Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cc4f5d05
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cc4f5d05
编写于
6月 19, 2023
作者:
W
wz1qqx
提交者:
GitHub
6月 19, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU]Add shape+matmul relative pass (#54574)
上级
36a5ff50
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
969 addition
and
19 deletion
+969
-19
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+17
-0
paddle/fluid/framework/ir/gpu_cpu_map_matmul_to_mul_pass.cc
paddle/fluid/framework/ir/gpu_cpu_map_matmul_to_mul_pass.cc
+0
-0
paddle/fluid/framework/ir/pass_tester_helper.h
paddle/fluid/framework/ir/pass_tester_helper.h
+27
-0
paddle/fluid/framework/ir/xpu/fold_interp_outsize_fuse_pass.cc
...e/fluid/framework/ir/xpu/fold_interp_outsize_fuse_pass.cc
+9
-17
paddle/fluid/framework/ir/xpu/fold_interp_outsize_fuse_pass.h
...le/fluid/framework/ir/xpu/fold_interp_outsize_fuse_pass.h
+1
-1
paddle/fluid/framework/ir/xpu/fold_interp_outsize_fuse_pass_test.cc
...id/framework/ir/xpu/fold_interp_outsize_fuse_pass_test.cc
+1
-1
paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass.cc
paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass.cc
+141
-0
paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass.h
paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass.h
+60
-0
paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass_test.cc
...luid/framework/ir/xpu/fold_two_squeeze2_fuse_pass_test.cc
+45
-0
paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass.cc
paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass.cc
+141
-0
paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass.h
paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass.h
+60
-0
paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass_test.cc
...e/fluid/framework/ir/xpu/matmul_weight_trans_pass_test.cc
+56
-0
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.cc
...e/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.cc
+274
-0
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.h
...le/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.h
+54
-0
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass_test.cc
...id/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass_test.cc
+79
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+4
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
cc4f5d05
...
...
@@ -260,6 +260,11 @@ if(WITH_XPU)
${
XPU_PASS_DEPS
}
)
pass_library
(
fold_interp_outsize_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
fold_two_squeeze2_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
matmul_weight_trans_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
reshape2_matmul_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
endif
()
cc_library
(
...
...
@@ -547,4 +552,16 @@ if(WITH_XPU)
test_fold_interp_outsize_fuse_pass
SRCS xpu/fold_interp_outsize_fuse_pass_test.cc
DEPS fold_interp_outsize_fuse_pass
)
cc_test
(
test_fold_two_squeeze2_fuse_pass
SRCS xpu/fold_two_squeeze2_fuse_pass_test.cc
DEPS fold_two_squeeze2_fuse_pass
)
cc_test
(
test_matmul_weight_trans_pass
SRCS xpu/matmul_weight_trans_pass_test.cc
DEPS matmul_weight_trans_pass
)
cc_test
(
test_reshape2_matmul_xpu_fuse_pass
SRCS xpu/reshape2_matmul_xpu_fuse_pass_test.cc
DEPS reshape2_matmul_xpu_fuse_pass
)
endif
()
paddle/fluid/framework/ir/gpu_cpu_map_matmul_to_mul_pass.cc
100755 → 100644
浏览文件 @
cc4f5d05
文件模式从 100755 更改为 100644
paddle/fluid/framework/ir/pass_tester_helper.h
浏览文件 @
cc4f5d05
...
...
@@ -134,6 +134,22 @@ struct Layers {
return
out
;
}
VarDesc
*
squeeze2
(
VarDesc
*
x
,
const
std
::
vector
<
int
>
axes
=
{
-
1
},
bool
with_xshape
=
false
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"squeeze2"
);
op
->
SetInput
(
"X"
,
{
x
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
op
->
SetAttr
(
"axes"
,
axes
);
if
(
with_xshape
)
{
VarDesc
*
xshape
=
lod_tensor
(
unique_name
());
op
->
SetOutput
(
"XShape"
,
{
xshape
->
Name
()});
}
return
out
;
}
VarDesc
*
unsqueeze2
(
VarDesc
*
x
,
const
std
::
vector
<
int
>
axes
=
{
-
1
})
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
...
...
@@ -420,6 +436,17 @@ struct Layers {
return
out
;
}
VarDesc
*
clip
(
VarDesc
*
x
,
VarDesc
*
min
,
VarDesc
*
max
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"clip"
);
op
->
SetInput
(
"X"
,
{
x
->
Name
()});
op
->
SetInput
(
"Min"
,
{
min
->
Name
()});
op
->
SetInput
(
"Max"
,
{
max
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
VarDesc
*
matmul_v2
(
VarDesc
*
x
,
VarDesc
*
y
,
VarDesc
*
alpha
=
nullptr
,
...
...
paddle/fluid/framework/ir/xpu/fold_interp_outsize_fuse_pass.cc
浏览文件 @
cc4f5d05
...
...
@@ -22,23 +22,14 @@
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
DetectorFusePattern
:
public
PatternBase
{
DetectorFusePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
struct
InterpOutsizeFusePattern
:
public
PatternBase
{
InterpOutsizeFusePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
shape
);
...
...
@@ -60,8 +51,8 @@ struct DetectorFusePattern : public PatternBase {
PATTERN_DECL_NODE
(
cast2_out
);
};
DetectorFusePattern
::
DetectorFusePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
InterpOutsizeFusePattern
::
InterpOutsizeFusePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
x
=
pattern
->
NewNode
(
x_repr
())
->
assert_is_op_input
(
"shape"
,
"Input"
)
...
...
@@ -144,9 +135,10 @@ DetectorFusePattern::DetectorFusePattern(PDPattern* pattern,
}
// namespace patterns
void
FoldInterpOutsizeFusePass
::
DetectorFus
e
(
ir
::
Graph
*
graph
)
const
{
void
FoldInterpOutsizeFusePass
::
FoldInterpOutsiz
e
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
DetectorFusePattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
patterns
::
InterpOutsizeFusePattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
...
...
@@ -213,7 +205,7 @@ void FoldInterpOutsizeFusePass::ApplyImpl(ir::Graph* graph) const {
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
DetectorFus
e
(
graph
);
FoldInterpOutsiz
e
(
graph
);
}
}
// namespace ir
...
...
paddle/fluid/framework/ir/xpu/fold_interp_outsize_fuse_pass.h
浏览文件 @
cc4f5d05
...
...
@@ -64,7 +64,7 @@ class FoldInterpOutsizeFusePass : public FusePassBase {
| /
bilinear_interp_v2
*/
void
DetectorFus
e
(
ir
::
Graph
*
graph
)
const
;
void
FoldInterpOutsiz
e
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"fold_interp_outsize_fuse_pass"
};
};
...
...
paddle/fluid/framework/ir/xpu/fold_interp_outsize_fuse_pass_test.cc
浏览文件 @
cc4f5d05
...
...
@@ -20,7 +20,7 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
TEST
(
DetectorFuse
,
basic
)
{
TEST
(
FoldInterpOutsizeFusePass
,
basic
)
{
Layers
layers
;
auto
*
block
=
layers
.
Block
();
...
...
paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass.cc
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass.h"
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
TwoSqueeze2FusePattern
:
public
PatternBase
{
TwoSqueeze2FusePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
squeeze2_1
);
PATTERN_DECL_NODE
(
squeeze2_2
);
// declare variable node's name
PATTERN_DECL_NODE
(
x
);
PATTERN_DECL_NODE
(
squeeze2_1_out
);
PATTERN_DECL_NODE
(
squeeze2_2_out
);
};
TwoSqueeze2FusePattern
::
TwoSqueeze2FusePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
x
=
pattern
->
NewNode
(
x_repr
())
->
assert_is_op_input
(
"squeeze2"
,
"X"
)
->
AsInput
()
->
assert_more
([](
Node
*
node
)
{
auto
squeeze2_in_x_shape
=
node
->
Var
()
->
GetShape
();
size_t
squeeze2_in_rank
=
squeeze2_in_x_shape
.
size
();
bool
nice_shape
=
squeeze2_in_x_shape
[
1
]
==
1
&&
squeeze2_in_x_shape
[
2
]
==
74
&&
squeeze2_in_x_shape
[
3
]
==
1
;
return
squeeze2_in_rank
==
4
&&
nice_shape
;
});
auto
*
squeeze2_1
=
pattern
->
NewNode
(
squeeze2_1_repr
())
->
assert_is_op
(
"squeeze2"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
return
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"axes"
)
==
std
::
vector
<
int
>
{
3
};
});
auto
*
squeeze2_1_out
=
pattern
->
NewNode
(
squeeze2_1_out_repr
())
->
assert_is_op_output
(
"squeeze2"
,
"Out"
)
->
assert_has_n_outputs
(
1
)
->
assert_is_op_input
(
"squeeze2"
,
"X"
);
squeeze2_1
->
LinksFrom
({
x
}).
LinksTo
({
squeeze2_1_out
});
auto
*
squeeze2_2
=
pattern
->
NewNode
(
squeeze2_2_repr
())
->
assert_is_op
(
"squeeze2"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
return
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"axes"
)
==
std
::
vector
<
int
>
{
1
};
});
auto
*
squeeze2_2_out
=
pattern
->
NewNode
(
squeeze2_2_out_repr
())
->
assert_is_op_output
(
"squeeze2"
,
"Out"
)
->
assert_has_n_outputs
(
1
);
squeeze2_2
->
LinksFrom
({
squeeze2_1_out
}).
LinksTo
({
squeeze2_2_out
});
}
}
// namespace patterns
void
FoldTwoSqueeze2FusePass
::
FoldTwoSqueeze2
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
TwoSqueeze2FusePattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle FoldTwoSqueeze2FusePass"
;
// declare operator node's name
GET_IR_NODE
(
squeeze2_1
);
GET_IR_NODE
(
squeeze2_2
);
// declare variable node's name
GET_IR_NODE
(
x
);
GET_IR_NODE
(
squeeze2_1_out
);
GET_IR_NODE
(
squeeze2_2_out
);
auto
*
block
=
squeeze2_1
->
Op
()
->
Block
();
// Generate reshape2 op
framework
::
OpDesc
reshape2_op_desc
(
block
);
reshape2_op_desc
.
SetType
(
"reshape2"
);
reshape2_op_desc
.
SetInput
(
"X"
,
{
x
->
Name
()});
reshape2_op_desc
.
SetAttr
(
"shape"
,
std
::
vector
<
int
>
{
-
1
,
74
});
reshape2_op_desc
.
SetOutput
(
"Out"
,
{
squeeze2_2_out
->
Name
()});
auto
*
reshape2
=
graph
->
CreateOpNode
(
&
reshape2_op_desc
);
IR_NODE_LINK_TO
(
x
,
reshape2
);
IR_NODE_LINK_TO
(
reshape2
,
squeeze2_2_out
);
// delete useless node
std
::
unordered_set
<
const
Node
*>
delete_nodes
=
{
squeeze2_1
,
squeeze2_2
,
squeeze2_1_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
FoldTwoSqueeze2FusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
FoldTwoSqueeze2
(
graph
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
fold_two_squeeze2_fuse_pass
,
paddle
::
framework
::
ir
::
FoldTwoSqueeze2FusePass
);
REGISTER_PASS_CAPABILITY
(
fold_two_squeeze2_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
EQ
(
"squeeze2"
,
0
));
paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass.h
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
Origin subgraph:
x
|
squeeze2
|
squeeze2
|
Fused subgraph:
x
|
reshape2
|
*/
class
FoldTwoSqueeze2FusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
FoldTwoSqueeze2
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"fold_two_squeeze2_fuse_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/fold_two_squeeze2_fuse_pass_test.cc
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
TEST
(
FoldTwoSqueeze2FusePass
,
basic
)
{
Layers
layers
;
auto
*
in_x
=
layers
.
data
(
"in_x"
,
{
64
,
1
,
74
,
1
});
auto
*
squeeze2_1_out
=
layers
.
squeeze2
(
in_x
,
std
::
vector
<
int
>
{
3
});
layers
.
squeeze2
(
squeeze2_1_out
,
std
::
vector
<
int
>
{
1
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"fold_two_squeeze2_fuse_pass"
);
pass
->
Apply
(
graph
.
get
());
auto
ops_num
=
GetNumOpNodes
(
graph
);
PADDLE_ENFORCE_EQ
(
ops_num
,
1
,
platform
::
errors
::
PreconditionNotMet
(
"graph should only have 2 op nodes, but received %d."
,
ops_num
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
fold_two_squeeze2_fuse_pass
);
paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass.cc
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass.h"
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/ir/xpu/quant_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
Reshape2MatmulV2Pattern
:
public
PatternBase
{
Reshape2MatmulV2Pattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
reshape2
);
PATTERN_DECL_NODE
(
matmul_v2
);
// declare variable node's name
PATTERN_DECL_NODE
(
reshape2_in
);
PATTERN_DECL_NODE
(
matmul_x
);
PATTERN_DECL_NODE
(
matmul_y
);
PATTERN_DECL_NODE
(
matmul_out
);
};
Reshape2MatmulV2Pattern
::
Reshape2MatmulV2Pattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
reshape2_in
=
pattern
->
NewNode
(
reshape2_in_repr
())
->
assert_is_op_input
(
"reshape2"
,
"X"
)
->
AsInput
()
->
assert_more
([](
Node
*
node
)
{
auto
reshape2_in_x_shape
=
node
->
Var
()
->
GetShape
();
size_t
reshape2_in_rank
=
reshape2_in_x_shape
.
size
();
return
(
reshape2_in_rank
==
4
&&
reshape2_in_x_shape
[
2
]
==
1
&&
reshape2_in_x_shape
[
3
]
==
1
);
});
auto
*
reshape2
=
pattern
->
NewNode
(
reshape2_repr
())
->
assert_is_op
(
"reshape2"
);
auto
matmul_x
=
pattern
->
NewNode
(
matmul_x_repr
())
->
assert_is_op_output
(
"reshape2"
,
"Out"
)
->
assert_is_op_input
(
"matmul_v2"
,
"X"
)
->
assert_more
([](
Node
*
node
)
{
auto
matmul_x_shape
=
node
->
Var
()
->
GetShape
();
size_t
matmul_x_rank
=
matmul_x_shape
.
size
();
return
matmul_x_rank
==
2
;
});
auto
*
matmul_y
=
pattern
->
NewNode
(
matmul_y_repr
())
->
assert_is_op_input
(
"matmul_v2"
,
"Y"
)
->
assert_is_persistable_var
()
->
assert_more
([](
Node
*
node
)
{
auto
matmul_y_shape
=
node
->
Var
()
->
GetShape
();
size_t
matmul_y_rank
=
matmul_y_shape
.
size
();
return
matmul_y_rank
==
2
;
});
auto
*
matmul_v2
=
pattern
->
NewNode
(
matmul_v2_repr
())
->
assert_is_op
(
"matmul_v2"
)
->
assert_op_attr
<
bool
>
(
"trans_x"
,
false
)
->
assert_op_attr
<
bool
>
(
"trans_y"
,
true
);
auto
*
matmul_out
=
pattern
->
NewNode
(
matmul_out_repr
())
->
assert_is_op_output
(
"matmul_v2"
,
"Out"
)
->
AsOutput
();
reshape2
->
LinksFrom
({
reshape2_in
}).
LinksTo
({
matmul_x
});
matmul_v2
->
LinksFrom
({
matmul_x
,
matmul_y
}).
LinksTo
({
matmul_out
});
}
}
// namespace patterns
void
MatmulWeightTransPass
::
TransMatmulV2Weight
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
Reshape2MatmulV2Pattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle TransMatmulV2Weight"
;
/* declare operator node's name */
GET_IR_NODE
(
reshape2
);
GET_IR_NODE
(
matmul_v2
);
/* declare variable node's name*/
GET_IR_NODE
(
reshape2_in
);
GET_IR_NODE
(
matmul_x
);
GET_IR_NODE
(
matmul_y
);
GET_IR_NODE
(
matmul_out
);
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE_NOT_NULL
(
scope
,
platform
::
errors
::
InvalidArgument
(
"Scope cannot be nullptr."
));
auto
*
matmul_y_t
=
scope
->
GetVar
(
matmul_y
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
Transpose2D
(
matmul_y_t
);
auto
from_shape
=
matmul_y
->
Var
()
->
GetShape
();
matmul_y
->
Var
()
->
SetShape
({
from_shape
[
1
],
from_shape
[
0
]});
matmul_v2
->
Op
()
->
SetAttr
(
"trans_y"
,
false
);
matmul_v2
->
Op
()
->
Flush
();
// delete useless node
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
MatmulWeightTransPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
TransMatmulV2Weight
(
graph
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
matmul_weight_trans_pass
,
paddle
::
framework
::
ir
::
MatmulWeightTransPass
);
REGISTER_PASS_CAPABILITY
(
matmul_weight_trans_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"reshape2"
,
0
)
.
EQ
(
"matmul_v2"
,
0
));
paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass.h
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
Origin subgraph:
x
|
reshape2
|
matmul_v2(trans_x=fasle, trans_y=true)
|
Fused subgraph:
x
reshape2
|
matmul_v2(trans_x=fasle, trans_y=false)
|
*/
class
MatmulWeightTransPass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
TransMatmulV2Weight
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"matmul_weight_trans_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/matmul_weight_trans_pass_test.cc
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
TEST
(
MatMulWeightTransPass
,
basic
)
{
Layers
layers
;
auto
*
reshape2_in
=
layers
.
data
(
"reshape2_in"
,
{
64
,
256
,
1
,
1
});
auto
*
reshape2_out
=
layers
.
reshape2
(
reshape2_in
,
std
::
vector
<
int
>
{
-
1
,
256
});
auto
*
matmul_y
=
layers
.
data
(
"matmul_y"
,
{
8
,
256
},
true
);
layers
.
matmul_v2
(
reshape2_out
,
matmul_y
,
nullptr
,
false
,
true
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"matmul_weight_trans_pass"
);
VLOG
(
3
)
<<
DebugString
(
graph
);
pass
->
Apply
(
graph
.
get
());
VLOG
(
3
)
<<
DebugString
(
graph
);
bool
trans_y
=
true
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
->
Type
()
==
"matmul_v2"
)
{
trans_y
=
PADDLE_GET_CONST
(
bool
,
node
->
Op
()
->
GetAttr
(
"trans_y"
));
}
}
PADDLE_ENFORCE_EQ
(
trans_y
,
false
,
platform
::
errors
::
PreconditionNotMet
(
"The attribute of matmul_v2 trans_y should be false after pass"
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
matmul_weight_trans_pass
);
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.cc
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.h"
#include <cmath>
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
MatmulV2Pattern
:
public
PatternBase
{
MatmulV2Pattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
matmul_v2
);
// declare variable node's name
PATTERN_DECL_NODE
(
matmul_x
);
PATTERN_DECL_NODE
(
matmul_y
);
PATTERN_DECL_NODE
(
matmul_out
);
};
MatmulV2Pattern
::
MatmulV2Pattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
matmul_x
=
pattern
->
NewNode
(
matmul_x_repr
())
->
assert_is_op_input
(
"matmul_v2"
,
"X"
)
->
AsInput
();
auto
*
matmul_y
=
pattern
->
NewNode
(
matmul_y_repr
())
->
assert_is_op_input
(
"matmul_v2"
,
"Y"
)
->
AsInput
();
auto
*
matmul_v2
=
pattern
->
NewNode
(
matmul_v2_repr
())
->
assert_is_op
(
"matmul_v2"
)
->
assert_more
([](
Node
*
node
)
{
if
(
node
->
inputs
.
size
()
!=
2
)
{
return
false
;
}
return
node
->
inputs
[
0
]
->
Var
()
->
GetShape
().
size
()
==
node
->
inputs
[
1
]
->
Var
()
->
GetShape
().
size
();
});
auto
*
matmul_out
=
pattern
->
NewNode
(
matmul_out_repr
())
->
assert_is_op_output
(
"matmul_v2"
,
"Out"
)
->
AsOutput
();
matmul_v2
->
LinksFrom
({
matmul_x
,
matmul_y
}).
LinksTo
({
matmul_out
});
}
struct
Reshape2MatmulPattern
:
public
PatternBase
{
Reshape2MatmulPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
reshape2
);
PATTERN_DECL_NODE
(
matmul
);
// declare variable node's name
PATTERN_DECL_NODE
(
reshape2_in
);
PATTERN_DECL_NODE
(
matmul_x
);
PATTERN_DECL_NODE
(
matmul_y
);
PATTERN_DECL_NODE
(
matmul_out
);
};
Reshape2MatmulPattern
::
Reshape2MatmulPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
reshape2_in
=
pattern
->
NewNode
(
reshape2_in_repr
())
->
assert_is_op_input
(
"reshape2"
,
"X"
)
->
AsInput
()
->
assert_more
([](
Node
*
node
)
{
auto
reshape2_in_x_shape
=
node
->
Var
()
->
GetShape
();
size_t
reshape2_in_rank
=
reshape2_in_x_shape
.
size
();
bool
nice_shape
=
(
reshape2_in_x_shape
[
2
]
==
1
&&
reshape2_in_x_shape
[
3
]
==
1
)
||
(
reshape2_in_x_shape
[
1
]
==
1
&&
reshape2_in_x_shape
[
3
]
==
1
);
return
(
reshape2_in_rank
==
4
&&
nice_shape
);
});
auto
*
reshape2
=
pattern
->
NewNode
(
reshape2_repr
())
->
assert_is_op
(
"reshape2"
)
->
assert_has_n_inputs
(
1
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
reshape2_shape_attr
=
op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
"shape"
);
return
reshape2_shape_attr
.
size
()
==
2
;
});
auto
matmul_x
=
pattern
->
NewNode
(
matmul_x_repr
())
->
assert_is_op_output
(
"reshape2"
,
"Out"
)
->
assert_has_n_outputs
(
1
)
->
assert_is_op_input
(
"matmul"
,
"X"
)
->
assert_more
([](
Node
*
node
)
{
auto
matmul_x_shape
=
node
->
Var
()
->
GetShape
();
size_t
matmul_x_rank
=
matmul_x_shape
.
size
();
return
matmul_x_rank
==
2
;
});
auto
*
matmul_y
=
pattern
->
NewNode
(
matmul_y_repr
())
->
assert_is_op_input
(
"matmul"
,
"Y"
)
->
assert_is_persistable_var
()
->
assert_more
([](
Node
*
node
)
{
auto
matmul_y_shape
=
node
->
Var
()
->
GetShape
();
size_t
matmul_y_rank
=
matmul_y_shape
.
size
();
return
matmul_y_rank
==
2
;
});
auto
*
matmul
=
pattern
->
NewNode
(
matmul_repr
())
->
assert_is_op
(
"matmul"
)
->
assert_op_attr
<
bool
>
(
"transpose_X"
,
false
)
->
assert_op_attr
<
bool
>
(
"transpose_Y"
,
false
);
auto
*
matmul_out
=
pattern
->
NewNode
(
matmul_out_repr
())
->
assert_is_op_output
(
"matmul"
,
"Out"
)
->
AsOutput
();
reshape2
->
LinksFrom
({
reshape2_in
}).
LinksTo
({
matmul_x
});
matmul
->
LinksFrom
({
matmul_x
,
matmul_y
}).
LinksTo
({
matmul_out
});
}
}
// namespace patterns
void
Reshape2MatmulXPUFusePass
::
FuseReshape2Matmul
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
Reshape2MatmulPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle ReShape2MatmulXPUFusePass"
;
/* declare operator node's name */
GET_IR_NODE
(
reshape2
);
GET_IR_NODE
(
matmul
);
/* declare variable node's name*/
GET_IR_NODE
(
reshape2_in
);
GET_IR_NODE
(
matmul_x
);
GET_IR_NODE
(
matmul_y
);
GET_IR_NODE
(
matmul_out
);
bool
flag
=
true
;
std
::
vector
<
Node
*>&
next_ops
=
matmul_out
->
outputs
;
flag
=
flag
&&
next_ops
.
size
()
==
1
&&
(
next_ops
[
0
]
->
Name
()
==
"elementwise_add"
||
next_ops
[
0
]
->
Name
()
==
"batch_norm"
);
if
(
flag
)
{
OpDesc
desc
(
matmul
->
Op
()
->
Block
());
desc
.
SetType
(
"mul"
);
desc
.
SetInput
(
"X"
,
{
reshape2_in
->
Name
()});
desc
.
SetInput
(
"Y"
,
{
matmul_y
->
Name
()});
desc
.
SetOutput
(
"Out"
,
{
matmul_out
->
Name
()});
desc
.
SetAttr
(
"x_num_col_dims"
,
1
);
desc
.
SetAttr
(
"y_num_col_dims"
,
1
);
auto
mul_node
=
graph
->
CreateOpNode
(
&
desc
);
IR_NODE_LINK_TO
(
reshape2_in
,
mul_node
);
IR_NODE_LINK_TO
(
matmul_y
,
mul_node
);
IR_NODE_LINK_TO
(
mul_node
,
matmul_out
);
GraphSafeRemoveNodes
(
graph
,
{
reshape2
,
matmul_x
,
matmul
});
found_subgraph_count
++
;
}
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
Reshape2MatmulXPUFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
FuseReshape2Matmul
(
graph
);
}
void
MapMatmulV2ToMatmulXPUPass
::
MapMatmulV2ToMatmul
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
MatmulV2Pattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle MapMatmulV2ToMatmulXPUPass"
;
/* declare operator node's name */
GET_IR_NODE
(
matmul_v2
);
/* declare variable node's name*/
GET_IR_NODE
(
matmul_x
);
GET_IR_NODE
(
matmul_y
);
GET_IR_NODE
(
matmul_out
);
std
::
vector
<
int64_t
>
x_shape
=
matmul_x
->
Var
()
->
GetShape
();
std
::
vector
<
int64_t
>
y_shape
=
matmul_y
->
Var
()
->
GetShape
();
uint64_t
dims
=
2
;
for
(
size_t
i
=
0
;
i
<
x_shape
.
size
()
-
dims
;
++
i
)
{
if
(
x_shape
[
i
]
!=
y_shape
[
i
]
&&
(
x_shape
[
i
]
==
1
||
y_shape
[
i
]
==
1
))
{
LOG
(
WARNING
)
<<
"matmul op not support broadcast, please check "
"inputs'shape[i]. "
;
return
;
}
}
OpDesc
desc
(
matmul_v2
->
Op
()
->
Block
());
desc
.
SetType
(
"matmul"
);
desc
.
SetInput
(
"X"
,
{
matmul_x
->
Name
()});
desc
.
SetInput
(
"Y"
,
{
matmul_y
->
Name
()});
desc
.
SetOutput
(
"Out"
,
{
matmul_out
->
Name
()});
desc
.
SetAttr
(
"transpose_X"
,
matmul_v2
->
Op
()
->
GetAttr
(
"trans_x"
));
desc
.
SetAttr
(
"transpose_Y"
,
matmul_v2
->
Op
()
->
GetAttr
(
"trans_y"
));
desc
.
SetAttr
(
"alpha"
,
1.0
f
);
if
(
matmul_v2
->
Op
()
->
HasAttr
(
"use_mkldnn"
))
{
desc
.
SetAttr
(
"use_mkldnn"
,
matmul_v2
->
Op
()
->
GetAttr
(
"use_mkldnn"
));
}
auto
matmul_node
=
graph
->
CreateOpNode
(
&
desc
);
IR_NODE_LINK_TO
(
matmul_x
,
matmul_node
);
IR_NODE_LINK_TO
(
matmul_y
,
matmul_node
);
IR_NODE_LINK_TO
(
matmul_node
,
matmul_out
);
GraphSafeRemoveNodes
(
graph
,
{
matmul_v2
});
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
void
MapMatmulV2ToMatmulXPUPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
MapMatmulV2ToMatmul
(
graph
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
reshape2_matmul_xpu_fuse_pass
,
paddle
::
framework
::
ir
::
Reshape2MatmulXPUFusePass
);
REGISTER_PASS_CAPABILITY
(
reshape2_matmul_xpu_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"reshape2"
,
0
)
.
LE
(
"matmul"
,
1
)
.
EQ
(
"mul"
,
0
));
REGISTER_PASS
(
map_matmulv2_to_matmul_xpu_pass
,
paddle
::
framework
::
ir
::
MapMatmulV2ToMatmulXPUPass
);
REGISTER_PASS_CAPABILITY
(
map_matmulv2_to_matmul_xpu_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"matmul_v2"
,
0
)
.
LE
(
"matmul"
,
1
));
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass.h
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Reshape2MatmulXPUFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
FuseReshape2Matmul
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"reshape2_matmul_xpu_fuse_pass"
};
};
class
MapMatmulV2ToMatmulXPUPass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
MapMatmulV2ToMatmul
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"map_matmulv2_to_matmul_xpu_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/reshape2_matmul_xpu_fuse_pass_test.cc
0 → 100644
浏览文件 @
cc4f5d05
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
TEST
(
ReShape2MatmulXPUFusePass
,
basic
)
{
Layers
layers
;
auto
*
reshape2_in
=
layers
.
data
(
"reshape2_in"
,
{
64
,
1
,
74
,
1
});
auto
*
reshape2_out
=
layers
.
reshape2
(
reshape2_in
,
std
::
vector
<
int
>
{
-
1
,
74
});
auto
*
matmul_y
=
layers
.
data
(
"matmul_y"
,
{
74
,
64
},
true
);
auto
*
matmul_out
=
layers
.
matmul
(
reshape2_out
,
matmul_y
,
nullptr
,
false
,
false
);
auto
*
ele_y
=
layers
.
data
(
"ele_y"
,
{
64
},
true
);
layers
.
elementwise_add
(
matmul_out
,
ele_y
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"reshape2_matmul_xpu_fuse_pass"
);
VLOG
(
3
)
<<
DebugString
(
graph
);
pass
->
Apply
(
graph
.
get
());
VLOG
(
3
)
<<
DebugString
(
graph
);
auto
ops_num
=
GetNumOpNodes
(
graph
);
PADDLE_ENFORCE_EQ
(
ops_num
,
3
,
platform
::
errors
::
PreconditionNotMet
(
"graph should only have 2 op nodes, but received %d."
,
ops_num
));
}
TEST
(
MapMatmulV2ToMatmulXPUPass
,
basic
)
{
Layers
layers
;
auto
*
matmul_x
=
layers
.
data
(
"matmul_x"
,
{
64
,
74
});
auto
*
matmul_y
=
layers
.
data
(
"matmul_y"
,
{
74
,
64
},
true
);
layers
.
matmul_v2
(
matmul_x
,
matmul_y
,
nullptr
,
false
,
false
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"map_matmulv2_to_matmul_xpu_pass"
);
VLOG
(
3
)
<<
DebugString
(
graph
);
pass
->
Apply
(
graph
.
get
());
VLOG
(
3
)
<<
DebugString
(
graph
);
auto
matmuls
=
GetOpNodes
(
graph
,
"matmul"
);
for
(
auto
*
matmul
:
matmuls
)
{
PADDLE_ENFORCE_EQ
(
std
::
abs
(
matmul
->
Op
()
->
GetAttrIfExists
<
float
>
(
"alpha"
)
-
1.
f
)
<
1e-5
f
,
true
,
platform
::
errors
::
PreconditionNotMet
(
"matmul_v2 is mapped to matmul by pass."
));
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
reshape2_matmul_xpu_fuse_pass
);
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
cc4f5d05
...
...
@@ -523,10 +523,14 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"fused_multi_transformer_cachekv_layout_trans_pass"
,
"one_beam_size_fuse_pass"
,
"fold_interp_outsize_fuse_pass"
,
"fold_two_squeeze2_fuse_pass"
,
"delete_cast_op_pass"
,
"stack_fuse_pass"
,
"fused_multi_transformer_xpu_pass"
,
"sigmoid_elementmul_fuse_pass"
,
"matmul_weight_trans_pass"
,
"map_matmulv2_to_matmul_xpu_pass"
,
"reshape2_matmul_xpu_fuse_pass"
,
"fc_xpu_fuse_pass"
,
"conv2d_xpu_fuse_pass"
,
"add_activation_xpu_fuse_pass"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录