Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
12c15b89
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
12c15b89
编写于
6月 30, 2023
作者:
M
mjp9527
提交者:
GitHub
6月 30, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] Add conv2d transpose fuse pass (#54904)
上级
25726b94
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
950 addition
and
0 deletion
+950
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+2
-0
paddle/fluid/framework/ir/auto_mixed_precision_pass.cc
paddle/fluid/framework/ir/auto_mixed_precision_pass.cc
+2
-0
paddle/fluid/framework/ir/xpu/conv2d_transpose_xpu_fuse_pass.cc
.../fluid/framework/ir/xpu/conv2d_transpose_xpu_fuse_pass.cc
+495
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+1
-0
paddle/phi/api/yaml/fused_ops.yaml
paddle/phi/api/yaml/fused_ops.yaml
+10
-0
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+2
-0
paddle/phi/infermeta/fusion.cc
paddle/phi/infermeta/fusion.cc
+168
-0
paddle/phi/infermeta/fusion.h
paddle/phi/infermeta/fusion.h
+18
-0
paddle/phi/kernels/fusion/xpu/conv_transpose_xpu_kernel.cc
paddle/phi/kernels/fusion/xpu/conv_transpose_xpu_kernel.cc
+109
-0
test/ir/inference/test_xpu_conv2d_transpose_fuse_pass.py
test/ir/inference/test_xpu_conv2d_transpose_fuse_pass.py
+143
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
12c15b89
...
...
@@ -240,6 +240,8 @@ if(WITH_XPU)
pass_library
(
conv2d_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
redundant_squeeze_unsqueeze_elimination_pass inference DIR xpu
DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
conv2d_transpose_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
embedding_with_eltwise_add_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
fc_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
...
...
paddle/fluid/framework/ir/auto_mixed_precision_pass.cc
浏览文件 @
12c15b89
...
...
@@ -188,8 +188,10 @@ void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
"c_softmax_with_cross_entropy"
,
"cross_entropy"
,
"cross_entropy2"
,
#ifndef PADDLE_WITH_XPU
// slower than fp32
"conv2d_transpose"
,
#endif
// default fp32 can avoid return inf when the sum value large than 65504
"reduce_sum"
,
});
...
...
paddle/fluid/framework/ir/xpu/conv2d_transpose_xpu_fuse_pass.cc
0 → 100644
浏览文件 @
12c15b89
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/ir/xpu/quant_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
Conv2dTransposeXPUPattern
:
public
PatternBase
{
Conv2dTransposeXPUPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
const
std
::
string
&
act_type
,
bool
with_ew_bias
,
bool
with_bn
);
// operator
PATTERN_DECL_NODE
(
conv
);
PATTERN_DECL_NODE
(
ew_bias_add
);
PATTERN_DECL_NODE
(
bn
);
PATTERN_DECL_NODE
(
act
);
// conv param
PATTERN_DECL_NODE
(
input
);
PATTERN_DECL_NODE
(
conv_filter
);
PATTERN_DECL_NODE
(
conv_out
);
// ew param
PATTERN_DECL_NODE
(
ew_bias_add_y
);
PATTERN_DECL_NODE
(
ew_bias_add_out
);
// bn param
PATTERN_DECL_NODE
(
bn_bias
);
PATTERN_DECL_NODE
(
bn_mean
);
PATTERN_DECL_NODE
(
bn_scale
);
PATTERN_DECL_NODE
(
bn_var
);
PATTERN_DECL_NODE
(
bn_out
);
PATTERN_DECL_NODE
(
bn_var_out
);
PATTERN_DECL_NODE
(
bn_mean_out
);
PATTERN_DECL_NODE
(
bn_saved_var
);
PATTERN_DECL_NODE
(
bn_saved_mean
);
// act param
PATTERN_DECL_NODE
(
act_out
);
private:
std
::
string
act_type_
;
bool
with_bn_
;
bool
with_ew_bias_
;
};
Conv2dTransposeXPUPattern
::
Conv2dTransposeXPUPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
const
std
::
string
&
act_type
,
bool
with_ew_bias
,
bool
with_bn
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
),
act_type_
(
act_type
),
with_bn_
(
with_bn
),
with_ew_bias_
(
with_ew_bias
)
{
// deconv op
auto
conv
=
pattern
->
NewNode
(
conv_repr
())
->
assert_is_op
(
"conv2d_transpose"
);
auto
input
=
pattern
->
NewNode
(
input_repr
())
->
assert_is_op_input
(
"conv2d_transpose"
,
"Input"
)
->
AsInput
()
->
assert_more
([](
Node
*
node
)
{
return
node
->
Var
()
->
GetShape
().
size
()
==
4
;
});
auto
conv_filter
=
pattern
->
NewNode
(
conv_filter_repr
())
->
assert_is_op_input
(
"conv2d_transpose"
,
"Filter"
)
->
AsInput
();
auto
conv_out
=
pattern
->
NewNode
(
conv_out_repr
())
->
assert_is_op_output
(
"conv2d_transpose"
,
"Output"
)
->
assert_has_n_outputs
(
1
);
conv
->
LinksFrom
({
input
,
conv_filter
}).
LinksTo
({
conv_out
});
// elementwise op
PDNode
*
ew_bias_add
=
nullptr
;
PDNode
*
ew_bias_add_y
=
nullptr
;
PDNode
*
ew_bias_add_out
=
nullptr
;
if
(
with_ew_bias_
)
{
conv_out
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
ew_bias_add_y
=
pattern
->
NewNode
(
ew_bias_add_y_repr
())
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
assert_is_persistable_var
()
->
assert_has_n_outputs
(
1
)
->
assert_more
([](
Node
*
node
)
{
return
node
->
Var
()
->
GetShape
().
size
()
==
1
;
});
ew_bias_add
=
pattern
->
NewNode
(
ew_bias_add_repr
())
->
assert_is_op
(
"elementwise_add"
);
ew_bias_add_out
=
pattern
->
NewNode
(
ew_bias_add_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
,
"Out"
);
if
(
with_bn_
||
!
act_type_
.
empty
())
{
ew_bias_add_out
->
assert_has_n_outputs
(
1
);
}
ew_bias_add
->
LinksFrom
({
conv_out
,
ew_bias_add_y
})
.
LinksTo
({
ew_bias_add_out
});
}
else
{
ew_bias_add_out
=
conv_out
;
}
// batch_norm op
PDNode
*
bn
=
nullptr
;
PDNode
*
bn_bias
=
nullptr
;
PDNode
*
bn_mean
=
nullptr
;
PDNode
*
bn_scale
=
nullptr
;
PDNode
*
bn_var
=
nullptr
;
PDNode
*
bn_out
=
nullptr
;
PDNode
*
bn_mean_out
=
nullptr
;
PDNode
*
bn_saved_mean
=
nullptr
;
PDNode
*
bn_var_out
=
nullptr
;
PDNode
*
bn_saved_var
=
nullptr
;
if
(
with_bn_
)
{
ew_bias_add_out
->
assert_is_op_input
(
"batch_norm"
,
"X"
);
bn_bias
=
pattern
->
NewNode
(
bn_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Bias"
)
->
assert_has_n_outputs
(
1
);
bn_mean
=
pattern
->
NewNode
(
bn_mean_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Mean"
)
->
assert_has_n_outputs
(
1
);
bn_scale
=
pattern
->
NewNode
(
bn_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Scale"
)
->
assert_has_n_outputs
(
1
);
bn_var
=
pattern
->
NewNode
(
bn_var_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Variance"
)
->
assert_has_n_outputs
(
1
);
bn
=
pattern
->
NewNode
(
bn_repr
())
->
assert_is_op
(
"batch_norm"
);
bn_out
=
pattern
->
NewNode
(
bn_out_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"Y"
);
if
(
!
act_type_
.
empty
())
{
bn_out
->
assert_has_n_outputs
(
1
);
}
bn_mean_out
=
pattern
->
NewNode
(
bn_mean_out_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"MeanOut"
);
bn_saved_mean
=
pattern
->
NewNode
(
bn_saved_mean_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"SavedMean"
);
bn_var_out
=
pattern
->
NewNode
(
bn_var_out_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"VarianceOut"
);
bn_saved_var
=
pattern
->
NewNode
(
bn_saved_var_repr
())
->
assert_is_op_output
(
"batch_norm"
,
"SavedVariance"
);
bn
->
LinksFrom
({
ew_bias_add_out
,
bn_bias
,
bn_mean
,
bn_scale
,
bn_var
})
.
LinksTo
(
{
bn_out
,
bn_mean_out
,
bn_var_out
,
bn_saved_mean
,
bn_saved_var
});
}
else
{
bn_out
=
ew_bias_add_out
;
}
// act
PDNode
*
act
=
nullptr
;
PDNode
*
act_out
=
nullptr
;
if
(
!
act_type_
.
empty
())
{
bn_out
->
assert_is_op_input
(
act_type_
,
"X"
);
act
=
pattern
->
NewNode
(
act_repr
())
->
assert_is_op
(
act_type_
);
act_out
=
pattern
->
NewNode
(
act_out_repr
())
->
assert_is_op_output
(
act_type_
,
"Out"
);
act
->
LinksFrom
({
bn_out
}).
LinksTo
({
act_out
});
}
else
{
act_out
=
bn_out
;
}
act_out
->
AsOutput
();
}
}
// namespace patterns
/* fuse conv2d block in resnet50-like model to xpu_conv2d op */
/* For example: */
/* graph[1]: sub block */
/* in_Input */
/* | */
/* | */
/* conv2d_transpose----in_Filter */
/* | */
/* | */
/* elementwise_add -----ew_add */
/* | */
/* | */
/* batch_norm ------in_Bias */
/* | */
/* | */
/* act */
/* | */
/* | */
/* out_Out */
/* */
class
Conv2dTransposeXPUFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
int
ApplyImpl
(
ir
::
Graph
*
graph
,
const
std
::
string
&
act_type
,
bool
with_ew_bias
,
bool
with_bn
)
const
;
const
std
::
string
name_scope_
{
"conv2d_transpose_xpu_fuse_pass"
};
};
void
Conv2dTransposeXPUFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
int
found_subgraph_count
=
0
;
for
(
auto
with_bn
:
{
true
,
false
})
{
for
(
auto
with_ew_bias
:
{
true
,
false
})
{
for
(
auto
act_type
:
{
"relu"
,
""
})
{
found_subgraph_count
+=
ApplyImpl
(
graph
,
act_type
,
with_ew_bias
,
with_bn
);
}
}
}
AddStatis
(
found_subgraph_count
);
}
int
Conv2dTransposeXPUFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
,
const
std
::
string
&
act_type
,
bool
with_ew_bias
,
bool
with_bn
)
const
{
GraphPatternDetector
gpd
;
patterns
::
Conv2dTransposeXPUPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
,
act_type
,
with_ew_bias
,
with_bn
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle Conv2dTransposeXPUFusePass fuse"
;
/* declare operator node's name */
GET_IR_NODE
(
conv
);
GET_IR_NODE
(
ew_bias_add
);
GET_IR_NODE
(
bn
);
GET_IR_NODE
(
act
);
/* declare variable node's name*/
GET_IR_NODE
(
input
);
GET_IR_NODE
(
conv_filter
);
GET_IR_NODE
(
conv_out
);
GET_IR_NODE
(
ew_bias_add_y
);
GET_IR_NODE
(
ew_bias_add_out
);
GET_IR_NODE
(
bn_bias
);
GET_IR_NODE
(
bn_mean
);
GET_IR_NODE
(
bn_scale
);
GET_IR_NODE
(
bn_var
);
GET_IR_NODE
(
bn_out
);
GET_IR_NODE
(
bn_var_out
);
GET_IR_NODE
(
bn_mean_out
);
GET_IR_NODE
(
bn_saved_var
);
GET_IR_NODE
(
bn_saved_mean
);
GET_IR_NODE
(
act_out
);
auto
*
block
=
conv
->
Op
()
->
Block
();
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE_NOT_NULL
(
scope
,
platform
::
errors
::
InvalidArgument
(
"Scope cannot be nullptr."
));
// recompute bias and weight for conv2d_transpose_xpu op
auto
*
filter_t
=
scope
->
FindVar
(
conv_filter
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
// conv_filter fp16 --> fp32
auto
tensor_type
=
filter_t
->
dtype
();
if
(
tensor_type
==
phi
::
DataType
::
FLOAT16
)
{
CastToFp32
(
filter_t
,
nullptr
);
}
auto
filter_dims
=
filter_t
->
dims
();
bool
has_bias
=
with_bn
||
with_ew_bias
;
Node
*
fusion_bias_node
=
nullptr
;
int
groups
=
PADDLE_GET_CONST
(
int
,
conv
->
Op
()
->
GetAttr
(
"groups"
));
int
out_c
=
filter_dims
[
1
]
*
groups
;
// ew bias
if
(
with_ew_bias
)
{
auto
*
ew_bias_add_y_t
=
scope
->
FindVar
(
ew_bias_add_y
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
ew_bias_add_y_dims
=
ew_bias_add_y_t
->
dims
();
PADDLE_ENFORCE_EQ
(
out_c
,
ew_bias_add_y_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"the shape[%d] of elewise bias tensor "
"must equal out_channel[%d] of conv"
,
ew_bias_add_y_dims
[
0
],
out_c
));
PrepareBias
(
graph
,
scope
,
block
,
ew_bias_add_y
,
&
fusion_bias_node
);
}
// bn
if
(
with_bn
)
{
auto
bn_bias_t
=
scope
->
Var
(
bn_bias
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
PADDLE_ENFORCE_EQ
(
out_c
,
bn_bias_t
->
dims
()[
0
],
platform
::
errors
::
InvalidArgument
(
"the shape[%d] of bn bias tensor "
"must equal out_channel[%d] of conv"
,
bn_bias_t
->
dims
()[
0
],
out_c
));
auto
bn_scale_t
=
scope
->
Var
(
bn_scale
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
bn_mean_t
=
scope
->
Var
(
bn_mean
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
bn_var_t
=
scope
->
Var
(
bn_var
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
float
*
filter_ptr
=
filter_t
->
data
<
float
>
();
float
*
bn_scale_ptr
=
bn_scale_t
->
data
<
float
>
();
float
*
bn_bias_ptr
=
bn_bias_t
->
data
<
float
>
();
float
*
bn_mean_ptr
=
bn_mean_t
->
data
<
float
>
();
float
*
bn_var_ptr
=
bn_var_t
->
data
<
float
>
();
auto
mean_len
=
bn_mean_t
->
numel
();
// oc
float
epsilon
=
PADDLE_GET_CONST
(
float
,
bn
->
Op
()
->
GetAttr
(
"epsilon"
));
// bias
if
(
fusion_bias_node
)
{
auto
fusion_bias_t
=
scope
->
Var
(
fusion_bias_node
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
float
*
fusion_bias_ptr
=
fusion_bias_t
->
data
<
float
>
();
for
(
int
i
=
0
;
i
<
mean_len
;
++
i
)
{
bn_scale_ptr
[
i
]
=
bn_scale_ptr
[
i
]
/
sqrtf
(
bn_var_ptr
[
i
]
+
epsilon
);
fusion_bias_ptr
[
i
]
=
bn_bias_ptr
[
i
]
+
(
fusion_bias_ptr
[
i
]
-
bn_mean_ptr
[
i
])
*
bn_scale_ptr
[
i
];
}
}
else
{
PrepareBias
(
graph
,
scope
,
block
,
bn_bias
,
&
fusion_bias_node
);
auto
fusion_bias_t
=
scope
->
Var
(
fusion_bias_node
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
float
*
fusion_bias_ptr
=
fusion_bias_t
->
data
<
float
>
();
for
(
int
i
=
0
;
i
<
mean_len
;
++
i
)
{
bn_scale_ptr
[
i
]
=
bn_scale_ptr
[
i
]
/
sqrtf
(
bn_var_ptr
[
i
]
+
epsilon
);
fusion_bias_ptr
[
i
]
+=
(
0.0
f
-
bn_mean_ptr
[
i
])
*
bn_scale_ptr
[
i
];
}
}
// compute new conv_weight, weight is ic-oc/g-h-w
int
cout_group
=
filter_dims
[
1
];
int
cin_group
=
filter_dims
[
0
]
/
groups
;
int
c_size
=
cout_group
*
filter_dims
[
2
]
*
filter_dims
[
3
];
int
hw
=
filter_dims
[
2
]
*
filter_dims
[
3
];
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
for
(
int
k
=
0
;
k
<
cin_group
;
++
k
)
{
for
(
int
i
=
0
;
i
<
cout_group
;
++
i
)
{
auto
ptr_row
=
filter_ptr
+
g
*
cin_group
*
c_size
+
k
*
c_size
+
i
*
hw
;
for
(
int
j
=
0
;
j
<
hw
;
++
j
)
{
ptr_row
[
j
]
*=
bn_scale_ptr
[
g
*
cout_group
+
i
];
}
}
}
}
}
// filter max
Node
*
filter_int16
=
nullptr
;
Node
*
filter_max
=
nullptr
;
PrepareWeight
<
int16_t
>
(
graph
,
scope
,
block
,
conv_filter
,
&
filter_int16
,
&
filter_max
,
false
);
// output && output max
std
::
string
conv2d_xpu_out_name
;
if
(
!
act_type
.
empty
())
{
conv2d_xpu_out_name
=
act_out
->
Name
();
}
else
if
(
with_bn
)
{
conv2d_xpu_out_name
=
bn_out
->
Name
();
}
else
if
(
with_ew_bias
)
{
conv2d_xpu_out_name
=
ew_bias_add_out
->
Name
();
}
else
{
conv2d_xpu_out_name
=
conv_out
->
Name
();
}
std
::
string
conv_out_max_name
=
conv2d_xpu_out_name
+
"_max"
;
VarDesc
conv_out_max_desc
(
conv_out_max_name
);
Node
*
conv2d_xpu_out_max
=
graph
->
CreateVarNode
(
&
conv_out_max_desc
);
// Generate conv2d_xpu op
framework
::
OpDesc
conv2d_xpu_op_desc
(
block
);
// set input&output var
conv2d_xpu_op_desc
.
SetType
(
"conv2d_transpose_xpu"
);
conv2d_xpu_op_desc
.
SetInput
(
"x"
,
{
input
->
Name
()});
conv2d_xpu_op_desc
.
SetInput
(
"filter"
,
{
filter_int16
->
Name
()});
conv2d_xpu_op_desc
.
SetInput
(
"filter_max"
,
{
filter_max
->
Name
()});
conv2d_xpu_op_desc
.
SetOutput
(
"out"
,
{
conv2d_xpu_out_name
});
conv2d_xpu_op_desc
.
SetOutput
(
"out_max"
,
{
conv_out_max_name
});
// set fusion_bias input node
if
(
has_bias
)
{
conv2d_xpu_op_desc
.
SetInput
(
"bias"
,
{
fusion_bias_node
->
Name
()});
}
conv2d_xpu_op_desc
.
SetAttr
(
"has_bias"
,
has_bias
);
// set attrs of conv2d_xpu
if
(
!
act_type
.
empty
())
{
conv2d_xpu_op_desc
.
SetAttr
(
"with_act"
,
true
);
}
else
{
conv2d_xpu_op_desc
.
SetAttr
(
"with_act"
,
false
);
}
conv2d_xpu_op_desc
.
SetAttr
(
"act_type"
,
act_type
);
conv2d_xpu_op_desc
.
SetAttr
(
"padding_algorithm"
,
conv
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"padding_algorithm"
));
conv2d_xpu_op_desc
.
SetAttr
(
"output_size"
,
conv
->
Op
()
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"output_size"
));
conv2d_xpu_op_desc
.
SetAttr
(
"output_padding"
,
conv
->
Op
()
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"output_padding"
));
conv2d_xpu_op_desc
.
SetAttr
(
"dilations"
,
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
conv
->
Op
()
->
GetAttr
(
"dilations"
)));
conv2d_xpu_op_desc
.
SetAttr
(
"paddings"
,
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
conv
->
Op
()
->
GetAttr
(
"paddings"
)));
conv2d_xpu_op_desc
.
SetAttr
(
"groups"
,
PADDLE_GET_CONST
(
int
,
conv
->
Op
()
->
GetAttr
(
"groups"
)));
conv2d_xpu_op_desc
.
SetAttr
(
"strides"
,
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
conv
->
Op
()
->
GetAttr
(
"strides"
)));
conv2d_xpu_op_desc
.
SetAttr
(
"data_format"
,
conv
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"data_format"
));
auto
*
conv2d_xpu
=
graph
->
CreateOpNode
(
&
conv2d_xpu_op_desc
);
IR_NODE_LINK_TO
(
input
,
conv2d_xpu
);
IR_NODE_LINK_TO
(
filter_int16
,
conv2d_xpu
);
IR_NODE_LINK_TO
(
filter_max
,
conv2d_xpu
);
if
(
has_bias
)
{
SAFE_IR_NODE_LINK_TO
(
fusion_bias_node
,
conv2d_xpu
);
}
if
(
act_out
)
{
IR_NODE_LINK_TO
(
conv2d_xpu
,
act_out
);
}
else
if
(
bn_out
)
{
IR_NODE_LINK_TO
(
conv2d_xpu
,
bn_out
);
}
else
if
(
ew_bias_add_out
)
{
IR_NODE_LINK_TO
(
conv2d_xpu
,
ew_bias_add_out
);
}
else
{
IR_NODE_LINK_TO
(
conv2d_xpu
,
conv_out
);
}
IR_NODE_LINK_TO
(
conv2d_xpu
,
conv2d_xpu_out_max
);
// delete useless node
std
::
unordered_set
<
const
Node
*>
delete_nodes
=
{
conv
};
if
(
act
!=
nullptr
)
{
delete_nodes
.
insert
(
act
);
}
if
(
bn
!=
nullptr
)
{
delete_nodes
.
insert
(
bn
);
delete_nodes
.
insert
(
bn_bias
);
delete_nodes
.
insert
(
bn_var
);
delete_nodes
.
insert
(
bn_mean
);
delete_nodes
.
insert
(
bn_scale
);
delete_nodes
.
insert
(
bn_var_out
);
delete_nodes
.
insert
(
bn_mean_out
);
delete_nodes
.
insert
(
bn_saved_var
);
delete_nodes
.
insert
(
bn_saved_mean
);
}
if
(
ew_bias_add
)
{
delete_nodes
.
insert
(
ew_bias_add
);
delete_nodes
.
insert
(
ew_bias_add_y
);
}
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
return
found_subgraph_count
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv2d_transpose_xpu_fuse_pass
,
paddle
::
framework
::
ir
::
Conv2dTransposeXPUFusePass
);
REGISTER_PASS_CAPABILITY
(
conv2d_transpose_xpu_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
EQ
(
"conv2d_transpose_xpu"
,
0
));
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
12c15b89
...
...
@@ -540,6 +540,7 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"redundant_squeeze_unsqueeze_elimination_pass"
,
"fc_xpu_fuse_pass"
,
"conv2d_xpu_fuse_pass"
,
"conv2d_transpose_xpu_fuse_pass"
,
"add_activation_xpu_fuse_pass"
,
"yolo_box_xpu_fuse_pass"
,
"link_xpu_op_max_pass"
,
...
...
paddle/phi/api/yaml/fused_ops.yaml
浏览文件 @
12c15b89
...
...
@@ -14,6 +14,16 @@
data_type
:
x
optional
:
x_max, y_max
-
op
:
conv2d_transpose_xpu
args
:
(Tensor x, Tensor x_max, Tensor filter, Tensor filter_max, Tensor bias, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format, bool has_bias, bool with_act, str act_type)
output
:
Tensor(out), Tensor(out_max)
infer_meta
:
func
:
Conv2dTransposeXPUInferMeta
kernel
:
func
:
conv2d_transpose_xpu
data_type
:
x
optional
:
bias, x_max
-
op
:
conv2d_xpu
args
:
(Tensor x, Tensor x_max, Tensor filter, Tensor filter_max, Tensor bias, Tensor branch, Tensor branch_max, int[] paddings, int[] dilations, int[] strides, str padding_algorithm, int groups, bool has_bias, bool has_branch, int act_type, float act_param)
output
:
Tensor(out), Tensor(out_max)
...
...
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
12c15b89
...
...
@@ -171,6 +171,8 @@ XPUOpMap& get_kl2_ops() {
{
"conv2d_transpose_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"conv2d_transpose"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"conv2d_transpose_xpu"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"cumsum"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
,
...
...
paddle/phi/infermeta/fusion.cc
浏览文件 @
12c15b89
...
...
@@ -518,4 +518,172 @@ void YoloBoxXPUInferMeta(const MetaTensor& x,
out_max
->
set_layout
(
x
.
layout
());
}
void
ConvTransposeXPUInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
filter
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
output_padding
,
const
std
::
vector
<
int
>&
output_size
,
const
std
::
string
&
padding_algorithm
,
int
groups
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
,
MetaTensor
*
out_max
)
{
auto
x_dims
=
x
.
dims
();
auto
filter_dims
=
filter
.
dims
();
std
::
vector
<
int
>
paddings_
=
paddings
;
std
::
vector
<
int
>
dilations_
=
dilations
;
PADDLE_ENFORCE_EQ
(
x_dims
.
size
()
==
4
,
true
,
errors
::
InvalidArgument
(
"Input of Op(conv_transpose) should be 4-D "
"Tensor. But received: %u-D Tensor, "
"the shape of input is [%s]"
,
x_dims
.
size
(),
x_dims
));
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
filter_dims
.
size
(),
errors
::
InvalidArgument
(
"The input's dimension size and filter's dimension size of "
"Op (conv_transpose) should be equal. But received: the shape of "
"input is [%s], the dimension size of input is [%d], the shape "
"of filter is [%s], the dimension size of filter is [%d]. "
,
x_dims
,
x_dims
.
size
(),
filter_dims
,
filter_dims
.
size
()));
int
stride_size
=
strides
.
size
();
for
(
int
i
=
0
;
i
<
stride_size
;
++
i
)
{
PADDLE_ENFORCE_GT
(
strides
[
i
],
0
,
errors
::
InvalidArgument
(
"The stride of Op(Conv) should be larget than 0, but received "
"stride is %d."
,
strides
[
i
]));
}
int
in_sub_stride_size
=
x_dims
.
size
()
-
stride_size
;
PADDLE_ENFORCE_EQ
(
x_dims
.
size
()
-
strides
.
size
(),
2U
,
errors
::
InvalidArgument
(
"The input's dimension size minus Attr(stride)'s size must "
"be euqal to 2 for Op(conv_transpose). But received: [%d], the "
"input's dimension size is [%d], the shape of input "
"is [%s], the Attr(stride)'s size is [%d]."
,
in_sub_stride_size
,
x_dims
.
size
(),
x_dims
,
strides
.
size
()));
if
(
output_size
.
size
())
PADDLE_ENFORCE_EQ
(
output_size
.
size
(),
strides
.
size
(),
errors
::
InvalidArgument
(
"The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
"should be the same."
));
if
(
output_padding
.
size
())
PADDLE_ENFORCE_EQ
(
output_padding
.
size
(),
strides
.
size
(),
errors
::
InvalidArgument
(
"The Attr(output_padding) and Attr(stride) of Op(conv_transpose) "
"should be the same."
));
const
int64_t
C
=
(
data_format
!=
"NHWC"
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
PADDLE_ENFORCE_EQ
(
C
,
filter_dims
[
0
],
errors
::
InvalidArgument
(
"The number of input channels should be equal to filter channels "
"for Op(conv_transpose). But received: the input's channels is "
"[%d], the shape of input is [%s], the filter's channels is [%d], "
"the shape of filter is [%s]. The data_format is %s."
"The error may come from wrong data_format setting."
,
C
,
x_dims
,
filter_dims
[
0
],
filter_dims
,
data_format
));
DDim
x_data_dims
;
if
(
data_format
!=
"NHWC"
)
{
x_data_dims
=
slice_ddim
(
x_dims
,
2
,
x_dims
.
size
());
}
else
{
x_data_dims
=
slice_ddim
(
x_dims
,
1
,
x_dims
.
size
()
-
1
);
}
DDim
filter_data_dims
=
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
std
::
vector
<
int
>
ksize
=
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings_
,
&
dilations_
,
padding_algorithm
,
x_data_dims
,
strides
,
ksize
);
std
::
vector
<
int64_t
>
output_shape
({
x_dims
[
0
]});
if
(
data_format
!=
"NHWC"
)
{
output_shape
.
push_back
(
filter_dims
[
1
]
*
groups
);
}
const
int
offset
=
(
data_format
!=
"NHWC"
?
2
:
1
);
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
auto
filter_extent
=
dilations_
[
i
]
*
(
filter_dims
[
i
+
2
]
-
1
)
+
1
;
auto
infer_shape
=
(
x_dims
[
i
+
offset
]
>
0
)
?
(
x_dims
[
i
+
offset
]
-
1
)
*
strides
[
i
]
-
paddings_
[
2
*
i
]
-
paddings_
[
2
*
i
+
1
]
+
filter_extent
:
-
1
;
if
(
output_size
.
size
())
{
output_shape
.
push_back
(
output_size
[
i
]);
}
else
if
(
output_padding
.
size
())
{
output_shape
.
push_back
((
infer_shape
+
output_padding
[
i
]));
}
else
{
output_shape
.
push_back
(
infer_shape
);
}
}
if
(
data_format
==
"NHWC"
)
{
output_shape
.
push_back
(
filter_dims
[
1
]
*
groups
);
}
out
->
set_dims
(
make_ddim
(
output_shape
));
out
->
set_dtype
(
x
.
dtype
());
out_max
->
set_dims
(
phi
::
make_ddim
({
6
}));
}
void
Conv2dTransposeXPUInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
x_max
,
const
MetaTensor
&
filter
,
const
MetaTensor
&
filter_max
,
const
MetaTensor
&
bias
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
output_padding
,
const
IntArray
&
output_size
,
const
std
::
string
&
padding_algorithm
,
int
groups
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
string
&
data_format
,
bool
has_bias
,
bool
with_act
,
const
std
::
string
&
act_type
,
MetaTensor
*
out
,
MetaTensor
*
out_max
)
{
std
::
vector
<
int32_t
>
vec_output_size
(
output_size
.
GetData
().
begin
(),
output_size
.
GetData
().
end
());
ConvTransposeXPUInferMeta
(
x
,
filter
,
strides
,
paddings
,
output_padding
,
vec_output_size
,
padding_algorithm
,
groups
,
dilations
,
data_format
,
out
,
out_max
);
}
}
// namespace phi
paddle/phi/infermeta/fusion.h
浏览文件 @
12c15b89
...
...
@@ -145,4 +145,22 @@ void YoloBoxXPUInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaTensor
*
out_max
);
void
Conv2dTransposeXPUInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
x_max
,
const
MetaTensor
&
filter
,
const
MetaTensor
&
filter_max
,
const
MetaTensor
&
bias
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
output_padding
,
const
IntArray
&
output_size
,
const
std
::
string
&
padding_algorithm
,
int
groups
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
string
&
data_format
,
bool
has_bias
,
bool
with_act
,
const
std
::
string
&
act_type
,
MetaTensor
*
out
,
MetaTensor
*
out_max
);
}
// namespace phi
paddle/phi/kernels/fusion/xpu/conv_transpose_xpu_kernel.cc
0 → 100644
浏览文件 @
12c15b89
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/xpu/xpu_api_wrapper.h"
namespace
phi
{
namespace
fusion
{
template
<
typename
T
,
typename
Context
>
void
Conv2dTransposeXPUKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
DenseTensor
>&
x_max
,
const
DenseTensor
&
filter
,
const
DenseTensor
&
filter_max
,
const
paddle
::
optional
<
DenseTensor
>&
bias
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
output_padding
,
const
IntArray
&
output_size
,
const
std
::
string
&
padding_algorithm
,
int
groups
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
string
&
data_format
,
bool
has_bias
,
bool
with_act
,
const
std
::
string
&
act_type
,
DenseTensor
*
out
,
DenseTensor
*
out_max
)
{
using
XPUT
=
typename
XPUTypeTrait
<
T
>::
Type
;
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
DenseTensor
filter_
=
filter
;
ctx
.
template
Alloc
<
T
>(
out
);
ctx
.
template
Alloc
<
float
>(
out_max
);
bool
is_nchw
;
is_nchw
=
(
data_format
==
"NHWC"
)
?
false
:
true
;
DDim
in_data_dims
=
slice_ddim
(
x
.
dims
(),
2
,
x
.
dims
().
size
());
// hw
DDim
filter_data_dims
=
slice_ddim
(
filter_
.
dims
(),
2
,
filter_
.
dims
().
size
());
std
::
vector
<
int
>
ksize
=
vectorize
<
int
>
(
filter_data_dims
);
std
::
vector
<
int
>
paddings_
=
paddings
;
std
::
vector
<
int
>
dilations_
=
dilations
;
UpdatePaddingAndDilation
(
&
paddings_
,
&
dilations_
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
const
int
batch_size
=
static_cast
<
int
>
(
x
.
dims
()[
0
]);
const
int
img_yc
=
static_cast
<
int
>
(
x
.
dims
()[
1
]);
const
int
img_xc
=
static_cast
<
int
>
(
out
->
dims
()[
1
]);
const
int
img_xh
=
static_cast
<
int
>
(
out
->
dims
()[
2
]);
const
int
img_xw
=
static_cast
<
int
>
(
out
->
dims
()[
3
]);
auto
act
=
xpu
::
Activation_t
::
LINEAR
;
if
(
with_act
)
{
if
(
act_type
==
"relu"
)
{
act
=
xpu
::
Activation_t
::
RELU
;
}
}
auto
bias_data
=
bias
.
get_ptr
()
==
nullptr
?
nullptr
:
bias
.
get_ptr
()
->
data
<
float
>
();
auto
x_max_data
=
x_max
.
get_ptr
()
==
nullptr
?
nullptr
:
x_max
.
get_ptr
()
->
data
<
float
>
();
auto
filter_max_data
=
filter_max
.
data
<
float
>
();
int
r
=
xpu
::
conv2d_transpose_fusion_v2
<
XPUT
,
int16_t
,
XPUT
,
int16_t
>
(
ctx
.
x_context
(),
reinterpret_cast
<
const
XPUT
*>
(
x
.
data
<
T
>
()),
filter_
.
data
<
int16_t
>
(),
reinterpret_cast
<
XPUT
*>
(
out
->
data
<
T
>
()),
batch_size
,
img_yc
,
img_xh
,
img_xw
,
img_xc
,
ksize
,
strides
,
paddings_
,
dilations_
,
groups
,
x_max_data
,
filter_max_data
,
out_max
->
data
<
float
>
(),
bias_data
,
act
,
is_nchw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_transpose_fusion_v2"
);
}
}
// namespace fusion
}
// namespace phi
PD_REGISTER_KERNEL
(
conv2d_transpose_xpu
,
XPU
,
ALL_LAYOUT
,
phi
::
fusion
::
Conv2dTransposeXPUKernel
,
float
,
phi
::
dtype
::
float16
)
{}
test/ir/inference/test_xpu_conv2d_transpose_fuse_pass.py
0 → 100644
浏览文件 @
12c15b89
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
import
hypothesis.strategies
as
st
import
numpy
as
np
from
auto_scan_test
import
PassAutoScanTest
from
program_config
import
OpConfig
,
ProgramConfig
,
TensorConfig
class
TestConvTransposeXPUFusePass
(
PassAutoScanTest
):
def
sample_predictor_configs
(
self
,
program_config
):
config
=
self
.
create_inference_config
(
use_xpu
=
True
)
yield
config
,
[
"conv2d_transpose_xpu"
],
(
3e-3
,
3e-3
)
def
sample_program_config
(
self
,
draw
):
x_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
4
,
max_value
=
16
),
min_size
=
4
,
max_size
=
4
)
)
oc
=
draw
(
st
.
integers
(
min_value
=
2
,
max_value
=
16
))
weight_shape
=
[
x_shape
[
1
],
oc
,
4
,
4
]
y_shape
=
[
oc
]
has_bn
=
draw
(
st
.
booleans
())
has_add
=
draw
(
st
.
booleans
())
has_relu
=
draw
(
st
.
booleans
())
def
generate_data
(
shape
):
return
0.1
*
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
deconv_op
=
OpConfig
(
"conv2d_transpose"
,
inputs
=
{
"Input"
:
[
"input_x"
],
"Filter"
:
[
"weight_x"
]},
outputs
=
{
"Output"
:
[
"output_x"
]},
data_format
=
"NCHW"
,
dilations
=
[
1
,
1
],
groups
=
1
,
paddings
=
[
0
,
0
],
padding_algorithm
=
"EXPLICIT"
,
strides
=
[
4
,
4
],
fuse_relu
=
False
,
)
input_name_op
=
"output_x"
ops
=
[
deconv_op
]
if
has_add
:
add_op
=
OpConfig
(
"elementwise_add"
,
inputs
=
{
"X"
:
[
input_name_op
],
"Y"
:
[
"bias"
]},
outputs
=
{
"Out"
:
[
"add_out"
]},
axis
=
1
,
)
input_name_op
=
"add_out"
ops
.
append
(
add_op
)
if
has_bn
:
bn_op
=
OpConfig
(
"batch_norm"
,
inputs
=
{
"X"
:
[
input_name_op
],
"Bias"
:
[
"bn_bias"
],
"Mean"
:
[
"bn_mean"
],
"Scale"
:
[
"bn_scale"
],
"Variance"
:
[
"bn_var"
],
},
outputs
=
{
"Y"
:
[
"bn_y"
],
"MeanOut"
:
[
"bn_mean"
],
"SavedMean"
:
[
"bn_mean_save"
],
"SavedVariance"
:
[
"bn_save_var"
],
"VarianceOut"
:
[
"bn_var"
],
},
data_layout
=
"NCHW"
,
epsilon
=
0.000009999999747378752
,
momentum
=
0.89999
,
is_test
=
True
,
use_global_stats
=
True
,
)
input_name_op
=
"bn_y"
ops
.
append
(
bn_op
)
if
has_relu
:
relu_op
=
OpConfig
(
"relu"
,
inputs
=
{
"X"
:
[
input_name_op
]},
outputs
=
{
"Out"
:
[
"relu_out"
]},
)
input_name_op
=
"relu_out"
ops
.
append
(
relu_op
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"weight_x"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
weight_shape
)
),
"bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
y_shape
)),
"bn_bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
y_shape
)
),
"bn_mean"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
y_shape
)
),
"bn_scale"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
y_shape
)
),
"bn_var"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
y_shape
)
),
},
inputs
=
{
"input_x"
:
TensorConfig
(
data_gen
=
partial
(
generate_data
,
x_shape
)
),
},
outputs
=
[
input_name_op
],
)
return
program_config
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
max_examples
=
100
,
passes
=
[
"conv2d_transpose_xpu_fuse_pass"
],
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录