conv.py 51.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
L
LielinJiang 已提交
20
from ...device import get_cudnn_version
Z
zhiboniu 已提交
21 22
from .. import Layer
from ..initializer import Normal
23 24 25
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd
Z
zhiboniu 已提交
26 27
from ...device import is_compiled_with_cuda
from ...device import is_compiled_with_rocm
28

29 30
__all__ = []

31 32 33

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
34
    std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
35
    return Normal(0.0, std)
36 37


38 39 40 41 42 43 44 45
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


Z
zhiboniu 已提交
46
class _ConvNd(Layer):
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        transposed,
        dims,
        stride=1,
        padding=0,
        padding_mode='zeros',
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
64
        super().__init__()
65 66 67
        assert (
            weight_attr is not False
        ), "weight_attr should not be False in Conv."
L
LielinJiang 已提交
68 69 70 71 72 73 74
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

75 76 77
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
78 79 80 81
                "padding_mode must be one of {}, but got padding_mode='{}'".format(
                    valid_padding_modes, padding_mode
                )
            )
82

83 84 85 86 87
        if padding_mode in {
            'reflect',
            'replicate',
            'circular',
        } and not isinstance(padding, int):
88 89 90 91
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

92 93 94
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
95 96 97 98
                "data_format must be one of {}, but got data_format='{}'".format(
                    valid_format, data_format
                )
            )
99

100 101 102 103 104
        channel_last = (
            (data_format == "NHWC")
            or (data_format == "NDHWC")
            or (data_format == "NLC")
        )
L
LielinJiang 已提交
105 106 107 108 109
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
110 111
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
112 113 114
        self._kernel_size = utils.convert_to_list(
            kernel_size, dims, 'kernel_size'
        )
L
LielinJiang 已提交
115
        self._padding = padding
116
        self._padding_mode = padding_mode
117
        self.output_padding = output_padding
L
LielinJiang 已提交
118
        if dims != 1:
119
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
120 121
                padding, channel_last, dims
            )
L
LielinJiang 已提交
122 123

        if transposed:
124 125 126 127
            filter_shape = [
                self._in_channels,
                out_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
128
        else:
129 130 131 132
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
133 134 135
                _paired_padding = utils.convert_to_list(
                    padding, dims, 'padding'
                )
136
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
137 138
                    _paired_padding, 2
                )
139

140 141 142 143
                (
                    self._updated_padding,
                    self._padding_algorithm,
                ) = _update_padding_nd(0, channel_last, dims)
L
LielinJiang 已提交
144

145 146 147 148
            filter_shape = [
                out_channels,
                in_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
149

L
LielinJiang 已提交
150 151 152 153
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
154
            std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
155
            return Normal(0.0, std)
L
LielinJiang 已提交
156

L
LielinJiang 已提交
157
        self.weight = self.create_parameter(
L
LielinJiang 已提交
158 159
            shape=filter_shape,
            attr=self._param_attr,
160 161 162 163 164
            default_initializer=_get_default_param_initializer(),
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True
        )
L
LielinJiang 已提交
165

L
LielinJiang 已提交
166 167
        cudnn_version = get_cudnn_version()

168 169 170 171 172
        self._use_cudnn = (
            True
            if (is_compiled_with_cuda() and cudnn_version is not None)
            else False
        )
L
LielinJiang 已提交
173 174

        self._op_type = "conv" + str(dims) + 'd'
175 176 177 178 179
        if self._op_type == 'conv2d' and (
            in_channels == groups
            and in_channels != 1
            and out_channels % in_channels == 0
        ):
L
LielinJiang 已提交
180
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
181
            if is_compiled_with_rocm():
182 183 184 185
                self._use_cudnn = True
            else:
                self._use_cudnn = False

186 187 188 189 190 191
        if (
            is_compiled_with_cuda()
            and get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
L
LielinJiang 已提交
192 193
            self._use_cudnn = False

194 195 196 197 198 199
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
200
        if self._padding_mode != 'zeros':
201
            main_str += ', padding_mode={_padding_mode}'
202 203
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
204 205 206 207 208 209 210
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
211

C
cnn 已提交
212
class Conv1D(_ConvNd):
213
    r"""
C
cnn 已提交
214
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
215 216 217 218 219 220
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
221
    C is the number of input feature map, K is the size of the kernel.
W
whs 已提交
222 223 224 225
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
226 227 228

    For each input :math:`X` , the equation is:

W
whs 已提交
229
    .. math::
W
whs 已提交
230

231
        Out = \sigma (W \ast X + b)
W
whs 已提交
232

W
whs 已提交
233
    Where:
W
whs 已提交
234

W
whs 已提交
235 236 237
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
238
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
W
whs 已提交
239 240
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
241

W
whs 已提交
242
    Example:
W
whs 已提交
243

W
whs 已提交
244
        - Input:
W
whs 已提交
245

W
whs 已提交
246
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
247

W
whs 已提交
248
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
249

W
whs 已提交
250
        - Output:
W
whs 已提交
251

W
whs 已提交
252
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
253

W
whs 已提交
254
        Where
W
whs 已提交
255

W
whs 已提交
256
        .. math::
W
whs 已提交
257

258
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
259

W
whs 已提交
260 261 262 263
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
264
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
265
            it must contain one integer, (kernel_size).
266
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
267 268 269 270 271 272
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
273
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
274 275 276 277 278 279 280 281 282 283 284 285
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
286
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
287 288 289
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
290
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
291 292 293 294 295
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
296

W
whs 已提交
297
    Attribute:
W
wangguanzhong 已提交
298

W
whs 已提交
299
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
300

W
whs 已提交
301
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
302

W
whs 已提交
303 304
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
305 306
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
307
        - output: 3-D tensor with same shape as input x.
308

W
whs 已提交
309 310
    Examples:
        .. code-block:: python
W
whs 已提交
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
            import paddle
            from paddle.nn import Conv1D

            x = paddle.to_tensor([[[4, 8, 1, 9],
                                    [7, 2, 0, 9],
                                    [6, 9, 2, 6]]], dtype="float32")
            w = paddle.to_tensor([[[9, 3, 4],
                                    [0, 0, 7],
                                    [2, 5, 6]],
                                    [[0, 3, 4],
                                    [2, 9, 7],
                                    [5, 6, 8]]], dtype="float32")

            conv = Conv1D(3, 2, 3)
            conv.weight.set_value(w)
            y = conv(x)
            print(y)
            # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[133., 238.],
            #          [160., 211.]]])
332
    """
S
swtkiwi 已提交
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
348
        super().__init__(
349 350 351 352 353 354 355 356 357 358 359 360 361 362
            in_channels,
            out_channels,
            kernel_size,
            False,
            1,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
363

364
    def forward(self, x):
L
LielinJiang 已提交
365 366
        padding = 0
        if self._padding_mode != "zeros":
367 368 369 370 371 372
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )
L
LielinJiang 已提交
373 374
        else:
            padding = self._padding
375

376 377 378 379 380 381 382 383 384 385
        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
386 387 388
        return out


C
cnn 已提交
389
class Conv1DTranspose(_ConvNd):
390
    r"""
C
cnn 已提交
391
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

407
        Out = \sigma (W \ast X + b)
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
443
          and :math:`L^\prime_{out} + stride`.
444 445 446 447 448

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
449
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
450 451 452 453
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
454
            If stride is a tuple/list, it must contain one integer, (stride_size).
455 456 457 458 459 460 461
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
462
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
463
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
464 465 466 467 468 469 470
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
471
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
488 489

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
490 491
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
492
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
493 494 495 496 497
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
            import paddle
            from paddle.nn import Conv1DTranspose

            # shape: (1, 2, 4)
            x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2]]], dtype="float32")
            # shape: (2, 1, 2)
            w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

            conv = Conv1DTranspose(2, 1, 2)
            conv.weight.set_value(w)
            y = conv(x)
            print(y)
            # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[60., 16., 99., 75., 4. ]]])
514 515
    """

516 517 518 519 520 521 522 523 524 525 526 527 528 529
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        groups=1,
        dilation=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
530
        super().__init__(
531 532 533 534 535 536 537 538 539 540 541 542 543 544
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
545 546

    def forward(self, x, output_size=None):
547 548 549 550 551 552 553 554 555 556 557 558
        out = F.conv1d_transpose(
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
L
LielinJiang 已提交
559 560 561
        return out


C
cnn 已提交
562
class Conv2D(_ConvNd):
563
    r"""
C
cnn 已提交
564
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

584
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
585 586 587 588 589 590

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
591
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
L
LielinJiang 已提交
592 593
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
594

L
LielinJiang 已提交
595 596 597 598
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
599
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
600 601 602 603
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
604
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
L
LielinJiang 已提交
605 606 607 608
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
609
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
610 611
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
612
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
613 614 615 616 617 618 619 620 621
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
622
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
641 642 643 644
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
645 646 647 648 649 650
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

651
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
652

653
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
654 655 656 657 658 659 660

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
661

C
cnn 已提交
662
          paddle.disable_static()
663

664
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
665

C
cnn 已提交
666
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
667 668 669 670 671 672
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

673 674 675 676 677 678 679 680 681 682 683 684 685 686
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
687
        super().__init__(
688 689 690 691 692 693 694 695 696 697 698 699 700 701
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
702 703 704

    def forward(self, x):
        if self._padding_mode != 'zeros':
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
726 727 728
        return out


C
cnn 已提交
729
class Conv2DTranspose(_ConvNd):
730
    r"""
C
cnn 已提交
731
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
732 733 734 735 736
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
737 738
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
739 740 741 742 743 744
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
745
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
746
    For each input :math:`X`, the equation is:
747 748 749

    ..  math::

750
        Out = \sigma (W \ast X + b)
751

752
    Where:
753

754
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
755
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
756
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
757
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
758 759
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
760

761
    Parameters:
L
LielinJiang 已提交
762 763
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
764
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
765 766
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
767
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
768 769
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
770 771
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
772
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides
773 774 775 776
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
777 778
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
779
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
780 781
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
782
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
783 784 785 786 787
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
788
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
789 790 791
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
792
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
793 794 795 796
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
797
        data_format(str, optional): Data format that specifies the layout of input.
798
            It can be "NCHW" or "NHWC". Default: "NCHW".
799

800
    Attribute:
801

802
        **weight** (Parameter): the learnable weights of filters of this layer.
803

804
        **bias** (Parameter or None): the learnable bias of this layer.
805

L
LielinJiang 已提交
806
    Shape:
807

L
LielinJiang 已提交
808
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
809

W
wangguanzhong 已提交
810 811 812 813
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
814
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
815

L
LielinJiang 已提交
816
        Where
817 818 819 820 821 822 823 824 825 826 827

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

828
    Examples:
829

830
       .. code-block:: python
831

L
LielinJiang 已提交
832 833
          import paddle
          import paddle.nn as nn
834

C
cnn 已提交
835
          paddle.disable_static()
836 837 838

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
839
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
840 841 842
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
843 844 845
          # (2, 6, 10, 10)
    """

846 847 848 849 850 851 852 853 854 855 856 857 858 859
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
860
        super().__init__(
861 862 863 864 865 866 867 868 869 870 871 872 873 874
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
875 876

    def forward(self, x, output_size=None):
877
        if output_size is None:
878
            output_padding = self.output_padding
879
        else:
L
LielinJiang 已提交
880
            output_padding = 0
881

882 883 884 885 886 887 888 889 890 891 892 893
        out = F.conv2d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
894 895 896
        return out


C
cnn 已提交
897
class Conv3D(_ConvNd):
898
    r"""
899 900
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
901
    and strides, paddings, dilations, groups parameters. Input(Input) and
902
    Output(Output) are multidimensional tensors with a shape of
903 904 905 906 907 908 909
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
910 911 912

    ..  math::

913
        Out = \sigma (W \ast X + b)
914

915
    In the above equation:
916

917 918 919
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
920
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
921 922
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
923

924
    Parameters:
925 926
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
927
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
928
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
929 930
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
931
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
932
            1. a string in ['valid', 'same'].
933
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
934 935 936 937
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
938
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
939 940
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
941
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
942 943 944 945
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
946 947
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
948 949 950
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
951
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
952
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
953 954 955 956
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
957
        data_format(str, optional): Data format that specifies the layout of input.
958
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
959

960
    Attribute:
961

962
        **weight** (Parameter): the learnable weights of filters of this layer.
963

964
        **bias** (Parameter): the learnable bias of this layer.
965

966
    Shape:
967

968
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
969

W
wangguanzhong 已提交
970 971 972 973
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

974
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
975

976
        Where
977 978 979

        ..  math::

980
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
981

982
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
983

984
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
985

986
    Examples:
987

988
        .. code-block:: python
989

990 991
          import paddle
          import paddle.nn as nn
992

C
cnn 已提交
993
          paddle.disable_static()
994 995

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
996

C
cnn 已提交
997
          conv = nn.Conv3D(4, 6, (3, 3, 3))
998 999 1000
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1001 1002 1003
          # (2, 6, 6, 6, 6)
    """

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
1018
        super().__init__(
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
1033

1034 1035
    def forward(self, x):
        if self._padding_mode != 'zeros':
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
1057 1058 1059
        return out


C
cnn 已提交
1060
class Conv3DTranspose(_ConvNd):
1061
    r"""
1062 1063 1064 1065 1066 1067 1068 1069
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1070
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1071 1072 1073 1074
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1075

1076 1077
    ..  math::

1078
        Out = \sigma (W \ast X + b)
1079

1080
    In the above equation:
1081

1082
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1083
    * :math:`W`: Filter value, a tensor with CMDHW format.
1084
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
1085
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1086 1087
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1088

1089
    **Note**:
1090

1091
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1092
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1093
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1094
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1095 1096 1097 1098 1099
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
1100
          conv3d_transpose can compute the kernel size automatically.
1101

1102
    Parameters:
L
LielinJiang 已提交
1103 1104
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1105
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1106 1107
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
1108 1109 1110
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1111
            The default value is 1.
1112 1113
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
1114
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
1115 1116 1117 1118
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1119 1120
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1121
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1122 1123
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1124
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1125 1126 1127 1128 1129
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1130
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1131 1132 1133
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1134
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1135 1136 1137 1138
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1139
        data_format(str, optional): Data format that specifies the layout of input.
1140
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1141

1142
    Attribute:
1143

1144
        **weight** (Parameter): the learnable weights of filters of this layer.
1145

1146
        **bias** (Parameter): the learnable bias of this layer.
1147

L
LielinJiang 已提交
1148
    Shape:
1149

L
LielinJiang 已提交
1150
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1151

W
wangguanzhong 已提交
1152 1153 1154 1155
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1156
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1157

L
LielinJiang 已提交
1158
        Where
1159 1160 1161 1162

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
1163

1164
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
1165

1166
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
1167

1168
    Examples:
1169

1170
       .. code-block:: python
1171

L
LielinJiang 已提交
1172 1173
          import paddle
          import paddle.nn as nn
1174

C
cnn 已提交
1175
          paddle.disable_static()
1176 1177

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
1178

C
cnn 已提交
1179
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1180 1181 1182
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1183 1184 1185
          # (2, 6, 10, 10, 10)
    """

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
1200
        super().__init__(
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
1215

1216
    def forward(self, x, output_size=None):
1217
        if output_size is None:
1218
            output_padding = self.output_padding
1219
        else:
L
LielinJiang 已提交
1220
            output_padding = 0
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        out = F.conv3d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
1234
        return out