conv.py 51.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

19
from ...fluid import get_flags
L
LielinJiang 已提交
20 21
from ...fluid import core
from ...device import get_cudnn_version
22 23 24 25 26 27
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd

28 29
__all__ = []

30 31 32 33 34 35 36

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


37 38 39 40 41 42 43 44
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

70 71 72 73 74 75 76 77 78 79 80 81
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

82 83 84 85 86 87
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
                "data_format must be one of {}, but got data_format='{}'".
                format(valid_format, data_format))

L
LielinJiang 已提交
88 89 90 91 92 93 94
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
95 96 97 98 99
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
100
        self._padding_mode = padding_mode
L
LielinJiang 已提交
101
        self.output_padding = output_padding
L
LielinJiang 已提交
102
        if dims != 1:
103
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
104
                padding, channel_last, dims)
L
LielinJiang 已提交
105 106 107 108 109

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
110 111 112 113
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
114 115
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
116 117 118
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

119 120
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
121

L
LielinJiang 已提交
122 123 124
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
125 126 127 128 129 130 131
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

L
LielinJiang 已提交
132
        self.weight = self.create_parameter(
L
LielinJiang 已提交
133 134 135
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
136 137 138
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
139 140 141 142 143 144
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
L
LielinJiang 已提交
145 146 147 148
        if self._op_type == 'conv2d' and (in_channels == groups and
                                          in_channels != 1 and
                                          out_channels % in_channels == 0):
            self._op_type = 'depthwise_conv2d'
149 150 151 152 153 154 155
            if core.is_compiled_with_rocm():
                self._use_cudnn = True
            else:
                self._use_cudnn = False

        if (core.is_compiled_with_cuda() and get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
L
LielinJiang 已提交
156 157
            self._use_cudnn = False

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
        if self._padding_mode is not 'zeros':
            main_str += ', padding_mode={_padding_mode}'
        if self.output_padding != 0:
            main_str += ', output_padding={_output_padding}'
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
175

C
cnn 已提交
176
class Conv1D(_ConvNd):
177
    r"""
C
cnn 已提交
178
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
179 180 181 182 183 184 185 186 187 188 189
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
190 191 192

    For each input :math:`X` , the equation is:

W
whs 已提交
193
    .. math::
W
whs 已提交
194

195
        Out = \sigma (W \ast X + b)
W
whs 已提交
196

W
whs 已提交
197
    Where:
W
whs 已提交
198

W
whs 已提交
199 200 201 202 203 204
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
205

W
whs 已提交
206
    Example:
W
whs 已提交
207

W
whs 已提交
208
        - Input:
W
whs 已提交
209

W
whs 已提交
210
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
211

W
whs 已提交
212
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
213

W
whs 已提交
214
        - Output:
W
whs 已提交
215

W
whs 已提交
216
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
217

W
whs 已提交
218
        Where
W
whs 已提交
219

W
whs 已提交
220
        .. math::
W
whs 已提交
221

222
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
223

W
whs 已提交
224 225 226 227
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
228
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
229
            it must contain one integer, (kernel_size).
230
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
231 232 233 234 235 236
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
237
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
238 239 240 241 242 243 244 245 246 247 248 249
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
250
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
251 252 253
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
254
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
255 256 257 258 259
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
260

W
whs 已提交
261 262 263
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
264

W
whs 已提交
265 266 267 268 269 270
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
271

W
whs 已提交
272 273
    Examples:
        .. code-block:: python
W
whs 已提交
274

W
whs 已提交
275
          import paddle
C
cnn 已提交
276
          from paddle.nn import Conv1D
W
whs 已提交
277 278 279 280 281 282 283 284 285 286 287 288
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
289
          conv = Conv1D(3, 2, 3)
W
whs 已提交
290 291
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
292
          print(y_t)
W
whs 已提交
293 294
          # [[[133. 238.]
          #   [160. 211.]]]
295
    """
S
swtkiwi 已提交
296

297
    def __init__(self,
298 299 300
                 in_channels,
                 out_channels,
                 kernel_size,
301
                 stride=1,
302
                 padding=0,
303 304
                 dilation=1,
                 groups=1,
305 306
                 padding_mode='zeros',
                 weight_attr=None,
307
                 bias_attr=None,
L
LielinJiang 已提交
308
                 data_format="NCL"):
C
cnn 已提交
309
        super(Conv1D, self).__init__(
310 311 312 313
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
314
            1,
315 316 317 318 319 320 321 322
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
323

324
    def forward(self, x):
L
LielinJiang 已提交
325 326
        padding = 0
        if self._padding_mode != "zeros":
327
            x = F.pad(x,
W
whs 已提交
328
                      self._reversed_padding_repeated_twice,
329 330
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
331 332
        else:
            padding = self._padding
333

L
LielinJiang 已提交
334
        out = F.conv1d(
335
            x,
336 337
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
338
            padding=padding,
339 340 341 342 343 344 345
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
346
class Conv1DTranspose(_ConvNd):
347
    r"""
C
cnn 已提交
348
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

364
        Out = \sigma (W \ast X + b)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
400
          and :math:`L^\prime_{out} + stride`.
401 402 403 404 405

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
406
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
407 408 409 410
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
411
            If stride is a tuple/list, it must contain one integer, (stride_size).
412 413 414 415 416 417 418
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
419
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
420
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
421 422 423 424 425 426 427
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
428
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
445 446

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
447
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
448 449 450 451 452 453
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
454
          from paddle.nn import Conv1DTranspose
455 456 457 458 459 460 461 462 463
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
464
          conv = Conv1DTranspose(2, 1, 2)
465 466
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
467
          print(y_t)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
484
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
498 499

    def forward(self, x, output_size=None):
500
        out = F.conv1d_transpose(
501 502 503 504
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
505 506 507 508 509 510 511 512 513
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
514
class Conv2D(_ConvNd):
515
    r"""
C
cnn 已提交
516
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

536
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
551
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
552 553 554 555 556 557 558 559 560
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
561
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
562 563
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
564
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
565 566 567 568 569 570 571 572 573
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
574
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

599
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
600

601
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
602 603 604 605 606 607 608

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
609 610 611
          
          paddle.disable_static()
          
612
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
613
          
C
cnn 已提交
614
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
633
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
654 655

        out = F.conv._conv_nd(
L
LielinJiang 已提交
656 657 658
            x,
            self.weight,
            bias=self.bias,
659
            stride=self._stride,
660
            padding=self._updated_padding,
L
LielinJiang 已提交
661
            padding_algorithm=self._padding_algorithm,
662 663
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
664 665 666 667
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
668 669 670
        return out


C
cnn 已提交
671
class Conv2DTranspose(_ConvNd):
672
    r"""
C
cnn 已提交
673
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
689 690 691

    ..  math::

692
        Out = \sigma (W \ast X + b)
693

694
    Where:
695

696 697 698 699 700 701
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
702
    
703
    Parameters:
L
LielinJiang 已提交
704 705
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
706
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
707 708
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
709
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
710 711
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
712 713 714 715 716 717 718
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
719 720
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
721
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
722 723
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
724
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
725 726 727 728 729
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
730
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
731 732 733
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
734
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
735 736 737 738
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
739
        data_format(str, optional): Data format that specifies the layout of input.
740
            It can be "NCHW" or "NHWC". Default: "NCHW".
741

742
    Attribute:
743

744
        **weight** (Parameter): the learnable weights of filters of this layer.
745

746
        **bias** (Parameter or None): the learnable bias of this layer.
747

L
LielinJiang 已提交
748
    Shape:
749

L
LielinJiang 已提交
750
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
751

L
LielinJiang 已提交
752
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
753

L
LielinJiang 已提交
754
        Where
755 756 757 758 759 760 761 762 763 764 765

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

766
    Examples:
767

768
       .. code-block:: python
769

L
LielinJiang 已提交
770 771
          import paddle
          import paddle.nn as nn
C
cnn 已提交
772 773
          
          paddle.disable_static()
774 775 776

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
777
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
778 779 780
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
781 782 783 784
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
785 786 787
                 in_channels,
                 out_channels,
                 kernel_size,
788
                 stride=1,
L
LielinJiang 已提交
789 790
                 padding=0,
                 output_padding=0,
791 792
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
793
                 weight_attr=None,
794
                 bias_attr=None,
L
LielinJiang 已提交
795
                 data_format="NCHW"):
C
cnn 已提交
796
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
812
        if output_size is None:
L
LielinJiang 已提交
813
            output_padding = self.output_padding
814
        else:
L
LielinJiang 已提交
815
            output_padding = 0
816

817
        out = F.conv2d_transpose(
L
LielinJiang 已提交
818
            x,
819 820 821
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
822
            output_padding=output_padding,
823 824 825
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
826
            output_size=output_size,
827 828 829 830
            data_format=self._data_format)
        return out


C
cnn 已提交
831
class Conv3D(_ConvNd):
832
    r"""
833 834
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
835 836 837 838 839 840 841 842 843
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
844 845 846

    ..  math::

847
        Out = \sigma (W \ast X + b)
848

849
    In the above equation:
850

851 852 853 854 855 856
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
857

858
    Parameters:
859 860
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
861
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
862
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
863 864
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
865
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
866 867 868 869 870 871
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
872
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
873 874
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
875
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
876 877 878 879
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
880 881
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
882 883 884
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
885
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
886
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
887 888 889 890
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
891
        data_format(str, optional): Data format that specifies the layout of input.
892
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
893

894
    Attribute:
895

896
        **weight** (Parameter): the learnable weights of filters of this layer.
897

898
        **bias** (Parameter): the learnable bias of this layer.
899

900
    Shape:
901

902
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
903

904
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
905

906
        Where
907 908 909

        ..  math::

910
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
911

912
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
913

914
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
915

916 917 918
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
919

920
    Examples:
921

922
        .. code-block:: python
923

924 925
          import paddle
          import paddle.nn as nn
C
cnn 已提交
926 927
          
          paddle.disable_static()
928 929

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
930
          
C
cnn 已提交
931
          conv = nn.Conv3D(4, 6, (3, 3, 3))
932 933 934
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
935 936 937 938
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
939 940 941
                 in_channels,
                 out_channels,
                 kernel_size,
942
                 stride=1,
L
LielinJiang 已提交
943
                 padding=0,
944 945
                 dilation=1,
                 groups=1,
946 947
                 padding_mode='zeros',
                 weight_attr=None,
948
                 bias_attr=None,
949
                 data_format="NCDHW"):
C
cnn 已提交
950
        super(Conv3D, self).__init__(
951 952 953 954 955 956 957 958 959 960 961 962 963
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
964

965 966 967 968 969 970
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
971 972

        out = F.conv._conv_nd(
973
            x,
974 975 976
            self.weight,
            bias=self.bias,
            stride=self._stride,
977
            padding=self._updated_padding,
L
LielinJiang 已提交
978
            padding_algorithm=self._padding_algorithm,
979 980
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
981 982 983 984
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
985 986 987
        return out


C
cnn 已提交
988
class Conv3DTranspose(_ConvNd):
989
    r"""
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1003 1004 1005
    
    ..  math::

1006
        Out = \sigma (W \ast X + b)
1007

1008
    In the above equation:
1009

1010 1011 1012 1013 1014 1015
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1016

1017
    **Note**:
1018

1019
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1020
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1021
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1022 1023 1024 1025 1026 1027
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1028
          conv3d_transpose can compute the kernel size automatically.
1029

1030
    Parameters:
L
LielinJiang 已提交
1031 1032
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1033
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1034 1035 1036
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1037
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1038 1039
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1040 1041 1042 1043 1044 1045 1046
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1047 1048
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1049
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1050 1051
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1052
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1053 1054 1055 1056 1057
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1058
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1059 1060 1061
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1062
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1063 1064 1065 1066
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1067
        data_format(str, optional): Data format that specifies the layout of input.
1068
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1069

1070
    Attribute:
1071

1072
        **weight** (Parameter): the learnable weights of filters of this layer.
1073

1074
        **bias** (Parameter): the learnable bias of this layer.
1075

L
LielinJiang 已提交
1076
    Shape:
1077

L
LielinJiang 已提交
1078
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1079

L
LielinJiang 已提交
1080
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1081

L
LielinJiang 已提交
1082
        Where
1083 1084 1085 1086 1087 1088 1089 1090 1091

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1092 1093 1094 1095
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1096

1097
       .. code-block:: python
1098

L
LielinJiang 已提交
1099 1100
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1101 1102
          
          paddle.disable_static()
1103 1104

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1105
          
C
cnn 已提交
1106
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1107 1108 1109
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1110 1111 1112 1113
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1114 1115 1116
                 in_channels,
                 out_channels,
                 kernel_size,
1117
                 stride=1,
L
LielinJiang 已提交
1118 1119
                 padding=0,
                 output_padding=0,
1120 1121
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1122
                 weight_attr=None,
1123
                 bias_attr=None,
L
LielinJiang 已提交
1124
                 data_format="NCDHW"):
C
cnn 已提交
1125
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1140
    def forward(self, x, output_size=None):
1141
        if output_size is None:
L
LielinJiang 已提交
1142
            output_padding = self.output_padding
1143
        else:
L
LielinJiang 已提交
1144
            output_padding = 0
1145

1146
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1147
            x,
1148 1149 1150
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1151
            output_padding=output_padding,
1152 1153 1154
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1155
            output_size=output_size,
1156 1157
            data_format=self._data_format)
        return out