Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b8f265d2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b8f265d2
编写于
7月 07, 2023
作者:
W
wz1qqx
提交者:
GitHub
7月 07, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] Eliminate small ops (#55193)
上级
0bcbfe83
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
466 addition
and
34 deletion
+466
-34
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+3
-1
paddle/fluid/framework/ir/xpu/reduce_ops_fuse_pass.cc
paddle/fluid/framework/ir/xpu/reduce_ops_fuse_pass.cc
+131
-7
paddle/fluid/framework/ir/xpu/reduce_ops_fuse_pass.h
paddle/fluid/framework/ir/xpu/reduce_ops_fuse_pass.h
+82
-0
paddle/fluid/framework/ir/xpu/redundant_onnx_ops_elimination_pass.cc
...d/framework/ir/xpu/redundant_onnx_ops_elimination_pass.cc
+209
-0
paddle/fluid/framework/ir/xpu/redundant_onnx_ops_elimination_pass.h
...id/framework/ir/xpu/redundant_onnx_ops_elimination_pass.h
+37
-23
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+2
-1
test/ir/inference/test_xpu_reduce_ops_fuse_pass.py
test/ir/inference/test_xpu_reduce_ops_fuse_pass.py
+2
-2
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
b8f265d2
...
...
@@ -238,6 +238,8 @@ if(WITH_XPU)
set
(
XPU_PASS_DEPS xpu_quant_utils xpu_pass_utils
)
pass_library
(
yolo_box_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
conv2d_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
redundant_onnx_ops_elimination_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
redundant_squeeze_unsqueeze_elimination_pass inference DIR xpu
DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
conv2d_transpose_xpu_fuse_pass inference DIR xpu DEPS
...
...
@@ -271,7 +273,7 @@ if(WITH_XPU)
${
XPU_PASS_DEPS
}
)
pass_library
(
fold_two_squeeze2_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
reduce_
max
_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
reduce_
ops
_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
matmul_weight_trans_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
reshape2_matmul_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
...
...
paddle/fluid/framework/ir/xpu/reduce_
max
_fuse_pass.cc
→
paddle/fluid/framework/ir/xpu/reduce_
ops
_fuse_pass.cc
浏览文件 @
b8f265d2
...
...
@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/reduce_
max
_fuse_pass.h"
#include "paddle/fluid/framework/ir/xpu/reduce_
ops
_fuse_pass.h"
#include <string>
#include "glog/logging.h"
...
...
@@ -137,9 +137,88 @@ ReduceMaxFusePattern::ReduceMaxFusePattern(PDPattern* pattern,
transpose2_2
->
LinksFrom
({
squeeze2_out
}).
LinksTo
({
transpose2_2_out
});
}
struct
ReduceMeanFusePattern
:
public
PatternBase
{
ReduceMeanFusePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
unsqueeze2
);
PATTERN_DECL_NODE
(
pool2d
);
PATTERN_DECL_NODE
(
squeeze2
);
// declare variable node's name
PATTERN_DECL_NODE
(
x
);
PATTERN_DECL_NODE
(
unsqueeze2_out
);
PATTERN_DECL_NODE
(
pool2d_out
);
PATTERN_DECL_NODE
(
squeeze2_out
);
};
ReduceMeanFusePattern
::
ReduceMeanFusePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
x
=
pattern
->
NewNode
(
x_repr
())
->
assert_is_op_input
(
"unsqueeze2"
,
"X"
)
->
assert_more
([](
Node
*
node
)
{
auto
x_shape
=
node
->
Var
()
->
GetShape
();
size_t
x_rank
=
x_shape
.
size
();
return
x_rank
==
3
;
});
auto
*
unsqueeze2
=
pattern
->
NewNode
(
unsqueeze2_repr
())
->
assert_is_op
(
"unsqueeze2"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
axes_array
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"axes"
);
return
axes_array
==
std
::
vector
<
int
>
{
2
};
});
auto
*
unsqueeze2_out
=
pattern
->
NewNode
(
unsqueeze2_out_repr
())
->
assert_is_op_output
(
"unsqueeze2"
,
"Out"
)
->
assert_is_op_input
(
"pool2d"
,
"X"
);
auto
*
pool2d
=
pattern
->
NewNode
(
pool2d_repr
())
->
assert_is_op
(
"pool2d"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
input_var
=
node
->
inputs
[
0
]
->
Var
();
auto
pool2d_x_shape
=
input_var
->
GetShape
();
std
::
vector
<
int
>
HW
=
{
static_cast
<
int
>
(
pool2d_x_shape
[
2
]),
static_cast
<
int
>
(
pool2d_x_shape
[
3
])};
auto
pool_type
=
op_desc
->
GetAttrIfExists
<
std
::
string
>
(
"pooling_type"
);
auto
ksize_array
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"ksize"
);
auto
strides_array
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"strides"
);
auto
paddings_array
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"paddings"
);
return
pool_type
==
"avg"
&&
ksize_array
==
HW
&&
strides_array
==
HW
&&
paddings_array
==
std
::
vector
<
int
>
{
0
,
0
};
});
auto
*
pool2d_out
=
pattern
->
NewNode
(
pool2d_out_repr
())
->
assert_is_op_output
(
"pool2d"
,
"Out"
)
->
assert_is_op_input
(
"squeeze2"
,
"X"
);
auto
*
squeeze2
=
pattern
->
NewNode
(
squeeze2_repr
())
->
assert_is_op
(
"squeeze2"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
axes_array
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"axes"
);
return
axes_array
==
std
::
vector
<
int
>
{
2
};
});
auto
*
squeeze2_out
=
pattern
->
NewNode
(
squeeze2_out_repr
())
->
assert_is_op_output
(
"squeeze2"
,
"Out"
)
->
assert_is_op_input
(
"transpose2"
,
"X"
);
unsqueeze2
->
LinksFrom
({
x
}).
LinksTo
({
unsqueeze2_out
});
pool2d
->
LinksFrom
({
unsqueeze2_out
}).
LinksTo
({
pool2d_out
});
squeeze2
->
LinksFrom
({
pool2d_out
}).
LinksTo
({
squeeze2_out
});
}
}
// namespace patterns
void
Reduce
Max
FusePass
::
FuseReduceMax
(
ir
::
Graph
*
graph
)
const
{
void
Reduce
Ops
FusePass
::
FuseReduceMax
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
ReduceMaxFusePattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
...
...
@@ -193,21 +272,66 @@ void ReduceMaxFusePass::FuseReduceMax(ir::Graph* graph) const {
AddStatis
(
found_subgraph_count
);
}
void
ReduceMaxFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
void
ReduceOpsFusePass
::
FuseReduceMean
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
ReduceMeanFusePattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle FuseReduceMean"
;
// declare operator node's name
GET_IR_NODE
(
unsqueeze2
);
GET_IR_NODE
(
pool2d
);
GET_IR_NODE
(
squeeze2
);
// declare variable node's name
GET_IR_NODE
(
x
);
GET_IR_NODE
(
unsqueeze2_out
);
GET_IR_NODE
(
pool2d_out
);
GET_IR_NODE
(
squeeze2_out
);
auto
*
block
=
pool2d
->
Op
()
->
Block
();
// Generate reduce_mean op
framework
::
OpDesc
reduce_op_desc
(
block
);
reduce_op_desc
.
SetType
(
"reduce_mean"
);
reduce_op_desc
.
SetInput
(
"X"
,
{
x
->
Name
()});
reduce_op_desc
.
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
-
2
});
reduce_op_desc
.
SetAttr
(
"reduce_all"
,
false
);
reduce_op_desc
.
SetAttr
(
"keep_dim"
,
true
);
reduce_op_desc
.
SetOutput
(
"Out"
,
{
squeeze2_out
->
Name
()});
auto
*
reduce_op
=
graph
->
CreateOpNode
(
&
reduce_op_desc
);
IR_NODE_LINK_TO
(
x
,
reduce_op
);
IR_NODE_LINK_TO
(
reduce_op
,
squeeze2_out
);
// delete useless node
std
::
unordered_set
<
const
Node
*>
delete_nodes
=
{
unsqueeze2
,
unsqueeze2_out
,
pool2d
,
pool2d_out
,
squeeze2
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
ReduceOpsFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
FuseReduceMax
(
graph
);
FuseReduceMean
(
graph
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
reduce_
max_fuse_pass
,
paddle
::
framework
::
ir
::
ReduceMax
FusePass
);
REGISTER_PASS
(
reduce_
ops_fuse_pass
,
paddle
::
framework
::
ir
::
ReduceOps
FusePass
);
REGISTER_PASS_CAPABILITY
(
reduce_
max
_fuse_pass
)
REGISTER_PASS_CAPABILITY
(
reduce_
ops
_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
EQ
(
"reduce_max"
,
0
));
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"reduce_max"
,
0
)
.
EQ
(
"reduce_mean"
,
0
));
paddle/fluid/framework/ir/xpu/reduce_ops_fuse_pass.h
0 → 100644
浏览文件 @
b8f265d2
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
ReduceOpsFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
/*
fuse series small ops to reduce_max op
For example:
graph:
x
|
transpose2
|
unsqueeze2
|
pool2d(pooling_type : max)
|
squeeze2
|
transpose2
|
------------------------------------------------------
After the pass is applied:
x
|
reduce_max
|
*/
void
FuseReduceMax
(
ir
::
Graph
*
graph
)
const
;
/*
Origin subgraph:
unsqueeze2
|
pool2d(avg)
|
squeeze2
Fused subgraph:
reduce_mean
*/
void
FuseReduceMean
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"reduce_ops_fuse_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/redundant_onnx_ops_elimination_pass.cc
0 → 100644
浏览文件 @
b8f265d2
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/redundant_onnx_ops_elimination_pass.h"
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
FoldConv1dSqueeze2Pattern
:
public
PatternBase
{
FoldConv1dSqueeze2Pattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
const
std
::
string
&
act_type
);
// declare operator node's name
PATTERN_DECL_NODE
(
squeeze2
);
PATTERN_DECL_NODE
(
bn
);
PATTERN_DECL_NODE
(
act
);
PATTERN_DECL_NODE
(
unsqueeze2
);
// declare variable node's name
PATTERN_DECL_NODE
(
x
);
PATTERN_DECL_NODE
(
squeeze2_out
);
PATTERN_DECL_NODE
(
bn_bias
);
PATTERN_DECL_NODE
(
bn_mean
);
PATTERN_DECL_NODE
(
bn_scale
);
PATTERN_DECL_NODE
(
bn_var
);
PATTERN_DECL_NODE
(
bn_out
);
PATTERN_DECL_NODE
(
bn_mean_out
);
PATTERN_DECL_NODE
(
bn_saved_mean
);
PATTERN_DECL_NODE
(
bn_saved_var
);
PATTERN_DECL_NODE
(
bn_var_out
);
PATTERN_DECL_NODE
(
act_out
);
PATTERN_DECL_NODE
(
unsqueeze2_out
);
private:
std
::
string
act_type_
;
};
FoldConv1dSqueeze2Pattern
::
FoldConv1dSqueeze2Pattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
const
std
::
string
&
act_type
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
),
act_type_
(
act_type
)
{
auto
*
x
=
pattern
->
NewNode
(
x_repr
())
->
assert_is_op_input
(
"squeeze2"
,
"X"
)
->
assert_more
([](
Node
*
node
)
{
auto
x_shape
=
node
->
Var
()
->
GetShape
();
size_t
x_rank
=
x_shape
.
size
();
return
x_rank
==
4
&&
x_shape
[
2
]
==
1
;
});
auto
*
squeeze2
=
pattern
->
NewNode
(
squeeze2_repr
())
->
assert_is_op
(
"squeeze2"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
axes_array
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"axes"
);
return
axes_array
==
std
::
vector
<
int
>
{
-
2
};
});
auto
*
squeeze2_out
=
pattern
->
NewNode
(
squeeze2_out_repr
())
->
assert_is_op_output
(
"squeeze2"
,
"Out"
)
->
assert_is_op_input
(
"batch_norm"
,
"X"
);
squeeze2
->
LinksFrom
({
x
}).
LinksTo
({
squeeze2_out
});
auto
*
bn_bias
=
pattern
->
NewNode
(
bn_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Bias"
)
->
assert_has_n_outputs
(
1
);
auto
*
bn_mean
=
pattern
->
NewNode
(
bn_mean_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Mean"
)
->
assert_has_n_outputs
(
1
);
auto
*
bn_scale
=
pattern
->
NewNode
(
bn_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Scale"
)
->
assert_has_n_outputs
(
1
);
auto
*
bn_var
=
pattern
->
NewNode
(
bn_var_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Variance"
)
->
assert_has_n_outputs
(
1
);
auto
*
bn
=
pattern
->
NewNode
(
bn_repr
())
->
assert_is_op
(
"batch_norm"
);
auto
*
bn_out
=
pattern
->
NewNode
(
bn_out_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"Y"
)
->
assert_is_op_input
(
act_type_
,
"X"
);
auto
*
bn_mean_out
=
pattern
->
NewNode
(
bn_mean_out_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"MeanOut"
);
auto
*
bn_saved_mean
=
pattern
->
NewNode
(
bn_saved_mean_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"SavedMean"
);
auto
*
bn_var_out
=
pattern
->
NewNode
(
bn_var_out_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"VarianceOut"
);
auto
*
bn_saved_var
=
pattern
->
NewNode
(
bn_saved_var_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"SavedVariance"
);
bn
->
LinksFrom
({
squeeze2_out
,
bn_bias
,
bn_mean
,
bn_scale
,
bn_var
})
.
LinksTo
({
bn_out
,
bn_mean_out
,
bn_var_out
,
bn_saved_mean
,
bn_saved_var
});
auto
act
=
pattern
->
NewNode
(
act_repr
())
->
assert_is_op
(
act_type_
);
auto
act_out
=
pattern
->
NewNode
(
act_out_repr
())
->
assert_is_op_output
(
act_type_
,
"Out"
)
->
assert_is_op_input
(
"unsqueeze2"
,
"X"
);
act
->
LinksFrom
({
bn_out
}).
LinksTo
({
act_out
});
auto
*
unsqueeze2
=
pattern
->
NewNode
(
unsqueeze2_repr
())
->
assert_is_op
(
"unsqueeze2"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
axes_array
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"axes"
);
return
axes_array
==
std
::
vector
<
int
>
{
-
2
}
||
axes_array
==
std
::
vector
<
int
>
{
2
};
});
auto
*
unsqueeze2_out
=
pattern
->
NewNode
(
unsqueeze2_out_repr
())
->
assert_is_op_output
(
"unsqueeze2"
,
"Out"
);
unsqueeze2
->
LinksFrom
({
act_out
}).
LinksTo
({
unsqueeze2_out
});
}
}
// namespace patterns
void
RedundantOnnxOpsEliminationPass
::
FoldConv1dSqueeze2Ops
(
ir
::
Graph
*
graph
,
const
std
::
string
&
act_type
)
const
{
GraphPatternDetector
gpd
;
patterns
::
FoldConv1dSqueeze2Pattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
,
act_type
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle FoldConv1dSqueeze2Ops"
;
// declare operator node's name
GET_IR_NODE
(
squeeze2
);
GET_IR_NODE
(
bn
);
GET_IR_NODE
(
act
);
GET_IR_NODE
(
unsqueeze2
);
// declare variable node's name
GET_IR_NODE
(
x
);
GET_IR_NODE
(
squeeze2_out
);
GET_IR_NODE
(
bn_out
);
GET_IR_NODE
(
act_out
);
GET_IR_NODE
(
unsqueeze2_out
);
auto
bn_op_desc
=
bn
->
Op
();
bn_op_desc
->
RenameInput
(
squeeze2_out
->
Var
()
->
Name
(),
x
->
Var
()
->
Name
());
bn_out
->
Var
()
->
SetShape
(
x
->
Var
()
->
GetShape
());
act_out
->
Var
()
->
SetShape
(
x
->
Var
()
->
GetShape
());
bn_op_desc
->
Flush
();
IR_NODE_LINK_TO
(
x
,
bn
);
// behind unsqueeze op node
auto
unsqueeze_out_link_nodes
=
unsqueeze2_out
->
outputs
;
for
(
auto
out_link_node
:
unsqueeze_out_link_nodes
)
{
auto
op_desc
=
out_link_node
->
Op
();
op_desc
->
RenameInput
(
unsqueeze2_out
->
Var
()
->
Name
(),
act_out
->
Var
()
->
Name
());
op_desc
->
Flush
();
IR_NODE_LINK_TO
(
act_out
,
out_link_node
);
}
// delete useless node
std
::
unordered_set
<
const
Node
*>
delete_nodes
=
{
squeeze2
,
squeeze2_out
,
unsqueeze2
,
unsqueeze2_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
RedundantOnnxOpsEliminationPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
for
(
auto
act_type
:
{
"leaky_relu"
,
"elu"
})
{
FoldConv1dSqueeze2Ops
(
graph
,
act_type
);
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
redundant_onnx_ops_elimination_pass
,
paddle
::
framework
::
ir
::
RedundantOnnxOpsEliminationPass
);
REGISTER_PASS_CAPABILITY
(
redundant_onnx_ops_elimination_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
EQ
(
"conv2d"
,
0
));
paddle/fluid/framework/ir/xpu/redu
ce_max_fuse
_pass.h
→
paddle/fluid/framework/ir/xpu/redu
ndant_onnx_ops_elimination
_pass.h
浏览文件 @
b8f265d2
...
...
@@ -30,38 +30,52 @@ class Scope;
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
fuse series small ops to reduce_max op
For example:
graph:
x
class
RedundantOnnxOpsEliminationPass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
/*
Origin subgraph:
x filter
| |
unsqueeze2(axes={-2}) unsqueeze2(axes={-2})
\ /
\ /
conv2d(conv1d)
|
transpose2
elementwise_add
|
unsqueeze2
squeeze2(axes={-2})
|
batch_norm
|
pool2d(pooling_type : max)
act
|
squeeze2
un
squeeze2
|
transpose2
conv2d(conv1d)
Fused subgraph:
x filter
| |
unsqueeze2(axes={-2}) unsqueeze2(axes={-2})
\ /
\ /
conv2d(conv1d)
|
------------------------------------------------------
After the pass is applied:
x
elementwise_add
|
reduce_max
batch_norm
|
*/
class
ReduceMaxFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
FuseReduceMax
(
ir
::
Graph
*
graph
)
const
;
act
|
conv2d(conv1d)
*/
void
FoldConv1dSqueeze2Ops
(
ir
::
Graph
*
graph
,
const
std
::
string
&
act_type
)
const
;
const
std
::
string
name_scope_
{
"redu
ce_max_fuse
_pass"
};
const
std
::
string
name_scope_
{
"redu
ndant_onnx_ops_elimination
_pass"
};
};
}
// namespace ir
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
b8f265d2
...
...
@@ -526,7 +526,8 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"one_beam_size_fuse_pass"
,
"fold_interp_outsize_fuse_pass"
,
"fold_two_squeeze2_fuse_pass"
,
"reduce_max_fuse_pass"
,
"redundant_onnx_ops_elimination_pass"
,
"reduce_ops_fuse_pass"
,
"delete_cast_op_pass"
,
"xpu_delete_cast_op_pass"
,
"stack_fuse_pass"
,
...
...
test/ir/inference/test_xpu_reduce_
max
_fuse_pass.py
→
test/ir/inference/test_xpu_reduce_
ops
_fuse_pass.py
浏览文件 @
b8f265d2
...
...
@@ -20,7 +20,7 @@ from auto_scan_test import PassAutoScanTest
from
program_config
import
OpConfig
,
ProgramConfig
,
TensorConfig
class
Test
Fc
FusePass
(
PassAutoScanTest
):
class
Test
ReduceMax
FusePass
(
PassAutoScanTest
):
def
sample_predictor_configs
(
self
,
program_config
):
config
=
self
.
create_inference_config
(
use_xpu
=
True
)
yield
config
,
[
"reduce_max"
],
(
1e-3
,
1e-3
)
...
...
@@ -101,7 +101,7 @@ class TestFcFusePass(PassAutoScanTest):
self
.
run_and_statis
(
quant
=
False
,
max_examples
=
25
,
passes
=
[
"reduce_
max
_fuse_pass"
],
passes
=
[
"reduce_
ops
_fuse_pass"
],
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录