conv.py 51.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
20 21 22 23 24 25

from ...device import (
    get_cudnn_version,
    is_compiled_with_cuda,
    is_compiled_with_rocm,
)
26
from ...utils import convert_to_list
27 28
from .. import functional as F
from ..functional.conv import _update_padding_nd
29
from ..initializer import Normal
30
from .layers import Layer
31

32 33
__all__ = []

34 35 36

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
37
    std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
38
    return Normal(0.0, std)
39 40


41 42 43 44 45 46 47 48
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


Z
zhiboniu 已提交
49
class _ConvNd(Layer):
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        transposed,
        dims,
        stride=1,
        padding=0,
        padding_mode='zeros',
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
67
        super().__init__()
68 69 70
        assert (
            weight_attr is not False
        ), "weight_attr should not be False in Conv."
L
LielinJiang 已提交
71 72 73 74 75 76 77
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

78 79 80
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
81 82 83 84
                "padding_mode must be one of {}, but got padding_mode='{}'".format(
                    valid_padding_modes, padding_mode
                )
            )
85

86 87 88 89 90
        if padding_mode in {
            'reflect',
            'replicate',
            'circular',
        } and not isinstance(padding, int):
91 92 93 94
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

95 96 97
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
98 99 100 101
                "data_format must be one of {}, but got data_format='{}'".format(
                    valid_format, data_format
                )
            )
102

103 104 105 106 107
        channel_last = (
            (data_format == "NHWC")
            or (data_format == "NDHWC")
            or (data_format == "NLC")
        )
L
LielinJiang 已提交
108 109 110 111 112
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

113 114 115
        self._stride = convert_to_list(stride, dims, 'stride')
        self._dilation = convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = convert_to_list(kernel_size, dims, 'kernel_size')
L
LielinJiang 已提交
116
        self._padding = padding
117
        self._padding_mode = padding_mode
118
        self.output_padding = output_padding
L
LielinJiang 已提交
119
        if dims != 1:
120
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
121 122
                padding, channel_last, dims
            )
L
LielinJiang 已提交
123 124

        if transposed:
125 126 127 128
            filter_shape = [
                self._in_channels,
                out_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
129
        else:
130 131 132 133
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
134
                _paired_padding = convert_to_list(padding, dims, 'padding')
135
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
136 137
                    _paired_padding, 2
                )
138

139 140 141 142
                (
                    self._updated_padding,
                    self._padding_algorithm,
                ) = _update_padding_nd(0, channel_last, dims)
L
LielinJiang 已提交
143

144 145 146 147
            filter_shape = [
                out_channels,
                in_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
148

L
LielinJiang 已提交
149 150 151 152
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
153
            std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
154
            return Normal(0.0, std)
L
LielinJiang 已提交
155

L
LielinJiang 已提交
156
        self.weight = self.create_parameter(
L
LielinJiang 已提交
157 158
            shape=filter_shape,
            attr=self._param_attr,
159 160 161 162 163
            default_initializer=_get_default_param_initializer(),
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True
        )
L
LielinJiang 已提交
164

L
LielinJiang 已提交
165 166
        cudnn_version = get_cudnn_version()

167 168 169 170 171
        self._use_cudnn = (
            True
            if (is_compiled_with_cuda() and cudnn_version is not None)
            else False
        )
L
LielinJiang 已提交
172 173

        self._op_type = "conv" + str(dims) + 'd'
174 175 176 177 178
        if self._op_type == 'conv2d' and (
            in_channels == groups
            and in_channels != 1
            and out_channels % in_channels == 0
        ):
L
LielinJiang 已提交
179
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
180
            if is_compiled_with_rocm():
181 182 183 184
                self._use_cudnn = True
            else:
                self._use_cudnn = False

185 186 187 188 189 190
        if (
            is_compiled_with_cuda()
            and get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
L
LielinJiang 已提交
191 192
            self._use_cudnn = False

193 194 195 196 197 198
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
199
        if self._padding_mode != 'zeros':
200
            main_str += ', padding_mode={_padding_mode}'
201 202
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
203 204 205 206 207 208 209
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
210

C
cnn 已提交
211
class Conv1D(_ConvNd):
212
    r"""
C
cnn 已提交
213
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
214 215 216 217 218 219
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
220
    C is the number of input feature map, K is the size of the kernel.
W
whs 已提交
221 222 223 224
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
225 226 227

    For each input :math:`X` , the equation is:

W
whs 已提交
228
    .. math::
W
whs 已提交
229

230
        Out = \sigma (W \ast X + b)
W
whs 已提交
231

W
whs 已提交
232
    Where:
W
whs 已提交
233

W
whs 已提交
234 235
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
236
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
237
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
238
    * :math:`\sigma`: Activation function.
W
whs 已提交
239
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
240

W
whs 已提交
241
    Example:
W
whs 已提交
242

W
whs 已提交
243
        - Input:
W
whs 已提交
244

W
whs 已提交
245
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
246

W
whs 已提交
247
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
248

W
whs 已提交
249
        - Output:
W
whs 已提交
250

W
whs 已提交
251
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
252

W
whs 已提交
253
        Where
W
whs 已提交
254

W
whs 已提交
255
        .. math::
W
whs 已提交
256

257
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
258

W
whs 已提交
259 260 261 262
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
263
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
264
            it must contain one integer, (kernel_size).
265
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
266 267 268 269 270 271
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
272
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
273 274 275 276 277 278 279 280 281 282 283 284
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
285
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
286 287 288
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
289
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
290 291 292 293 294
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
295

W
whs 已提交
296
    Attribute:
W
wangguanzhong 已提交
297

W
whs 已提交
298
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
299

W
whs 已提交
300
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
301

W
whs 已提交
302 303
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
304 305
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
306
        - output: 3-D tensor with same shape as input x.
307

W
whs 已提交
308 309
    Examples:
        .. code-block:: python
W
whs 已提交
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
            import paddle
            from paddle.nn import Conv1D

            x = paddle.to_tensor([[[4, 8, 1, 9],
                                    [7, 2, 0, 9],
                                    [6, 9, 2, 6]]], dtype="float32")
            w = paddle.to_tensor([[[9, 3, 4],
                                    [0, 0, 7],
                                    [2, 5, 6]],
                                    [[0, 3, 4],
                                    [2, 9, 7],
                                    [5, 6, 8]]], dtype="float32")

            conv = Conv1D(3, 2, 3)
            conv.weight.set_value(w)
            y = conv(x)
            print(y)
            # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[133., 238.],
            #          [160., 211.]]])
331
    """
S
swtkiwi 已提交
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
347
        super().__init__(
348 349 350 351 352 353 354 355 356 357 358 359 360 361
            in_channels,
            out_channels,
            kernel_size,
            False,
            1,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
362

363
    def forward(self, x):
L
LielinJiang 已提交
364 365
        padding = 0
        if self._padding_mode != "zeros":
366 367 368 369 370 371
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )
L
LielinJiang 已提交
372 373
        else:
            padding = self._padding
374

375 376 377 378 379 380 381 382 383 384
        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
385 386 387
        return out


C
cnn 已提交
388
class Conv1DTranspose(_ConvNd):
389
    r"""
C
cnn 已提交
390
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

406
        Out = \sigma (W \ast X + b)
407 408 409 410 411

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
412
    * :math:`\ast`: Convolution operation.
413
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
414
    * :math:`\sigma`: Activation function.
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

433
           L^\prime_{out} &= (L_{in} - 1) * stride - 2 * padding + dilation * (L_f - 1) + 1 \\
434 435 436 437 438 439 440 441
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
442
          and :math:`L^\prime_{out} + stride`.
443 444 445 446 447

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
448
        kernel_size(int|tuple|list): The filter size. If kernel_size is a tuple/list,
449 450 451 452
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
453
            If stride is a tuple/list, it must contain one integer, (stride_size).
454 455 456 457 458 459 460
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
461
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
462
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
463 464 465 466 467 468 469
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
470
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
487 488

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
489 490
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
491
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
492 493 494 495 496
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
            import paddle
            from paddle.nn import Conv1DTranspose

            # shape: (1, 2, 4)
            x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2]]], dtype="float32")
            # shape: (2, 1, 2)
            w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

            conv = Conv1DTranspose(2, 1, 2)
            conv.weight.set_value(w)
            y = conv(x)
            print(y)
            # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[60., 16., 99., 75., 4. ]]])
513 514
    """

515 516 517 518 519 520 521 522 523 524 525 526 527 528
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        groups=1,
        dilation=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
529
        super().__init__(
530 531 532 533 534 535 536 537 538 539 540 541 542 543
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
544 545

    def forward(self, x, output_size=None):
546 547 548 549 550 551 552 553 554 555 556 557
        out = F.conv1d_transpose(
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
L
LielinJiang 已提交
558 559 560
        return out


C
cnn 已提交
561
class Conv2D(_ConvNd):
562
    r"""
C
cnn 已提交
563
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

583
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
584 585 586 587 588

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
589
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
590
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
591
    * :math:`\sigma`: Activation function.
L
LielinJiang 已提交
592
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
593

L
LielinJiang 已提交
594 595 596
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
597
        kernel_size(int|list|tuple): The size of the convolving kernel.
598
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
599 600 601 602
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
603
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
L
LielinJiang 已提交
604 605 606 607
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
608
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
609 610
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
611
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
612 613 614 615 616 617 618 619 620
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
621
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
640 641 642 643
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
644 645 646 647 648 649
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

650
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
651

652
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
653 654 655 656 657 658 659

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
660

C
cnn 已提交
661
          paddle.disable_static()
662

663
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
664

C
cnn 已提交
665
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
666
          y_var = conv(x_var)
667 668
          print(y_var.shape)
          # [2, 6, 6, 6]
L
LielinJiang 已提交
669 670
    """

671 672 673 674 675 676 677 678 679 680 681 682 683 684
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
685
        super().__init__(
686 687 688 689 690 691 692 693 694 695 696 697 698 699
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
700 701 702

    def forward(self, x):
        if self._padding_mode != 'zeros':
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
724 725 726
        return out


C
cnn 已提交
727
class Conv2DTranspose(_ConvNd):
728
    r"""
C
cnn 已提交
729
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
730 731 732 733 734
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
735 736
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
737 738 739 740 741 742
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
743
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
744
    For each input :math:`X`, the equation is:
745 746 747

    ..  math::

748
        Out = \sigma (W \ast X + b)
749

750
    Where:
751

752
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
753
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
754
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
755
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
756
    * :math:`\sigma`: Activation function.
757
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
758

759
    Parameters:
L
LielinJiang 已提交
760 761
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
762
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
763 764
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
765
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
766 767
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
768 769
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
770
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides
771 772 773 774
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
775 776
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
777
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
778 779
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
780
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
781 782 783 784 785
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
786
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
787 788 789
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
790
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
791 792 793 794
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
795
        data_format(str, optional): Data format that specifies the layout of input.
796
            It can be "NCHW" or "NHWC". Default: "NCHW".
797

798
    Attribute:
799

800
        **weight** (Parameter): the learnable weights of filters of this layer.
801

802
        **bias** (Parameter or None): the learnable bias of this layer.
803

L
LielinJiang 已提交
804
    Shape:
805

L
LielinJiang 已提交
806
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
807

W
wangguanzhong 已提交
808 809 810 811
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
812
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
813

L
LielinJiang 已提交
814
        Where
815 816 817 818 819 820 821 822 823 824 825

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

826
    Examples:
827

828
       .. code-block:: python
829

L
LielinJiang 已提交
830 831
          import paddle
          import paddle.nn as nn
832

C
cnn 已提交
833
          paddle.disable_static()
834 835 836

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
837
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
838
          y_var = conv(x_var)
839 840
          print(y_var.shape)
          # [2, 6, 10, 10]
841 842
    """

843 844 845 846 847 848 849 850 851 852 853 854 855 856
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
857
        super().__init__(
858 859 860 861 862 863 864 865 866 867 868 869 870 871
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
872 873

    def forward(self, x, output_size=None):
874
        if output_size is None:
875
            output_padding = self.output_padding
876
        else:
L
LielinJiang 已提交
877
            output_padding = 0
878

879 880 881 882 883 884 885 886 887 888 889 890
        out = F.conv2d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
891 892 893
        return out


C
cnn 已提交
894
class Conv3D(_ConvNd):
895
    r"""
896 897
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
898
    and strides, paddings, dilations, groups parameters. Input(Input) and
899
    Output(Output) are multidimensional tensors with a shape of
900 901 902 903 904 905 906
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
907 908 909

    ..  math::

910
        Out = \sigma (W \ast X + b)
911

912
    In the above equation:
913

914 915
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
916
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
917
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
918
    * :math:`\sigma`: Activation function.
919
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
920

921
    Parameters:
922 923
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
924
        kernel_size(int|list|tuple): The size of the convolving kernel.
925
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
926 927
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
928
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
929
            1. a string in ['valid', 'same'].
930
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
931 932 933 934
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
935
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
936 937
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
938
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
939 940 941 942
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
943 944
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
945 946 947
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
948
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
949
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
950 951 952 953
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
954
        data_format(str, optional): Data format that specifies the layout of input.
955
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
956

957
    Attribute:
958

959
        **weight** (Parameter): the learnable weights of filters of this layer.
960

961
        **bias** (Parameter): the learnable bias of this layer.
962

963
    Shape:
964

965
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
966

W
wangguanzhong 已提交
967 968 969 970
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

971
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
972

973
        Where
974 975 976

        ..  math::

977
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
978

979
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
980

981
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
982

983
    Examples:
984

985
        .. code-block:: python
986

987 988
          import paddle
          import paddle.nn as nn
989

C
cnn 已提交
990
          paddle.disable_static()
991 992

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
993

C
cnn 已提交
994
          conv = nn.Conv3D(4, 6, (3, 3, 3))
995
          y_var = conv(x_var)
996 997
          print(y_var.shape)
          # [2, 6, 6, 6, 6]
998 999
    """

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
1014
        super().__init__(
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
1029

1030 1031
    def forward(self, x):
        if self._padding_mode != 'zeros':
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
1053 1054 1055
        return out


C
cnn 已提交
1056
class Conv3DTranspose(_ConvNd):
1057
    r"""
1058 1059 1060 1061 1062 1063 1064 1065
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1066
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1067 1068 1069 1070
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1071

1072 1073
    ..  math::

1074
        Out = \sigma (W \ast X + b)
1075

1076
    In the above equation:
1077

1078
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1079
    * :math:`W`: Filter value, a tensor with CMDHW format.
1080
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
1081
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1082
    * :math:`\sigma`: Activation function.
1083
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
    .. note::
        The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
        when stride > 1, conv3d maps multiple input shape to the same output shape,
        so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
        If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
        else, the :math:`D_{out}` of the output size must between :math:`D^\prime_{out}`
        and :math:`D^\prime_{out} + strides[0]`, the :math:`H_{out}` of the output size must
        between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[1]`, and the
        :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and
        :math:`W^\prime_{out} + strides[2]`, conv3d_transpose can compute the kernel size automatically.
1095

1096
    Parameters:
L
LielinJiang 已提交
1097 1098
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1099
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1100 1101
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
1102 1103 1104
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
1105
            Default: 1.
1106 1107
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
1108
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
1109 1110 1111
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
1112
            Default: 0.
L
LielinJiang 已提交
1113 1114
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1115
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1116
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
1117
            dilation_D = dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
1118
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1119 1120
            grouped convolution in `Alex Krizhevsky's Deep CNN paper <https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_, in which
            when groups = 2, the first half of the filters is only connected to the
1121 1122
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
1123
            Default: 1.
1124
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1125 1126
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
1127
            is not set, the parameter is initialized with Xavier. Default: None.
1128
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1129 1130 1131
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1132
            is not set, the bias is initialized zero. Default: None.
1133
        data_format(str, optional): Data format that specifies the layout of input.
1134
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1135

1136
    Attribute:
1137

1138
        **weight** (Parameter): the learnable weights of filters of this layer.
1139

1140
        **bias** (Parameter): the learnable bias of this layer.
1141

L
LielinJiang 已提交
1142
    Shape:
1143

L
LielinJiang 已提交
1144
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1145

W
wangguanzhong 已提交
1146 1147 1148 1149
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1150
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1151

L
LielinJiang 已提交
1152
        Where
1153 1154 1155 1156

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
1157

1158
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
1159

1160
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
1161

1162
    Examples:
1163

1164
       .. code-block:: python
1165

L
LielinJiang 已提交
1166 1167
          import paddle
          import paddle.nn as nn
1168

C
cnn 已提交
1169
          paddle.disable_static()
1170 1171

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
1172

C
cnn 已提交
1173
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1174
          y_var = conv(x_var)
1175 1176
          print(y_var.shape)
          # [2, 6, 10, 10, 10]
1177 1178
    """

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
1193
        super().__init__(
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
1208

1209
    def forward(self, x, output_size=None):
1210
        if output_size is None:
1211
            output_padding = self.output_padding
1212
        else:
L
LielinJiang 已提交
1213
            output_padding = 0
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        out = F.conv3d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
1227
        return out