Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fc06be9d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fc06be9d
编写于
3月 01, 2022
作者:
W
wenbin
提交者:
GitHub
3月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove conv_affine_channel_fuse_pass (#39817)
* remove * pass * more pass
上级
25650774
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
25 addition
and
855 deletion
+25
-855
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+0
-1
paddle/fluid/framework/ir/conv_affine_channel_fuse_pass.cc
paddle/fluid/framework/ir/conv_affine_channel_fuse_pass.cc
+0
-420
paddle/fluid/framework/ir/conv_affine_channel_fuse_pass.h
paddle/fluid/framework/ir/conv_affine_channel_fuse_pass.h
+0
-54
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+25
-31
python/paddle/fluid/contrib/slim/quantization/quant2_int8_mkldnn_pass.py
...luid/contrib/slim/quantization/quant2_int8_mkldnn_pass.py
+0
-3
python/paddle/fluid/tests/unittests/ir/inference/test_conv_affine_channel_fuse_pass.py
...ttests/ir/inference/test_conv_affine_channel_fuse_pass.py
+0
-160
python/paddle/fluid/tests/unittests/ir/inference/test_conv_eltwiseadd_affine_channel_fuse_pass.py
...nference/test_conv_eltwiseadd_affine_channel_fuse_pass.py
+0
-183
tools/parallel_UT_rule.py
tools/parallel_UT_rule.py
+0
-2
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+0
-1
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
fc06be9d
...
...
@@ -78,7 +78,6 @@ pass_library(is_test_pass base)
pass_library
(
conv_elementwise_add_act_fuse_pass inference
)
pass_library
(
conv_elementwise_add2_act_fuse_pass inference
)
pass_library
(
conv_elementwise_add_fuse_pass inference
)
pass_library
(
conv_affine_channel_fuse_pass inference
)
pass_library
(
transpose_flatten_concat_fuse_pass inference
)
pass_library
(
identity_scale_op_clean_pass base
)
pass_library
(
sync_batch_norm_pass base
)
...
...
paddle/fluid/framework/ir/conv_affine_channel_fuse_pass.cc
已删除
100644 → 0
浏览文件 @
25650774
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_affine_channel_fuse_pass.h"
#include <cmath>
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Node
;
#define GET_CONV_BN_NODES(pattern_name) \
/* OPERATORS */
\
GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(affine_channel, affine_channel, pattern_name); \
/* CONV inputs */
\
GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \
/* CONV outputs */
\
GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \
/* Affine Channel inputs */
\
GET_IR_NODE_FROM_SUBGRAPH(ac_scale, ac_scale, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(ac_bias, ac_bias, pattern_name); \
/* Affine channel outputs */
\
GET_IR_NODE_FROM_SUBGRAPH(ac_out, ac_out, pattern_name);
/* Out */
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
ir
::
Node
*
conv_weight
,
const
ir
::
Node
&
ac_scale
,
const
LoDTensor
&
ac_bias_tensor
,
LoDTensor
*
eltwise_y_in_tensor
)
{
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
using
ConstEigenVectorArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
using
EigenMatrixArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
// Re-compute bias of conv2d from AffineChannel
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
ac_bias_tensor
.
dims
(),
platform
::
errors
::
InvalidArgument
(
"Tensor elementwise y(%d) and activation bias(%d) must have same "
"dimension."
,
eltwise_y_in_tensor
->
dims
().
size
(),
ac_bias_tensor
.
dims
().
size
()));
auto
*
scale_tensor
=
scope
->
FindVar
(
ac_scale
.
Name
())
->
GetMutable
<
LoDTensor
>
();
ConstEigenVectorArrayMap
scale_array
(
scale_tensor
->
data
<
float
>
(),
scale_tensor
->
numel
(),
1
);
ConstEigenVectorArrayMap
ac_bias_array
(
ac_bias_tensor
.
data
<
float
>
(),
ac_bias_tensor
.
numel
(),
1
);
EigenVectorArrayMap
eltwise_y_in_array
(
eltwise_y_in_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
eltwise_y_in_tensor
->
numel
(),
1
);
eltwise_y_in_array
=
(
eltwise_y_in_array
*
scale_array
)
+
ac_bias_array
;
// Re-compute weight of conv2d from AffineChannel
auto
*
weights
=
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
weights_shape
=
weights
->
dims
();
auto
weights_shape_2d
=
phi
::
flatten_to_2d
(
weights_shape
,
1
);
auto
*
weights_data
=
weights
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
EigenMatrixArrayMap
weights_array_2d
(
weights_data
,
weights_shape_2d
[
0
],
weights_shape_2d
[
1
]);
weights_array_2d
.
colwise
()
*=
scale_array
;
// Check for subnormal values that slows down convolution execution
for
(
int
i
=
0
;
i
<
weights
->
numel
();
++
i
)
{
if
(
std
::
fpclassify
(
weights_data
[
i
])
==
FP_SUBNORMAL
)
weights_data
[
i
]
=
0
;
}
}
ConvAffineChannelFusePass
::
ConvAffineChannelFusePass
()
{
AddOpCompat
(
OpCompat
(
"conv2d"
))
.
AddInput
(
"Input"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Filter"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Bias"
)
.
IsTensor
()
.
IsOptional
()
.
End
()
.
AddInput
(
"ResidualData"
)
.
IsTensor
()
.
IsOptional
()
.
End
()
.
AddOutput
(
"Output"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"strides"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"paddings"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"padding_algorithm"
)
.
IsOptional
()
.
IsStringIn
({
"EXPLICIT"
,
"SAME"
,
"VALID"
})
.
End
()
.
AddAttr
(
"groups"
)
.
IsNumGE
(
1
)
.
End
()
.
AddAttr
(
"dilations"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"data_format"
)
.
IsStringIn
({
"NCHW"
,
"AnyLayout"
})
.
End
();
AddOpCompat
(
OpCompat
(
"affine_channel"
))
.
AddInput
(
"X"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Scale"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Bias"
)
.
IsTensor
()
.
IsOptional
()
.
End
()
.
AddOutput
(
"Out"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"data_layout"
)
.
IsStringIn
({
"NCHW"
,
"AnyLayout"
})
.
End
();
AddOpCompat
(
OpCompat
(
"elementwise_add"
))
.
AddInput
(
"X"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Y"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Out"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"axis"
)
.
IsNumEQ
(
1
)
.
End
();
}
void
ConvAffineChannelFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Graph cannot be nullptr."
));
FusePassBase
::
Init
(
name_scope_
,
graph
);
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE_NOT_NULL
(
scope
,
platform
::
errors
::
InvalidArgument
(
"Scope cannot be nullptr."
));
GraphPatternDetector
gpd
;
auto
*
conv_input
=
gpd
.
mutable_pattern
()
->
NewNode
(
patterns
::
PDNodeName
(
name_scope_
,
"conv_input"
))
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
patterns
::
ConvAffineChannel
conv_ac_pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
conv_ac_pattern
(
conv_input
,
false
/*with_eltwise_add*/
);
int
found_conv_ac_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
if
(
!
IsCompat
(
subgraph
,
g
))
{
LOG
(
WARNING
)
<<
"ConvAffineChannelFusePass in op compat failed."
;
return
;
}
VLOG
(
4
)
<<
"handle ConvAffineChannel fuse"
;
GET_CONV_BN_NODES
(
conv_ac_pattern
);
auto
data_format
=
conv
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"data_format"
);
if
(
data_format
==
"AnyLayout"
)
{
LOG_FIRST_N
(
WARNING
,
1
)
<<
"conv_affine_channel_fuse_pass is enabled, "
"it's wrong if data_format of conv is not "
"NCHW."
;
}
// Get affine_channel bias for resizing eltwise_y!
auto
*
ac_bias_tensor
=
scope
->
FindVar
(
ac_bias
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// Create eltwise_y (conv bias) variable
VarDesc
eltwise_y_in_desc
(
patterns
::
PDNodeName
(
name_scope_
,
"eltwise_y_in"
));
// Set shape && datatype manually
eltwise_y_in_desc
.
SetShape
(
phi
::
vectorize
(
ac_bias_tensor
->
dims
()));
eltwise_y_in_desc
.
SetDataType
(
framework
::
TransToProtoVarType
(
ac_bias_tensor
->
dtype
()));
eltwise_y_in_desc
.
SetLoDLevel
(
ac_bias
->
Var
()
->
GetLoDLevel
());
eltwise_y_in_desc
.
SetPersistable
(
true
);
// Initialize eltwise_y
auto
*
eltwise_y_in_node
=
g
->
CreateVarNode
(
&
eltwise_y_in_desc
);
auto
*
eltwise_y_in_tensor
=
scope
->
Var
(
eltwise_y_in_node
->
Name
())
->
GetMutable
<
LoDTensor
>
();
eltwise_y_in_tensor
->
Resize
(
ac_bias_tensor
->
dims
());
std
::
fill_n
(
eltwise_y_in_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
eltwise_y_in_tensor
->
numel
(),
0.0
f
);
// update weights and biases
recompute_bias_and_weights
(
scope
,
conv_weight
,
*
ac_scale
,
*
ac_bias_tensor
,
eltwise_y_in_tensor
);
// create an elementwise add node.
OpDesc
desc
;
desc
.
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
conv_out
->
Name
()}));
desc
.
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
eltwise_y_in_node
->
Name
()}));
desc
.
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
ac_out
->
Name
()}));
desc
.
SetType
(
"elementwise_add"
);
desc
.
SetAttr
(
"axis"
,
1
);
desc
.
SetAttr
(
"use_mkldnn"
,
conv
->
Op
()
->
GetAttrIfExists
<
bool
>
(
"use_mkldnn"
));
auto
eltwise_op
=
g
->
CreateOpNode
(
&
desc
);
// OpDesc will be copied.
GraphSafeRemoveNodes
(
graph
,
{
ac_scale
,
ac_bias
,
affine_channel
});
IR_NODE_LINK_TO
(
conv_out
,
eltwise_op
);
IR_NODE_LINK_TO
(
eltwise_y_in_node
,
eltwise_op
);
IR_NODE_LINK_TO
(
eltwise_op
,
ac_out
);
found_conv_ac_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_conv_ac_count
);
}
ConvEltwiseAddAffineChannelFusePass
::
ConvEltwiseAddAffineChannelFusePass
()
{
AddOpCompat
(
OpCompat
(
"conv2d"
))
.
AddInput
(
"Input"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Filter"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Bias"
)
.
IsTensor
()
.
IsOptional
()
.
End
()
.
AddInput
(
"ResidualData"
)
.
IsTensor
()
.
IsOptional
()
.
End
()
.
AddOutput
(
"Output"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"strides"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"paddings"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"padding_algorithm"
)
.
IsOptional
()
.
IsStringIn
({
"EXPLICIT"
,
"SAME"
,
"VALID"
})
.
End
()
.
AddAttr
(
"groups"
)
.
IsNumGE
(
1
)
.
End
()
.
AddAttr
(
"dilations"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"data_format"
)
.
IsStringIn
({
"NCHW"
,
"AnyLayout"
})
.
End
();
AddOpCompat
(
OpCompat
(
"affine_channel"
))
.
AddInput
(
"X"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Scale"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Bias"
)
.
IsTensor
()
.
IsOptional
()
.
End
()
.
AddOutput
(
"Out"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"data_layout"
)
.
IsStringIn
({
"NCHW"
,
"AnyLayout"
})
.
End
();
AddOpCompat
(
OpCompat
(
"elementwise_add"
))
.
AddInput
(
"X"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Y"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Out"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"axis"
)
.
IsNumEQ
(
1
)
.
End
();
}
void
ConvEltwiseAddAffineChannelFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Graph cannot be nullptr."
));
FusePassBase
::
Init
(
name_scope_
,
graph
);
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE_NOT_NULL
(
scope
,
platform
::
errors
::
InvalidArgument
(
"Scope cannot be nullptr."
));
GraphPatternDetector
gpd
;
auto
*
conv_input
=
gpd
.
mutable_pattern
()
->
NewNode
(
patterns
::
PDNodeName
(
name_scope_
,
"conv_input"
))
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
patterns
::
ConvAffineChannel
conv_ac_pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
conv_ac_pattern
(
conv_input
,
true
/*with_eltwise_add*/
);
int
found_conv_ac_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
if
(
!
IsCompat
(
subgraph
,
g
))
{
LOG
(
WARNING
)
<<
"ConvEltwiseAddAffineChannelFusePass in op compat failed."
;
return
;
}
VLOG
(
4
)
<<
"handle ConvBN fuse"
;
GET_CONV_BN_NODES
(
conv_ac_pattern
);
auto
data_format
=
conv
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"data_format"
);
if
(
data_format
==
"AnyLayout"
)
{
LOG_FIRST_N
(
WARNING
,
1
)
<<
"conv_eltwiseadd_affine_channel_fuse_pass is "
"enabled, it's wrong if data_format of conv "
"is not NCHW."
;
}
// OPERATORS
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise
,
eltwise
,
conv_ac_pattern
);
// BIAS inputs
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_y_in
,
eltwise_y_in
,
conv_ac_pattern
);
// BIAS outputs
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_out
,
eltwise_out
,
conv_ac_pattern
);
// Get eltwise_y (conv bias) variable
auto
*
eltwise_y_in_tensor
=
scope
->
FindVar
(
eltwise_y_in
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// Get batch norm bias
auto
*
ac_bias_tensor
=
scope
->
FindVar
(
ac_bias
->
Name
())
->
GetMutable
<
LoDTensor
>
();
recompute_bias_and_weights
(
scope
,
conv_weight
,
*
ac_scale
,
*
ac_bias_tensor
,
eltwise_y_in_tensor
);
// Update the elementwise_add node
eltwise
->
Op
()
->
SetAttr
(
"axis"
,
1
);
eltwise
->
Op
()
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
ac_out
->
Name
()}));
GraphSafeRemoveNodes
(
graph
,
{
ac_scale
,
ac_bias
,
affine_channel
,
eltwise_out
});
IR_NODE_LINK_TO
(
eltwise
,
ac_out
);
found_conv_ac_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_conv_ac_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv_affine_channel_fuse_pass
,
paddle
::
framework
::
ir
::
ConvAffineChannelFusePass
);
REGISTER_PASS
(
conv_eltwiseadd_affine_channel_fuse_pass
,
paddle
::
framework
::
ir
::
ConvEltwiseAddAffineChannelFusePass
);
REGISTER_PASS_CAPABILITY
(
conv_affine_channel_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
LE
(
"conv2d"
,
1
)
.
EQ
(
"affine_channel"
,
0
));
REGISTER_PASS_CAPABILITY
(
conv_eltwiseadd_affine_channel_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
LE
(
"conv2d"
,
1
)
.
LE
(
"elementwise_add"
,
1
)
.
EQ
(
"affine_channel"
,
0
));
paddle/fluid/framework/ir/conv_affine_channel_fuse_pass.h
已删除
100644 → 0
浏览文件 @
25650774
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Fuse the Conv and ConvAffineChannel.
*/
class
Graph
;
class
ConvAffineChannelFusePass
:
public
FusePassBase
{
public:
ConvAffineChannelFusePass
();
virtual
~
ConvAffineChannelFusePass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
)
const
override
;
const
std
::
string
name_scope_
{
"conv_affine_channel_fuse"
};
};
class
ConvEltwiseAddAffineChannelFusePass
:
public
FusePassBase
{
public:
ConvEltwiseAddAffineChannelFusePass
();
virtual
~
ConvEltwiseAddAffineChannelFusePass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
)
const
override
;
const
std
::
string
name_scope_
{
"conv_eltwiseadd_affine_channel_fuse"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
fc06be9d
...
...
@@ -75,13 +75,11 @@ void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
void
PaddlePassBuilder
::
ClearPasses
()
{
passes_
.
clear
();
}
const
std
::
vector
<
std
::
string
>
kTRTSubgraphPasses
({
"conv_affine_channel_fuse_pass"
,
//
"adaptive_pool2d_convert_global_pass"
,
"conv_eltwiseadd_affine_channel_fuse_pass"
,
//
"shuffle_channel_detect_pass"
,
//
"quant_conv2d_dequant_fuse_pass"
,
//
"delete_quant_dequant_op_pass"
,
//
"delete_quant_dequant_filter_op_pass"
,
//
"adaptive_pool2d_convert_global_pass"
,
"shuffle_channel_detect_pass"
,
//
"quant_conv2d_dequant_fuse_pass"
,
//
"delete_quant_dequant_op_pass"
,
//
"delete_quant_dequant_filter_op_pass"
,
//
// "fc_fuse_pass", //
"simplify_with_basic_ops_pass"
,
//
"embedding_eltwise_layernorm_fuse_pass"
,
//
...
...
@@ -134,22 +132,20 @@ const std::vector<std::string> kLiteSubgraphPasses({
GpuPassStrategy
::
GpuPassStrategy
()
:
PassStrategy
({})
{
passes_
.
assign
({
// "identity_scale_op_clean_pass", //
"is_test_pass"
,
//
"simplify_with_basic_ops_pass"
,
//
"conv_affine_channel_fuse_pass"
,
//
"conv_eltwiseadd_affine_channel_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
"embedding_eltwise_layernorm_fuse_pass"
,
//
"multihead_matmul_fuse_pass_v2"
,
//
"gpu_cpu_squeeze2_matmul_fuse_pass"
,
//
"gpu_cpu_reshape2_matmul_fuse_pass"
,
//
"gpu_cpu_flatten2_matmul_fuse_pass"
,
//
"gpu_cpu_map_matmul_v2_to_mul_pass"
,
//
"gpu_cpu_map_matmul_v2_to_matmul_pass"
,
//
"gpu_cpu_map_matmul_to_mul_pass"
,
//
"fc_fuse_pass"
,
//
"fc_elementwise_layernorm_fuse_pass"
,
//
"is_test_pass"
,
//
"simplify_with_basic_ops_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
"embedding_eltwise_layernorm_fuse_pass"
,
//
"multihead_matmul_fuse_pass_v2"
,
//
"gpu_cpu_squeeze2_matmul_fuse_pass"
,
//
"gpu_cpu_reshape2_matmul_fuse_pass"
,
//
"gpu_cpu_flatten2_matmul_fuse_pass"
,
//
"gpu_cpu_map_matmul_v2_to_mul_pass"
,
//
"gpu_cpu_map_matmul_v2_to_matmul_pass"
,
//
"gpu_cpu_map_matmul_to_mul_pass"
,
//
"fc_fuse_pass"
,
//
"fc_elementwise_layernorm_fuse_pass"
,
//
#if CUDNN_VERSION >= 7100 // To run conv_fusion, the version of cudnn must be
// guaranteed at least v7
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
...
...
@@ -236,14 +232,12 @@ void CpuPassStrategy::EnableMKLDNN() {
passes_
.
insert
(
passes_
.
begin
(),
"mkldnn_placement_pass"
);
for
(
auto
&
pass
:
std
::
vector
<
std
::
string
>
({
"depthwise_conv_mkldnn_pass"
,
//
"conv_bn_fuse_pass"
,
// Execute BN passes again to
"conv_eltwiseadd_bn_fuse_pass"
,
// preserve correct pass order
"conv_affine_channel_fuse_pass"
,
//
"conv_eltwiseadd_affine_channel_fuse_pass"
,
//
"conv_transpose_bn_fuse_pass"
,
//
"conv_transpose_eltwiseadd_bn_fuse_pass"
,
//
"conv_bias_mkldnn_fuse_pass"
,
//
"depthwise_conv_mkldnn_pass"
,
//
"conv_bn_fuse_pass"
,
// Execute BN passes again to
"conv_eltwiseadd_bn_fuse_pass"
,
// preserve correct pass order
"conv_transpose_bn_fuse_pass"
,
//
"conv_transpose_eltwiseadd_bn_fuse_pass"
,
//
"conv_bias_mkldnn_fuse_pass"
,
//
"conv_transpose_bias_mkldnn_fuse_pass"
,
// TODO(baoachun): Need to support 5-dimensional input.
// "conv3d_bias_mkldnn_fuse_pass", //
...
...
python/paddle/fluid/contrib/slim/quantization/quant2_int8_mkldnn_pass.py
浏览文件 @
fc06be9d
...
...
@@ -426,9 +426,6 @@ class Quant2Int8MkldnnPass(object):
graph
=
self
.
_apply_pass
(
graph
,
'depthwise_conv_mkldnn_pass'
)
graph
=
self
.
_apply_pass
(
graph
,
'conv_bn_fuse_pass'
)
graph
=
self
.
_apply_pass
(
graph
,
'conv_eltwiseadd_bn_fuse_pass'
)
graph
=
self
.
_apply_pass
(
graph
,
'conv_affine_channel_fuse_pass'
)
graph
=
self
.
_apply_pass
(
graph
,
'conv_eltwiseadd_affine_channel_fuse_pass'
)
graph
=
self
.
_apply_pass
(
graph
,
'conv_transpose_bn_fuse_pass'
)
graph
=
self
.
_apply_pass
(
graph
,
'conv_transpose_eltwiseadd_bn_fuse_pass'
)
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_conv_affine_channel_fuse_pass.py
已删除
100644 → 0
浏览文件 @
25650774
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
PassAutoScanTest
,
IgnoreReasons
from
program_config
import
TensorConfig
,
ProgramConfig
,
OpConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
hypothesis
from
hypothesis
import
given
,
settings
,
seed
,
example
,
assume
,
reproduce_failure
import
hypothesis.strategies
as
st
class
TestConvAffineChannelFusePass
(
PassAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_config
(
self
,
draw
):
padding_algorithm
=
draw
(
st
.
sampled_from
([
"EXPLICIT"
,
"SAME"
,
"VALID"
]))
groups
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
3
))
data_format
=
draw
(
st
.
sampled_from
([
"NCHW"
,
"NHWC"
]))
axis
=
draw
(
st
.
sampled_from
([
1
]))
filter_channel
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
16
))
*
4
filter_size
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
))
in_channel
=
groups
*
filter_channel
out_channel_factor
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
16
))
*
4
out_channel
=
groups
*
out_channel_factor
batch_size
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
))
dilations
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
2
),
min_size
=
2
,
max_size
=
2
))
paddings
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
0
,
max_value
=
2
),
min_size
=
2
,
max_size
=
2
))
strides
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
2
),
min_size
=
2
,
max_size
=
2
))
has_bias
=
draw
(
st
.
booleans
())
x_shape
=
[
batch_size
,
in_channel
,
64
,
64
]
if
data_format
==
"NCHW"
else
[
batch_size
,
64
,
64
,
in_channel
]
w_shape
=
[
out_channel
,
filter_channel
,
filter_size
,
filter_size
]
scale_shape
=
[
out_channel
]
bias_shape
=
[
out_channel
]
def
generate_input
():
return
np
.
random
.
random
(
x_shape
).
astype
(
np
.
float32
)
def
generate_weight
():
return
np
.
random
.
random
(
w_shape
).
astype
(
np
.
float32
)
def
generate_bias
():
return
np
.
random
.
random
(
bias_shape
).
astype
(
np
.
float32
)
def
generate_scale_bias
():
return
np
.
random
.
random
(
bias_shape
).
astype
(
np
.
float32
)
conv2d_op
=
OpConfig
(
"conv2d"
,
inputs
=
{
"Input"
:
[
"input_data"
],
"Filter"
:
[
"conv2d_weight"
],
},
outputs
=
{
"Output"
:
[
"conv_output"
]},
data_format
=
data_format
,
dilations
=
dilations
,
padding_algorithm
=
padding_algorithm
,
groups
=
groups
,
paddings
=
paddings
,
strides
=
strides
,
has_bias
=
has_bias
,
is_test
=
True
)
ac_op
=
OpConfig
(
"affine_channel"
,
inputs
=
{
"X"
:
[
"conv_output"
],
"Scale"
:
[
"affine_channel_scale"
],
"Bias"
:
[
"affine_channel_bias"
]
},
outputs
=
{
"Out"
:
[
"affine_channel_ouput"
]},
data_layout
=
data_format
)
if
has_bias
==
True
:
conv2d_op
.
inputs
[
"Bias"
]
=
[
"conv2d_bias"
]
ops
=
[
conv2d_op
,
ac_op
]
program_config
=
ProgramConfig
(
ops
=
ops
,
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
)),
},
weights
=
{
"conv2d_weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
"affine_channel_scale"
:
TensorConfig
(
data_gen
=
partial
(
generate_scale_bias
)),
"affine_channel_bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_scale_bias
)),
},
outputs
=
[
"affine_channel_ouput"
])
if
has_bias
==
True
:
program_config
.
weights
[
"conv2d_bias"
]
=
TensorConfig
(
data_gen
=
partial
(
generate_bias
))
return
program_config
def
sample_predictor_configs
(
self
,
program_config
):
config
=
self
.
create_inference_config
(
use_gpu
=
True
)
yield
config
,
[
'conv2d'
,
'elementwise_add'
],
(
1e-4
,
1e-4
)
config
=
self
.
create_inference_config
(
use_mkldnn
=
True
)
yield
config
,
[
'conv2d'
,
'elementwise_add'
],
(
1e-4
,
1e-4
)
def
add_ignore_pass_case
(
self
):
# If the problem has been fixed, the judgment
# in is_program_valid needs to be deleted!!!
def
teller1
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'data_format'
]
==
"NHWC"
:
return
True
return
False
# mkldnn Output has diff with bias!
def
teller2
(
program_config
,
predictor_config
):
return
predictor_config
.
mkldnn_enabled
()
and
program_config
.
ops
[
0
].
attrs
[
'has_bias'
]
==
True
self
.
add_ignore_check_case
(
teller1
,
IgnoreReasons
.
PASS_ACCURACY_ERROR
,
"The output format of conv2d is wrong when data_format attribute is NHWC,
\
because currently its fused op (Conv2DFusion) only supports data format of channel first (NCHW)."
)
self
.
add_ignore_check_case
(
teller2
,
IgnoreReasons
.
PASS_ACCURACY_ERROR
,
"Currently mkldnn Output has diff with bias!"
)
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
passes
=
[
"conv_affine_channel_fuse_pass"
],
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/inference/test_conv_eltwiseadd_affine_channel_fuse_pass.py
已删除
100644 → 0
浏览文件 @
25650774
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
PassAutoScanTest
,
IgnoreReasons
from
program_config
import
TensorConfig
,
ProgramConfig
,
OpConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
hypothesis
from
hypothesis
import
given
,
settings
,
seed
,
example
,
assume
import
hypothesis.strategies
as
st
class
TestConvEltwiseAddAffineChannelFusePass
(
PassAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
attrs
[
0
][
'data_format'
]
==
"NHWC"
and
attrs
[
1
][
'axis'
]
!=
3
:
return
False
return
True
def
sample_program_config
(
self
,
draw
):
padding_algorithm
=
draw
(
st
.
sampled_from
([
"EXPLICIT"
,
"SAME"
,
"VALID"
]))
groups
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
3
))
data_format
=
draw
(
st
.
sampled_from
([
"NCHW"
,
"NHWC"
]))
axis
=
draw
(
st
.
sampled_from
([
1
]))
filter_channel
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
16
))
*
4
filter_size
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
))
in_channel
=
groups
*
filter_channel
out_channel_factor
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
16
))
*
4
out_channel
=
groups
*
out_channel_factor
batch_size
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
))
dilations
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
2
),
min_size
=
2
,
max_size
=
2
))
paddings
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
0
,
max_value
=
2
),
min_size
=
2
,
max_size
=
2
))
strides
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
2
),
min_size
=
2
,
max_size
=
2
))
has_bias
=
draw
(
st
.
booleans
())
x_shape
=
[
batch_size
,
in_channel
,
64
,
64
]
if
data_format
==
"NCHW"
else
[
batch_size
,
64
,
64
,
in_channel
]
w_shape
=
[
out_channel
,
filter_channel
,
filter_size
,
filter_size
]
scale_shape
=
[
out_channel
]
bias_shape
=
[
out_channel
]
def
generate_input
():
return
np
.
random
.
random
(
x_shape
).
astype
(
np
.
float32
)
def
generate_weight
():
return
np
.
random
.
random
(
w_shape
).
astype
(
np
.
float32
)
def
generate_bias
():
return
np
.
random
.
random
(
bias_shape
).
astype
(
np
.
float32
)
def
generate_scale_bias
():
return
np
.
random
.
random
(
bias_shape
).
astype
(
np
.
float32
)
conv2d_op
=
OpConfig
(
"conv2d"
,
inputs
=
{
"Input"
:
[
"input_data"
],
"Filter"
:
[
"conv2d_weight"
],
},
outputs
=
{
"Output"
:
[
"conv_output"
]},
data_format
=
data_format
,
dilations
=
dilations
,
padding_algorithm
=
padding_algorithm
,
groups
=
groups
,
paddings
=
paddings
,
strides
=
strides
,
has_bias
=
has_bias
,
is_test
=
True
)
eltwise_op
=
OpConfig
(
"elementwise_add"
,
inputs
=
{
"X"
:
[
"conv_output"
],
"Y"
:
[
"conv2d_bias"
]},
outputs
=
{
"Out"
:
[
"elementwise_output"
]},
axis
=
axis
)
ac_op
=
OpConfig
(
"affine_channel"
,
inputs
=
{
"X"
:
[
"elementwise_output"
],
"Scale"
:
[
"affine_channel_scale"
],
"Bias"
:
[
"affine_channel_bias"
]
},
outputs
=
{
"Out"
:
[
"affine_channel_ouput"
]},
data_layout
=
data_format
)
if
has_bias
==
True
:
conv2d_op
.
inputs
[
"Bias"
]
=
[
"conv2d_bias"
]
ops
=
[
conv2d_op
,
eltwise_op
,
ac_op
]
program_config
=
ProgramConfig
(
ops
=
ops
,
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
)),
},
weights
=
{
"conv2d_weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
"conv2d_bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_bias
)),
"affine_channel_scale"
:
TensorConfig
(
data_gen
=
partial
(
generate_scale_bias
)),
"affine_channel_bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_scale_bias
)),
},
outputs
=
[
"affine_channel_ouput"
])
return
program_config
def
sample_predictor_configs
(
self
,
program_config
):
config
=
self
.
create_inference_config
(
use_gpu
=
True
)
yield
config
,
[
'conv2d'
,
'elementwise_add'
],
(
1e-4
,
1e-4
)
config
=
self
.
create_inference_config
(
use_mkldnn
=
True
)
yield
config
,
[
'conv2d'
,
'elementwise_add'
],
(
1e-4
,
1e-4
)
# TRT
config
=
self
.
create_trt_inference_config
()
config
.
enable_tensorrt_engine
(
workspace_size
=
1
<<
20
,
max_batch_size
=
4
,
min_subgraph_size
=
1
,
precision_mode
=
paddle_infer
.
PrecisionType
.
Float32
,
use_static
=
False
,
use_calib_mode
=
False
)
yield
config
,
[
'conv2d'
,
'elementwise_add'
],
(
1e-4
,
1e-4
)
def
add_ignore_pass_case
(
self
):
# If the problem has been fixed, the judgment
# in is_program_valid needs to be deleted!!!
def
teller1
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'data_format'
]
==
"NHWC"
:
return
True
return
False
# mkldnn Output has diff with bias!
def
teller2
(
program_config
,
predictor_config
):
return
predictor_config
.
mkldnn_enabled
()
and
program_config
.
ops
[
0
].
attrs
[
'has_bias'
]
==
True
self
.
add_ignore_check_case
(
teller1
,
IgnoreReasons
.
PASS_ACCURACY_ERROR
,
"The output format of conv2d is wrong when data_format attribute is NHWC,
\
it will trigger Broadcast dimension mismatch bug
\
when data_format attribute is NHWC and axis of eltwise op is 1 for this pass."
)
self
.
add_ignore_check_case
(
teller2
,
IgnoreReasons
.
PASS_ACCURACY_ERROR
,
"Currently mkldnn Output has diff with bias!"
)
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
passes
=
[
"conv_eltwiseadd_affine_channel_fuse_pass"
],
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tools/parallel_UT_rule.py
浏览文件 @
fc06be9d
...
...
@@ -958,7 +958,6 @@ FOURTH_HIGH_PARALLEL_JOB_NEW = [
'test_dynamic_rnn_stop_gradient'
,
'test_raw_program_optimizer'
,
'test_pow'
,
'test_inplace_softmax_with_cross_entropy'
,
'test_transforms'
,
'test_unfold_op'
,
'test_assign_op'
,
'test_isinstance'
,
'test_conv_affine_channel_fuse_pass'
,
'auto_growth_best_fit_allocator_facade_test'
,
'test_cholesky_op'
,
'test_adaptive_avg_pool3d'
,
'test_paddle_save_load_binary'
,
'test_fused_fc_elementwise_layernorm_op'
,
'test_sequence_enumerate_op'
,
...
...
@@ -1873,7 +1872,6 @@ TETRAD_PARALLEL_JOB = [
'test_dataloader_unkeep_order'
,
'test_parallel_executor_profiler'
,
'test_correlation'
,
'test_conv_affine_channel_fuse_pass'
,
'test_ir_inplace_pass'
,
'test_moving_average_abs_max_scale_op'
,
'test_flatten_contiguous_range_op'
,
...
...
tools/static_mode_white_list.py
浏览文件 @
fc06be9d
...
...
@@ -578,7 +578,6 @@ STATIC_MODE_TESTING_LIST = [
'test_ir_embedding_eltwise_layernorm_fuse_pass'
,
'test_ir_fc_fuse_pass'
,
'test_ir_skip_layernorm_pass'
,
'test_conv_affine_channel_fuse_pass'
,
'test_conv_bias_mkldnn_fuse_pass'
,
'test_conv_bn_fuse_pass'
,
'test_conv_elementwise_add2_act_fuse_pass'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录