Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bfa5d6b8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bfa5d6b8
编写于
4月 24, 2023
作者:
Z
zhupengyang
提交者:
GitHub
4月 24, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
transform cachekv datalayout of fused_multi_transformer_xpu (#53144)
上级
ae426b78
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
448 addition
and
39 deletion
+448
-39
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+6
-0
paddle/fluid/framework/ir/pass.cc
paddle/fluid/framework/ir/pass.cc
+1
-0
paddle/fluid/framework/ir/xpu/fused_multi_transformer_cachekv_layout_trans_pass.cc
.../xpu/fused_multi_transformer_cachekv_layout_trans_pass.cc
+202
-0
paddle/fluid/framework/ir/xpu/fused_multi_transformer_cachekv_layout_trans_pass.h
...r/xpu/fused_multi_transformer_cachekv_layout_trans_pass.h
+79
-0
paddle/fluid/framework/ir/xpu/fused_multi_transformer_cachekv_layout_trans_pass_test.cc
...fused_multi_transformer_cachekv_layout_trans_pass_test.cc
+125
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+1
-0
paddle/phi/infermeta/fusion.cc
paddle/phi/infermeta/fusion.cc
+34
-39
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
bfa5d6b8
...
...
@@ -245,6 +245,8 @@ if(WITH_XPU)
pass_library
(
fused_multi_transformer_xpu_quant_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
stack_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
fused_multi_transformer_cachekv_layout_trans_pass inference DIR
xpu DEPS
${
XPU_PASS_DEPS
}
)
endif
()
cc_library
(
...
...
@@ -528,4 +530,8 @@ if(WITH_XPU)
test_stack_fuse_pass
SRCS xpu/stack_fuse_pass_test.cc
DEPS stack_fuse_pass
)
cc_test
(
test_fused_multi_transformer_cachekv_layout_trans_pass
SRCS xpu/fused_multi_transformer_cachekv_layout_trans_pass_test.cc
DEPS fused_multi_transformer_cachekv_layout_trans_pass
)
endif
()
paddle/fluid/framework/ir/pass.cc
浏览文件 @
bfa5d6b8
...
...
@@ -62,6 +62,7 @@ static const std::vector<std::string> xpu_support_subgraph_passes = {
"embedding_with_eltwise_add_xpu_fuse_pass"
,
"multi_encoder_xpu_fuse_pass"
,
"multi_encoder_xpu_slice_fuse_pass"
,
"fused_multi_transformer_cachekv_layout_trans_pass"
,
"one_beam_size_fuse_pass"
,
"stack_fuse_pass"
,
"fused_multi_transformer_xpu_quant_pass"
,
...
...
paddle/fluid/framework/ir/xpu/fused_multi_transformer_cachekv_layout_trans_pass.cc
0 → 100644
浏览文件 @
bfa5d6b8
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/fused_multi_transformer_cachekv_layout_trans_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
FusedMultiTransformerFillConstantPattern
:
public
PatternBase
{
FusedMultiTransformerFillConstantPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
fill_constant
);
PATTERN_DECL_NODE
(
fused_multi_transformer
);
// declare variable node's name
PATTERN_DECL_NODE
(
fill_constant_out
);
};
// struct FusedMultiTransformerFillConstantPattern
FusedMultiTransformerFillConstantPattern
::
FusedMultiTransformerFillConstantPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
fill_constant
=
pattern
->
NewNode
(
fill_constant_repr
())
->
assert_is_op
(
"fill_constant"
)
->
assert_has_n_inputs
(
5
)
->
assert_more
([](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"friendly_device_type"
)
!=
"xpu"
;
});
auto
*
fill_constant_out
=
pattern
->
NewNode
(
fill_constant_out_repr
())
->
assert_is_op_output
(
"fill_constant"
,
"Out"
);
auto
*
fused_multi_transformer
=
pattern
->
NewNode
(
fused_multi_transformer_repr
())
->
assert_is_op
(
"fused_multi_transformer"
);
fill_constant
->
LinksTo
({
fill_constant_out
});
fused_multi_transformer
->
LinksFrom
({
fill_constant_out
});
}
struct
FusedMultiTransformerGatherPattern
:
public
PatternBase
{
FusedMultiTransformerGatherPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
fused_multi_transformer
);
PATTERN_DECL_NODE
(
gather
);
// declare variable node's name
PATTERN_DECL_NODE
(
gather_in
);
PATTERN_DECL_NODE
(
gather_out
);
};
// struct FusedMultiTransformerGatherPattern
FusedMultiTransformerGatherPattern
::
FusedMultiTransformerGatherPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
gather_in
=
pattern
->
NewNode
(
gather_in_repr
())
->
assert_is_op_input
(
"gather"
,
"X"
);
auto
*
gather
=
pattern
->
NewNode
(
gather_repr
())
->
assert_is_op
(
"gather"
)
->
assert_more
([](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
int
>
(
"axis"
)
==
1
;
});
auto
*
gather_out
=
pattern
->
NewNode
(
gather_out_repr
())
->
assert_is_op_output
(
"gather"
,
"Out"
);
auto
*
fused_multi_transformer
=
pattern
->
NewNode
(
fused_multi_transformer_repr
())
->
assert_is_op
(
"fused_multi_transformer"
);
gather
->
LinksFrom
({
gather_in
}).
LinksTo
({
gather_out
});
fused_multi_transformer
->
LinksFrom
({
gather_out
});
}
}
// namespace patterns
void
FusedMultiTransformerCacheKVLayoutTransPass
::
FillConstantReshapePass
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
GraphPatternDetector
gpd
;
patterns
::
FusedMultiTransformerFillConstantPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle FillConstantReshapePass"
;
GET_IR_NODE
(
fused_multi_transformer
);
GET_IR_NODE
(
fill_constant
);
GET_IR_NODE
(
fill_constant_out
);
auto
cachekv_names
=
fused_multi_transformer
->
Op
()
->
Input
(
"CacheKV"
);
if
(
std
::
count
(
cachekv_names
.
begin
(),
cachekv_names
.
end
(),
fill_constant_out
->
Name
())
==
0
)
return
;
auto
fill_constant_input_names
=
fill_constant
->
Op
()
->
Input
(
"ShapeTensorList"
);
auto
fill_constant_trans_input_names
=
std
::
vector
<
std
::
string
>
{
fill_constant_input_names
[
0
],
fill_constant_input_names
[
3
],
fill_constant_input_names
[
1
],
fill_constant_input_names
[
2
],
fill_constant_input_names
[
4
]};
fill_constant
->
Op
()
->
SetInput
(
"ShapeTensorList"
,
fill_constant_trans_input_names
);
auto
fill_constant_output_shape
=
fill_constant_out
->
Var
()
->
GetShape
();
fill_constant_out
->
Var
()
->
SetShape
({
fill_constant_output_shape
[
0
],
fill_constant_output_shape
[
3
],
fill_constant_output_shape
[
1
],
fill_constant_output_shape
[
2
],
fill_constant_output_shape
[
4
]});
fused_multi_transformer
->
Op
()
->
SetAttr
(
"friendly_device_type"
,
std
::
string
(
"xpu"
));
fill_constant
->
Op
()
->
SetAttr
(
"friendly_device_type"
,
std
::
string
(
"xpu"
));
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
FusedMultiTransformerCacheKVLayoutTransPass
::
GatherReshapePass
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
GraphPatternDetector
gpd
;
patterns
::
FusedMultiTransformerGatherPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle GatherReshapePass"
;
GET_IR_NODE
(
gather
);
GET_IR_NODE
(
fused_multi_transformer
);
GET_IR_NODE
(
gather_in
);
GET_IR_NODE
(
gather_out
);
auto
cachekv_names
=
fused_multi_transformer
->
Op
()
->
Input
(
"CacheKV"
);
if
(
std
::
count
(
cachekv_names
.
begin
(),
cachekv_names
.
end
(),
gather_out
->
Name
())
==
0
)
return
;
auto
gather_in_shape
=
gather_in
->
Var
()
->
GetShape
();
auto
gather_out_shape
=
gather_out
->
Var
()
->
GetShape
();
gather_in
->
Var
()
->
SetShape
({
gather_in_shape
[
0
],
gather_in_shape
[
3
],
gather_in_shape
[
1
],
gather_in_shape
[
2
],
gather_in_shape
[
4
]});
gather_out
->
Var
()
->
SetShape
({
gather_out_shape
[
0
],
gather_out_shape
[
3
],
gather_out_shape
[
1
],
gather_out_shape
[
2
],
gather_out_shape
[
4
]});
gather
->
Op
()
->
SetAttr
(
"axis"
,
2
);
fused_multi_transformer
->
Op
()
->
SetAttr
(
"friendly_device_type"
,
std
::
string
(
"xpu"
));
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
FusedMultiTransformerCacheKVLayoutTransPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
FillConstantReshapePass
(
graph
);
GatherReshapePass
(
graph
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
fused_multi_transformer_cachekv_layout_trans_pass
,
paddle
::
framework
::
ir
::
FusedMultiTransformerCacheKVLayoutTransPass
);
paddle/fluid/framework/ir/xpu/fused_multi_transformer_cachekv_layout_trans_pass.h
0 → 100644
浏览文件 @
bfa5d6b8
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
FusedMultiTransformerCacheKVLayoutTransPass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
/*
Origin subgraph:
(ShapeTensorList: [d0,d1,d2,d3,d4])
|
fill_constant
|
fused_multi_transformer
Fused subgraph:
(ShapeTensorList: [d0,d3,d1,d2,d4])
|
fill_constant
|
fused_multi_transformer
*/
void
FillConstantReshapePass
(
ir
::
Graph
*
graph
)
const
;
/*
Origin subgraph:
(gather_x: [d0,d1,d2,d3,d4])
|
gather(axis=1)
|
fused_multi_transformer
Fused subgraph:
(gather_x: [d0,d3,d1,d2,d4])
|
gather(axis=2)
|
fused_multi_transformer
*/
void
GatherReshapePass
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"fused_multi_transformer_cachekv_layout_trans_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/fused_multi_transformer_cachekv_layout_trans_pass_test.cc
0 → 100644
浏览文件 @
bfa5d6b8
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
VarDesc
*
Data
(
paddle
::
framework
::
BlockDesc
*
block
,
std
::
string
name
,
std
::
vector
<
int64_t
>
shape
=
{},
bool
is_persistable
=
false
,
proto
::
VarType
::
Type
data_type
=
proto
::
VarType
::
FP32
)
{
auto
*
var
=
block
->
Var
(
name
);
var
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
var
->
SetDataType
(
data_type
);
var
->
SetShape
(
shape
);
var
->
SetPersistable
(
is_persistable
);
return
var
;
}
VarDesc
*
fill_constant
(
BlockDesc
*
block
,
std
::
vector
<
VarDesc
*>
shapes
)
{
VarDesc
*
out
=
Data
(
block
,
shapes
[
0
]
->
Name
()
+
"_out"
);
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"fill_constant"
);
std
::
vector
<
std
::
string
>
shape_names
;
for
(
auto
shape
:
shapes
)
{
shape_names
.
push_back
(
shape
->
Name
());
}
op
->
SetInput
(
"ShapeTensorList"
,
{
shape_names
});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
TEST
(
FillConstantReshapePass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
auto
*
shape0
=
Data
(
block
,
"shape0"
);
auto
*
shape1
=
Data
(
block
,
"shape1"
);
auto
*
shape2
=
Data
(
block
,
"shape2"
);
auto
*
shape3
=
Data
(
block
,
"shape3"
);
auto
*
shape4
=
Data
(
block
,
"shape4"
);
auto
*
shape5
=
Data
(
block
,
"shape5"
);
auto
*
shape6
=
Data
(
block
,
"shape6"
);
auto
*
shape7
=
Data
(
block
,
"shape7"
);
auto
*
shape8
=
Data
(
block
,
"shape8"
);
auto
*
shape9
=
Data
(
block
,
"shape9"
);
auto
*
fill0
=
fill_constant
(
block
,
{
shape0
,
shape1
,
shape2
,
shape3
,
shape4
});
fill0
->
SetShape
({
1
,
2
,
3
,
4
,
5
});
auto
*
fill1
=
fill_constant
(
block
,
{
shape5
,
shape6
,
shape7
,
shape8
,
shape9
});
fill1
->
SetShape
({
1
,
2
,
3
,
4
,
5
});
OpDesc
*
fused_multi_transformer
=
block
->
AppendOp
();
fused_multi_transformer
->
SetType
(
"fused_multi_transformer"
);
fused_multi_transformer
->
SetInput
(
"CacheKV"
,
{
fill0
->
Name
(),
fill1
->
Name
()});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"fused_multi_transformer_cachekv_layout_trans_pass"
);
pass
->
Apply
(
graph
.
get
());
auto
fills
=
GetOpNodes
(
graph
,
"fill_constant"
);
auto
fill0_in_names
=
fills
[
0
]
->
Op
()
->
Input
(
"ShapeTensorList"
);
std
::
vector
<
std
::
string
>
expect_fill0_in_names
{
"shape0"
,
"shape3"
,
"shape1"
,
"shape2"
,
"shape4"
};
PADDLE_ENFORCE_EQ
(
fill0_in_names
,
expect_fill0_in_names
,
platform
::
errors
::
PreconditionNotMet
(
"fill_constant name should be updated."
));
auto
fill1_in_names
=
fills
[
1
]
->
Op
()
->
Input
(
"ShapeTensorList"
);
std
::
vector
<
std
::
string
>
expect_fill1_in_names
{
"shape5"
,
"shape8"
,
"shape6"
,
"shape7"
,
"shape9"
};
PADDLE_ENFORCE_EQ
(
fill1_in_names
,
expect_fill1_in_names
,
platform
::
errors
::
PreconditionNotMet
(
"fill_constant name should be updated."
));
}
TEST
(
GatherReshapePass
,
basic
)
{
Layers
layers
;
auto
*
gather0_x
=
layers
.
data
(
"gather0_x"
,
{
2
,
1
,
24
,
512
,
64
});
auto
*
gather0_index
=
layers
.
data
(
"gather0_index"
,
{
1
});
auto
*
gather0_out
=
layers
.
gather
(
gather0_x
,
gather0_index
,
1
);
gather0_out
->
SetShape
({
2
,
1
,
24
,
512
,
64
});
auto
*
gather1_x
=
layers
.
data
(
"gather1_x"
,
{
2
,
1
,
24
,
512
,
64
});
auto
*
gather1_index
=
layers
.
data
(
"gather1_index"
,
{
1
});
auto
*
gather1_out
=
layers
.
gather
(
gather1_x
,
gather1_index
,
1
);
gather1_out
->
SetShape
({
2
,
1
,
24
,
512
,
64
});
auto
*
block
=
layers
.
Block
();
OpDesc
*
fused_multi_transformer
=
block
->
AppendOp
();
fused_multi_transformer
->
SetType
(
"fused_multi_transformer"
);
fused_multi_transformer
->
SetInput
(
"CacheKV"
,
{
gather0_out
->
Name
(),
gather1_out
->
Name
()});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"fused_multi_transformer_cachekv_layout_trans_pass"
);
pass
->
Apply
(
graph
.
get
());
auto
gathers
=
GetOpNodes
(
graph
,
"gather"
);
for
(
auto
*
gather
:
gathers
)
{
PADDLE_ENFORCE_EQ
(
gather
->
Op
()
->
GetAttrIfExists
<
int
>
(
"axis"
),
2
,
platform
::
errors
::
PreconditionNotMet
(
"gather's axis attr should be updated to 2 by pass."
));
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
fused_multi_transformer_cachekv_layout_trans_pass
);
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
bfa5d6b8
...
...
@@ -519,6 +519,7 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"embedding_with_eltwise_add_xpu_fuse_pass"
,
"multi_encoder_xpu_fuse_pass"
,
"multi_encoder_xpu_slice_fuse_pass"
,
"fused_multi_transformer_cachekv_layout_trans_pass"
,
"one_beam_size_fuse_pass"
,
"delete_cast_op_pass"
,
"stack_fuse_pass"
,
...
...
paddle/phi/infermeta/fusion.cc
浏览文件 @
bfa5d6b8
...
...
@@ -291,31 +291,26 @@ void FusedMultiTransformerXpuInferMeta(
std
::
vector
<
MetaTensor
*>
cache_kv_out
)
{
auto
x_dim
=
x
.
dims
();
auto
y_dim
=
qkvw
[
0
]
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dim
.
size
(),
3
,
phi
::
errors
::
InvalidArgument
(
"The dimensions of x must be 3"
"(batch_size, seq_len, dim_embed),"
"but received dimensions of"
"Input is [%d]"
,
x_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
x_dim
.
size
(),
3
,
phi
::
errors
::
InvalidArgument
(
"The dimensions of x must be 3(batch_size, seq_len, "
"dim_embed), but received dimensions of Input is [%d]"
,
x_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
y_dim
.
size
(),
4
,
phi
::
errors
::
InvalidArgument
(
"The dimensions of qkv_weight must be 4"
"(3, num_head, dim_head, dim_embed),"
"but received dimensions of"
"Input is [%d]"
,
y_dim
.
size
()));
phi
::
errors
::
InvalidArgument
(
"The dimensions of qkv_weight must be 4(3, num_head, dim_head, "
"dim_embed), but received dimensions of qkv_weight is [%d]"
,
y_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
x_dim
[
2
],
trans_qkvw
?
y_dim
[
3
]
:
y_dim
[
0
],
phi
::
errors
::
InvalidArgument
(
"ShapeError: the dimension of x_dim[2] and y_dim[3](trans_qkvw is "
"true) or y_dim[0](trans_qkvw is false)"
"must be equal. But received: the shape "
"of input x = [%s], and the shape of "
"input qkv_weight = [%s]"
,
"The dimension of x_dim[2] and y_dim[3](trans_qkvw is true) or "
"y_dim[0](trans_qkvw is false) must be equal, but received: the "
"shape of input x = [%s], and the shape of input qkv_weight = [%s]"
,
x_dim
,
y_dim
));
if
(
cache_kv
.
size
()
>
0
)
{
...
...
@@ -330,27 +325,27 @@ void FusedMultiTransformerXpuInferMeta(
phi
::
errors
::
InvalidArgument
(
"The first dim of CacheKV must be 2, but got %d"
,
c_dim
[
0
]));
// 2
PADDLE_ENFORCE_EQ
(
c_dim
[
1
],
x_dim
[
0
],
phi
::
errors
::
InvalidArgument
(
"The second dim of CacheKV must be equal with
"
"
batch size %d, but got %d"
,
x_dim
[
0
],
c_dim
[
1
]));
// batch_size
PADDLE_ENFORCE_EQ
(
c_dim
[
2
],
trans_qkvw
?
y_dim
[
1
]
:
y_dim
[
2
],
phi
::
errors
::
InvalidArgument
(
"The third dim of CacheKV must be equal with num
"
"
head %d, but got %d"
,
trans_qkvw
?
y_dim
[
1
]
:
y_dim
[
2
],
c_dim
[
2
]));
// num_head
PADDLE_ENFORCE_EQ
(
c_dim
[
4
],
trans_qkvw
?
y_dim
[
2
]
:
y_dim
[
3
],
phi
::
errors
::
InvalidArgument
(
"The fifth dim of CacheKV must be equal with head
"
"
size %d, but got %d"
,
trans_qkvw
?
y_dim
[
2
]
:
y_dim
[
3
],
c_dim
[
4
]));
// head_size
PADDLE_ENFORCE_EQ
(
c_dim
[
2
],
x_dim
[
0
],
phi
::
errors
::
InvalidArgument
(
"The third dim of CacheKV must be equal
"
"with
batch size %d, but got %d"
,
x_dim
[
0
],
c_dim
[
2
]));
// batch_size
PADDLE_ENFORCE_EQ
(
c_dim
[
3
],
trans_qkvw
?
y_dim
[
1
]
:
y_dim
[
2
],
phi
::
errors
::
InvalidArgument
(
"The fourth dim of CacheKV must be equal
"
"with num
head %d, but got %d"
,
trans_qkvw
?
y_dim
[
1
]
:
y_dim
[
2
],
c_dim
[
3
]));
// num_head
PADDLE_ENFORCE_EQ
(
c_dim
[
4
],
trans_qkvw
?
y_dim
[
2
]
:
y_dim
[
3
],
phi
::
errors
::
InvalidArgument
(
"The fifth dim of CacheKV must be equal
"
"with head
size %d, but got %d"
,
trans_qkvw
?
y_dim
[
2
]
:
y_dim
[
3
],
c_dim
[
4
]));
// head_size
}
out
->
set_dims
(
x_dim
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录