@@ -206,7 +205,7 @@ void PrepareBias(
...
@@ -206,7 +205,7 @@ void PrepareBias(
phi
::
DenseTensor
dst_tensor
;
phi
::
DenseTensor
dst_tensor
;
CastToFp32
(
src_tensor
,
&
dst_tensor
);
CastToFp32
(
src_tensor
,
&
dst_tensor
);
size_t
dst_hash
=
HashTensor
<
float
>
(
dst_tensor
);
size_t
dst_hash
=
HashTensor
<
float
>
(
dst_tensor
);
std
::
string
pre_name
=
GetPrefixWithoutHash
(
src_name
,
*
src_tensor
);
std
::
string
pre_name
=
GetPrefixWithoutHash
(
src_name
);
std
::
string
dst_name
=
pre_name
+
"_#"
+
std
::
to_string
(
dst_hash
);
std
::
string
dst_name
=
pre_name
+
"_#"
+
std
::
to_string
(
dst_hash
);
*
dst
=
FindNodeWithName
(
graph
,
dst_name
);
*
dst
=
FindNodeWithName
(
graph
,
dst_name
);
if
(
*
dst
==
nullptr
)
{
if
(
*
dst
==
nullptr
)
{
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
720b14e3
...
@@ -524,6 +524,7 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
...
@@ -524,6 +524,7 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"embedding_with_eltwise_add_xpu_fuse_pass"
,
"embedding_with_eltwise_add_xpu_fuse_pass"
,
"multi_encoder_xpu_fuse_pass"
,
"multi_encoder_xpu_fuse_pass"
,
"multi_encoder_xpu_slice_fuse_pass"
,
"multi_encoder_xpu_slice_fuse_pass"
,
"one_beam_size_fuse_pass"
,
"fused_multi_transformer_xpu_quant_pass"
,
"fused_multi_transformer_xpu_quant_pass"
,
"fc_xpu_fuse_pass"
,
"fc_xpu_fuse_pass"
,
"link_xpu_op_max_pass"
,
"link_xpu_op_max_pass"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录