Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0695fb88
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0695fb88
编写于
4月 13, 2023
作者:
Z
zhupengyang
提交者:
GitHub
4月 13, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete useless cast, elementwise_mul (#52831)
上级
f4ae3737
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
394 addition
and
7 deletion
+394
-7
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/delete_cast_op_pass.cc
paddle/fluid/framework/ir/delete_cast_op_pass.cc
+125
-0
paddle/fluid/framework/ir/delete_cast_op_pass.h
paddle/fluid/framework/ir/delete_cast_op_pass.h
+14
-1
paddle/fluid/framework/ir/delete_cast_op_pass_test.cc
paddle/fluid/framework/ir/delete_cast_op_pass_test.cc
+29
-0
paddle/fluid/framework/ir/delete_elementwise_mul_op_pass.cc
paddle/fluid/framework/ir/delete_elementwise_mul_op_pass.cc
+127
-0
paddle/fluid/framework/ir/pass.cc
paddle/fluid/framework/ir/pass.cc
+1
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+1
-0
paddle/phi/kernels/xpu/scatter_kernel.cc
paddle/phi/kernels/xpu/scatter_kernel.cc
+13
-6
python/paddle/fluid/tests/unittests/ir/inference/test_xpu_delete_elementwise_mul_op_pass.py
...s/ir/inference/test_xpu_delete_elementwise_mul_op_pass.py
+83
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
0695fb88
...
...
@@ -127,6 +127,7 @@ pass_library(gpu_cpu_map_matmul_to_mul_pass inference)
pass_library
(
dense_fc_to_sparse_pass inference
)
pass_library
(
dense_multihead_matmul_to_sparse_pass inference
)
pass_library
(
delete_cast_op_pass inference
)
pass_library
(
delete_elementwise_mul_op_pass inference
)
pass_library
(
generate_pass DEPS pass_desc_proto
)
target_link_libraries
(
generate_pass pass_desc_proto
)
...
...
paddle/fluid/framework/ir/delete_cast_op_pass.cc
浏览文件 @
0695fb88
...
...
@@ -505,6 +505,122 @@ int DeleteCastOpPass::ApplyCastIndexSamplePass(ir::Graph* graph) const {
return
found_subgraph_count
;
}
namespace
patterns
{
struct
CastScatterPattern
:
public
PatternBase
{
CastScatterPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
scatter
);
PATTERN_DECL_NODE
(
cast0
);
PATTERN_DECL_NODE
(
cast1
);
PATTERN_DECL_NODE
(
cast2
);
// declare variable node's name
PATTERN_DECL_NODE
(
cast0_in
);
PATTERN_DECL_NODE
(
cast0_out
);
PATTERN_DECL_NODE
(
cast1_in
);
PATTERN_DECL_NODE
(
cast1_out
);
PATTERN_DECL_NODE
(
scatter_out
);
PATTERN_DECL_NODE
(
cast2_out
);
};
CastScatterPattern
::
CastScatterPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
cast0_in
=
pattern
->
NewNode
(
cast0_in_repr
())
->
assert_is_op_input
(
"cast"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
cast0
=
pattern
->
NewNode
(
cast0_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
);
});
auto
*
cast0_out
=
pattern
->
NewNode
(
cast0_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"scatter"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
cast1_in
=
pattern
->
NewNode
(
cast1_in_repr
())
->
assert_is_op_input
(
"cast"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
cast1
=
pattern
->
NewNode
(
cast1_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
);
});
auto
*
cast1_out
=
pattern
->
NewNode
(
cast1_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"scatter"
,
"Updates"
)
->
assert_has_n_outputs
(
1
);
auto
*
scatter
=
pattern
->
NewNode
(
scatter_repr
())
->
assert_is_op
(
"scatter"
);
auto
*
scatter_out
=
pattern
->
NewNode
(
scatter_out_repr
())
->
assert_is_op_output
(
"scatter"
,
"Out"
)
->
assert_is_op_input
(
"cast"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
cast2
=
pattern
->
NewNode
(
cast2_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
);
});
auto
*
cast2_out
=
pattern
->
NewNode
(
cast2_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
);
cast0
->
LinksFrom
({
cast0_in
}).
LinksTo
({
cast0_out
});
cast1
->
LinksFrom
({
cast1_in
}).
LinksTo
({
cast1_out
});
scatter
->
LinksFrom
({
cast0_out
,
cast1_out
}).
LinksTo
({
scatter_out
});
cast2
->
LinksFrom
({
scatter_out
}).
LinksTo
({
cast2_out
});
}
}
// namespace patterns
int
DeleteCastOpPass
::
ApplyCastScatterPass
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
CastScatterPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle ApplyCastScatterPass fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
scatter
,
scatter
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast0
,
cast0
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast1
,
cast1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast2
,
cast2
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast0_in
,
cast0_in
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast0_out
,
cast0_out
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast1_in
,
cast1_in
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast1_out
,
cast1_out
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
scatter_out
,
scatter_out
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast2_out
,
cast2_out
,
pattern
);
scatter
->
Op
()
->
RenameInput
(
cast0_out
->
Name
(),
cast0_in
->
Name
());
scatter
->
Op
()
->
RenameInput
(
cast1_out
->
Name
(),
cast1_in
->
Name
());
scatter
->
Op
()
->
RenameOutput
(
scatter_out
->
Name
(),
cast2_out
->
Name
());
IR_NODE_LINK_TO
(
cast0_in
,
scatter
);
IR_NODE_LINK_TO
(
cast1_in
,
scatter
);
IR_NODE_LINK_TO
(
scatter
,
cast2_out
);
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
cast0
,
cast1
,
cast2
,
cast0_out
,
cast1_out
,
scatter_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
return
found_subgraph_count
;
}
namespace
patterns
{
struct
CastPattern
:
public
PatternBase
{
CastPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
...
...
@@ -591,6 +707,15 @@ void DeleteCastOpPass::ApplyImpl(ir::Graph* graph) const {
<<
" cast_index_sample_cast subgraph"
;
}
found_subgraph_count
=
0
;
for
(
size_t
i
=
0
;
i
<
graph
->
SubGraphsSize
();
i
++
)
{
found_subgraph_count
+=
ApplyCastScatterPass
(
graph
->
GetSubGraph
(
i
));
}
if
(
found_subgraph_count
>
0
)
{
LOG
(
INFO
)
<<
"--- delete "
<<
found_subgraph_count
<<
" cast_scatter_cast subgraph"
;
}
found_subgraph_count
=
0
;
for
(
size_t
i
=
0
;
i
<
graph
->
SubGraphsSize
();
i
++
)
{
found_subgraph_count
+=
ApplyCastPass
(
graph
->
GetSubGraph
(
i
));
...
...
paddle/fluid/framework/ir/delete_cast_op_pass.h
浏览文件 @
0695fb88
...
...
@@ -111,7 +111,20 @@ class DeleteCastOpPass : public FusePassBase {
*/
int
ApplyCastIndexSamplePass
(
ir
::
Graph
*
graph
)
const
;
// Delete cast if its "in_dtype" is the same with "out_dtype"
/*
Origin subgraph:
cast(fp16->fp32) cast(fp16->fp32)
\ /
scatter
|
cast(fp32->fp16)
Optimized subgraph:
scatter
*/
int
ApplyCastScatterPass
(
ir
::
Graph
*
graph
)
const
;
// Delete cast if its "in_dtype" is the same as "out_dtype"
int
ApplyCastPass
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"delete_cast_op_pass"
};
...
...
paddle/fluid/framework/ir/delete_cast_op_pass_test.cc
浏览文件 @
0695fb88
...
...
@@ -226,6 +226,35 @@ TEST(ApplyCastIndexSamplePass, basic) {
cast_num_in_graph
));
}
TEST
(
ApplyCastScatterPass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
auto
*
cast0_in
=
Data
(
block
,
"cast0_in"
,
{
1
});
auto
*
cast0_out
=
AddCast
(
block
,
cast0_in
,
4
,
5
);
auto
*
cast1_in
=
Data
(
block
,
"cast1_in"
,
{
1
});
auto
*
cast1_out
=
AddCast
(
block
,
cast1_in
,
4
,
5
);
auto
*
scatter_out
=
Data
(
block
,
"scatter_out"
,
{
1
});
OpDesc
*
scatter
=
block
->
AppendOp
();
scatter
->
SetType
(
"scatter"
);
scatter
->
SetInput
(
"X"
,
{
cast0_out
->
Name
()});
scatter
->
SetInput
(
"Updates"
,
{
cast1_out
->
Name
()});
scatter
->
SetOutput
(
"Out"
,
{
scatter_out
->
Name
()});
AddCast
(
block
,
scatter_out
,
5
,
4
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"delete_cast_op_pass"
);
pass
->
Apply
(
graph
.
get
());
int
cast_num_in_graph
=
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
);
PADDLE_ENFORCE_EQ
(
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
),
0
,
platform
::
errors
::
PreconditionNotMet
(
"graph should have 0 cast after delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph
));
}
TEST
(
ApplyCastPass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
...
...
paddle/fluid/framework/ir/delete_elementwise_mul_op_pass.cc
0 → 100644
浏览文件 @
0695fb88
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
FillMulPattern
:
public
PatternBase
{
FillMulPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
fill
);
PATTERN_DECL_NODE
(
mul
);
// declare variable node's name
PATTERN_DECL_NODE
(
fill_out
);
PATTERN_DECL_NODE
(
mul_in
);
PATTERN_DECL_NODE
(
mul_out
);
};
FillMulPattern
::
FillMulPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
fill
=
pattern
->
NewNode
(
fill_repr
())
->
assert_is_op
(
"fill_constant_batch_size_like"
)
->
assert_more
([](
Node
*
node
)
{
float
value
=
node
->
Op
()
->
GetAttrIfExists
<
float
>
(
"value"
);
return
fabs
(
value
-
1.
f
)
<
1e-5
;
});
auto
*
fill_out
=
pattern
->
NewNode
(
fill_out_repr
())
->
assert_is_op_output
(
"fill_constant_batch_size_like"
,
"Out"
)
->
assert_has_n_outputs
(
1
);
auto
*
mul_in
=
pattern
->
NewNode
(
mul_in_repr
());
auto
*
mul
=
pattern
->
NewNode
(
mul_repr
())
->
assert_is_op
(
"elementwise_mul"
);
auto
*
mul_out
=
pattern
->
NewNode
(
mul_out_repr
())
->
assert_is_op_output
(
"elementwise_mul"
,
"Out"
);
fill
->
LinksTo
({
fill_out
});
mul
->
LinksFrom
({
fill_out
,
mul_in
}).
LinksTo
({
mul_out
});
}
}
// namespace patterns
/*
Delete "elementwise" if one of inputs is "1".
*/
class
DeleteElementwiseMulOpPass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
const
std
::
string
name_scope_
{
"delete_elementwise_mul_op_pass"
};
};
void
DeleteElementwiseMulOpPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
GraphPatternDetector
gpd
;
patterns
::
FillMulPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle DeleteElementwiseMulOpPass fuse"
;
#define GET_IR_NODE(node_) GET_IR_NODE_FROM_SUBGRAPH(node_, node_, pattern)
GET_IR_NODE
(
fill
);
GET_IR_NODE
(
mul
);
GET_IR_NODE
(
fill_out
);
GET_IR_NODE
(
mul_in
);
GET_IR_NODE
(
mul_out
);
#undef GET_IR_NODE
for
(
auto
*
next_op
:
mul_out
->
outputs
)
{
next_op
->
Op
()
->
RenameInput
(
mul_out
->
Name
(),
mul_in
->
Name
());
IR_NODE_LINK_TO
(
mul_in
,
next_op
);
}
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
fill
,
mul
,
fill_out
,
mul_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
delete_elementwise_mul_op_pass
,
paddle
::
framework
::
ir
::
DeleteElementwiseMulOpPass
);
REGISTER_PASS_CAPABILITY
(
delete_elementwise_mul_op_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
EQ
(
"fill_constant_batch_size_like"
,
0
));
paddle/fluid/framework/ir/pass.cc
浏览文件 @
0695fb88
...
...
@@ -57,6 +57,7 @@ static const std::vector<std::string> xpu_support_subgraph_passes = {
"identity_scale_op_clean_pass"
,
"delete_op_device_pass"
,
"constant_folding_pass"
,
"delete_elementwise_mul_op_pass"
,
"generate_sequence_xpu_fuse_pass"
,
"embedding_with_eltwise_add_xpu_fuse_pass"
,
"multi_encoder_xpu_fuse_pass"
,
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
0695fb88
...
...
@@ -524,6 +524,7 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"identity_scale_op_clean_pass"
,
"delete_op_device_pass"
,
"constant_folding_pass"
,
"delete_elementwise_mul_op_pass"
,
"generate_sequence_xpu_fuse_pass"
,
"embedding_with_eltwise_add_xpu_fuse_pass"
,
"multi_encoder_xpu_fuse_pass"
,
...
...
paddle/phi/kernels/xpu/scatter_kernel.cc
浏览文件 @
0695fb88
...
...
@@ -27,9 +27,12 @@ void ScatterKernel(const Context &ctx,
const
DenseTensor
&
updates
,
bool
overwrite
,
DenseTensor
*
out
)
{
using
XPUTypeT
=
typename
XPUTypeTrait
<
T
>::
Type
;
out
->
Resize
(
x
.
dims
());
ctx
.
template
Alloc
<
T
>(
out
);
int
ret
=
xpu
::
copy
(
ctx
.
x_context
(),
x
.
data
<
T
>
(),
out
->
data
<
T
>
(),
x
.
numel
());
auto
*
x_data
=
reinterpret_cast
<
const
XPUTypeT
*>
(
x
.
data
<
T
>
());
auto
*
updates_data
=
reinterpret_cast
<
const
XPUTypeT
*>
(
updates
.
data
<
T
>
());
auto
*
out_data
=
reinterpret_cast
<
XPUTypeT
*>
(
ctx
.
template
Alloc
<
T
>(
out
));
int
ret
=
xpu
::
copy
(
ctx
.
x_context
(),
x_data
,
out_data
,
x
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"copy"
);
// Apply ScatterUpdate: Out[index] = Updates[:]
const
auto
&
index_type
=
index
.
dtype
();
...
...
@@ -78,8 +81,6 @@ void ScatterKernel(const Context &ctx,
int
dim0
=
static_cast
<
int
>
(
x
.
dims
()[
0
]);
int
dim1
=
static_cast
<
int
>
(
phi
::
product
(
phi
::
slice_ddim
(
x_dims
,
1
,
x_dims
.
size
())));
T
*
out_data
=
out
->
data
<
T
>
();
const
T
*
updates_data
=
updates
.
data
<
T
>
();
DenseTensor
indices_cpu
(
index
.
type
());
phi
::
Copy
(
ctx
,
index
,
phi
::
CPUPlace
(),
false
,
&
indices_cpu
);
...
...
@@ -113,5 +114,11 @@ void ScatterKernel(const Context &ctx,
}
// namespace phi
PD_REGISTER_KERNEL
(
scatter
,
XPU
,
ALL_LAYOUT
,
phi
::
ScatterKernel
,
float
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
scatter
,
XPU
,
ALL_LAYOUT
,
phi
::
ScatterKernel
,
float
,
int
,
int64_t
,
phi
::
dtype
::
float16
)
{}
python/paddle/fluid/tests/unittests/ir/inference/test_xpu_delete_elementwise_mul_op_pass.py
0 → 100644
浏览文件 @
0695fb88
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
hypothesis.strategies
as
st
from
auto_scan_test
import
PassAutoScanTest
from
program_config
import
OpConfig
,
ProgramConfig
,
TensorConfig
class
TestDeleteElementwiseMulOpPass
(
PassAutoScanTest
):
def
sample_predictor_configs
(
self
,
program_config
):
config
=
self
.
create_inference_config
(
use_xpu
=
True
)
yield
config
,
[
"relu"
],
(
1e-5
,
1e-5
)
def
sample_program_config
(
self
,
draw
):
x_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
20
),
min_size
=
2
,
max_size
=
2
)
)
fill_op
=
OpConfig
(
"fill_constant_batch_size_like"
,
inputs
=
{
"Input"
:
[
"fill_x"
],
},
shape
=
[
-
1
,
1
],
input_dim_idx
=
0
,
output_dim_idx
=
0
,
dtype
=
5
,
value
=
1.0
,
str_value
=
"1"
,
force_cpu
=
False
,
outputs
=
{
"Out"
:
[
"fill_out"
]},
)
mul_op
=
OpConfig
(
"elementwise_mul"
,
inputs
=
{
"X"
:
[
"fill_out"
],
"Y"
:
[
"mul_in"
]},
axis
=
0
,
outputs
=
{
"Out"
:
[
"mul_out"
]},
)
relu_op
=
OpConfig
(
"relu"
,
inputs
=
{
"X"
:
[
"mul_out"
],
},
outputs
=
{
"Out"
:
[
"relu_out"
]},
)
ops
=
[
fill_op
,
mul_op
,
relu_op
]
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"fill_x"
:
TensorConfig
(
shape
=
x_shape
),
"mul_in"
:
TensorConfig
(
shape
=
x_shape
),
},
outputs
=
ops
[
-
1
].
outputs
[
"Out"
],
)
return
program_config
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
max_examples
=
25
,
passes
=
[
"delete_elementwise_mul_op_pass"
],
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录