conv.py 54.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
L
LielinJiang 已提交
20
from ...device import get_cudnn_version
Z
zhiboniu 已提交
21 22
from .. import Layer
from ..initializer import Normal
23 24 25
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd
Z
zhiboniu 已提交
26 27
from ...device import is_compiled_with_cuda
from ...device import is_compiled_with_rocm
28

29 30
__all__ = []

31 32 33 34

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
Z
zhiboniu 已提交
35
    return Normal(0.0, std)
36 37


38 39 40 41 42 43 44 45
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


Z
zhiboniu 已提交
46
class _ConvNd(Layer):
47

L
LielinJiang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

72 73 74 75 76 77 78
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
79
                            } and not isinstance(padding, int):
80 81 82 83
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

84 85 86 87 88 89
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
                "data_format must be one of {}, but got data_format='{}'".
                format(valid_format, data_format))

90 91 92
        channel_last = (data_format == "NHWC") or (data_format
                                                   == "NDHWC") or (data_format
                                                                   == "NLC")
L
LielinJiang 已提交
93 94 95 96 97
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
98 99 100 101 102
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
103
        self._padding_mode = padding_mode
104
        self.output_padding = output_padding
L
LielinJiang 已提交
105
        if dims != 1:
106
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
107
                padding, channel_last, dims)
L
LielinJiang 已提交
108 109 110 111 112

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
113 114 115 116
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
117 118
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
119 120 121
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

122 123
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
124

L
LielinJiang 已提交
125 126 127
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
128 129 130 131 132
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
Z
zhiboniu 已提交
133
            return Normal(0.0, std)
L
LielinJiang 已提交
134

L
LielinJiang 已提交
135
        self.weight = self.create_parameter(
L
LielinJiang 已提交
136 137 138
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
139 140 141
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._out_channels],
                                          is_bias=True)
L
LielinJiang 已提交
142

L
LielinJiang 已提交
143 144
        cudnn_version = get_cudnn_version()

145 146
        self._use_cudnn = True if (is_compiled_with_cuda()
                                   and cudnn_version is not None) else False
L
LielinJiang 已提交
147 148

        self._op_type = "conv" + str(dims) + 'd'
149 150 151
        if self._op_type == 'conv2d' and (in_channels == groups
                                          and in_channels != 1
                                          and out_channels % in_channels == 0):
L
LielinJiang 已提交
152
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
153
            if is_compiled_with_rocm():
154 155 156 157
                self._use_cudnn = True
            else:
                self._use_cudnn = False

158 159
        if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
            ["FLAGS_conv2d_disable_cudnn"]):
L
LielinJiang 已提交
160 161
            self._use_cudnn = False

162 163 164 165 166 167
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
168
        if self._padding_mode != 'zeros':
169
            main_str += ', padding_mode={_padding_mode}'
170 171
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
172 173 174 175 176 177 178
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
179

C
cnn 已提交
180
class Conv1D(_ConvNd):
181
    r"""
C
cnn 已提交
182
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
183 184 185 186 187 188
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
189
    C is the number of input feature map, K is the size of the kernel.
W
whs 已提交
190 191 192 193
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
194 195 196

    For each input :math:`X` , the equation is:

W
whs 已提交
197
    .. math::
W
whs 已提交
198

199
        Out = \sigma (W \ast X + b)
W
whs 已提交
200

W
whs 已提交
201
    Where:
W
whs 已提交
202

W
whs 已提交
203 204 205
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
206
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
W
whs 已提交
207 208
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
209

W
whs 已提交
210
    Example:
W
whs 已提交
211

W
whs 已提交
212
        - Input:
W
whs 已提交
213

W
whs 已提交
214
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
215

W
whs 已提交
216
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
217

W
whs 已提交
218
        - Output:
W
whs 已提交
219

W
whs 已提交
220
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
221

W
whs 已提交
222
        Where
W
whs 已提交
223

W
whs 已提交
224
        .. math::
W
whs 已提交
225

226
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
227

W
whs 已提交
228 229 230 231
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
232
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
233
            it must contain one integer, (kernel_size).
234
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
235 236 237 238 239 240
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
241
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
242 243 244 245 246 247 248 249 250 251 252 253
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
254
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
255 256 257
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
258
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
259 260 261 262 263
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
264

W
whs 已提交
265
    Attribute:
W
wangguanzhong 已提交
266

W
whs 已提交
267
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
268

W
whs 已提交
269
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
270

W
whs 已提交
271 272
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
273 274
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
275
        - output: 3-D tensor with same shape as input x.
276

W
whs 已提交
277 278
    Examples:
        .. code-block:: python
W
whs 已提交
279

W
whs 已提交
280
          import paddle
C
cnn 已提交
281
          from paddle.nn import Conv1D
W
whs 已提交
282 283 284 285 286 287 288 289 290 291 292 293
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
294
          conv = Conv1D(3, 2, 3)
W
whs 已提交
295 296
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
297
          print(y_t)
W
whs 已提交
298 299
          # [[[133. 238.]
          #   [160. 211.]]]
300
    """
S
swtkiwi 已提交
301

302
    def __init__(self,
303 304 305
                 in_channels,
                 out_channels,
                 kernel_size,
306
                 stride=1,
307
                 padding=0,
308 309
                 dilation=1,
                 groups=1,
310 311
                 padding_mode='zeros',
                 weight_attr=None,
312
                 bias_attr=None,
L
LielinJiang 已提交
313
                 data_format="NCL"):
314 315 316 317 318 319 320 321 322 323 324 325 326
        super(Conv1D, self).__init__(in_channels,
                                     out_channels,
                                     kernel_size,
                                     False,
                                     1,
                                     stride=stride,
                                     padding=padding,
                                     padding_mode=padding_mode,
                                     dilation=dilation,
                                     groups=groups,
                                     weight_attr=weight_attr,
                                     bias_attr=bias_attr,
                                     data_format=data_format)
327

328
    def forward(self, x):
L
LielinJiang 已提交
329 330
        padding = 0
        if self._padding_mode != "zeros":
331
            x = F.pad(x,
W
whs 已提交
332
                      self._reversed_padding_repeated_twice,
333 334
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
335 336
        else:
            padding = self._padding
337

338 339 340 341 342 343 344 345
        out = F.conv1d(x,
                       self.weight,
                       bias=self.bias,
                       padding=padding,
                       stride=self._stride,
                       dilation=self._dilation,
                       groups=self._groups,
                       data_format=self._data_format)
346 347 348
        return out


C
cnn 已提交
349
class Conv1DTranspose(_ConvNd):
350
    r"""
C
cnn 已提交
351
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

367
        Out = \sigma (W \ast X + b)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
403
          and :math:`L^\prime_{out} + stride`.
404 405 406 407 408

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
409
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
410 411 412 413
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
414
            If stride is a tuple/list, it must contain one integer, (stride_size).
415 416 417 418 419 420 421
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
422
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
423
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
424 425 426 427 428 429 430
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
431
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
448 449

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
450 451
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
452
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
453 454 455 456 457 458
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
459
          from paddle.nn import Conv1DTranspose
460
          import numpy as np
461

462 463 464 465 466 467 468
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
469
          conv = Conv1DTranspose(2, 1, 2)
470 471
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
472
          print(y_t)
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
489 490 491 492 493 494 495 496 497 498 499 500 501
        super(Conv1DTranspose, self).__init__(in_channels,
                                              out_channels,
                                              kernel_size,
                                              True,
                                              1,
                                              stride=stride,
                                              padding=padding,
                                              dilation=dilation,
                                              output_padding=output_padding,
                                              groups=groups,
                                              weight_attr=weight_attr,
                                              bias_attr=bias_attr,
                                              data_format=data_format)
502 503

    def forward(self, x, output_size=None):
504 505 506 507 508 509 510 511 512 513
        out = F.conv1d_transpose(x,
                                 self.weight,
                                 bias=self.bias,
                                 output_size=output_size,
                                 output_padding=self.output_padding,
                                 padding=self._padding,
                                 stride=self._stride,
                                 dilation=self._dilation,
                                 groups=self._groups,
                                 data_format=self._data_format)
L
LielinJiang 已提交
514 515 516
        return out


C
cnn 已提交
517
class Conv2D(_ConvNd):
518
    r"""
C
cnn 已提交
519
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

539
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
540 541 542 543 544 545

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
546
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
L
LielinJiang 已提交
547 548
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
549

L
LielinJiang 已提交
550 551 552 553
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
554
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
555 556 557 558
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
559
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
L
LielinJiang 已提交
560 561 562 563
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
564
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
565 566
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
567
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
568 569 570 571 572 573 574 575 576
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
577
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
596 597 598 599
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
600 601 602 603 604 605
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

606
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
607

608
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
609 610 611 612 613 614 615

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
616

C
cnn 已提交
617
          paddle.disable_static()
618

619
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
620

C
cnn 已提交
621
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
640 641 642 643 644 645 646 647 648 649 650 651 652
        super(Conv2D, self).__init__(in_channels,
                                     out_channels,
                                     kernel_size,
                                     False,
                                     2,
                                     stride=stride,
                                     padding=padding,
                                     padding_mode=padding_mode,
                                     dilation=dilation,
                                     groups=groups,
                                     weight_attr=weight_attr,
                                     bias_attr=bias_attr,
                                     data_format=data_format)
L
LielinJiang 已提交
653 654 655 656 657 658 659

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
660

661 662 663 664 665 666 667 668 669 670 671 672
        out = F.conv._conv_nd(x,
                              self.weight,
                              bias=self.bias,
                              stride=self._stride,
                              padding=self._updated_padding,
                              padding_algorithm=self._padding_algorithm,
                              dilation=self._dilation,
                              groups=self._groups,
                              data_format=self._data_format,
                              channel_dim=self._channel_dim,
                              op_type=self._op_type,
                              use_cudnn=self._use_cudnn)
673 674 675
        return out


C
cnn 已提交
676
class Conv2DTranspose(_ConvNd):
677
    r"""
C
cnn 已提交
678
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
679 680 681 682 683
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
684 685
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
686 687 688 689 690 691
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
692
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
693
    For each input :math:`X`, the equation is:
694 695 696

    ..  math::

697
        Out = \sigma (W \ast X + b)
698

699
    Where:
700

701
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
702
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
703
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
704
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
705 706
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
707

708
    Parameters:
L
LielinJiang 已提交
709 710
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
711
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
712 713
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
714
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
715 716
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
717 718
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
719
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides
720 721 722 723
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
724 725
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
726
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
727 728
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
729
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
730 731 732 733 734
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
735
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
736 737 738
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
739
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
740 741 742 743
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
744
        data_format(str, optional): Data format that specifies the layout of input.
745
            It can be "NCHW" or "NHWC". Default: "NCHW".
746

747
    Attribute:
748

749
        **weight** (Parameter): the learnable weights of filters of this layer.
750

751
        **bias** (Parameter or None): the learnable bias of this layer.
752

L
LielinJiang 已提交
753
    Shape:
754

L
LielinJiang 已提交
755
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
756

W
wangguanzhong 已提交
757 758 759 760
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
761
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
762

L
LielinJiang 已提交
763
        Where
764 765 766 767 768 769 770 771 772 773 774

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

775
    Examples:
776

777
       .. code-block:: python
778

L
LielinJiang 已提交
779 780
          import paddle
          import paddle.nn as nn
781

C
cnn 已提交
782
          paddle.disable_static()
783 784 785

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
786
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
787 788 789
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
790 791 792 793
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
794 795 796
                 in_channels,
                 out_channels,
                 kernel_size,
797
                 stride=1,
L
LielinJiang 已提交
798 799
                 padding=0,
                 output_padding=0,
800 801
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
802
                 weight_attr=None,
803
                 bias_attr=None,
L
LielinJiang 已提交
804
                 data_format="NCHW"):
805 806 807 808 809 810 811 812 813 814 815 816 817
        super(Conv2DTranspose, self).__init__(in_channels,
                                              out_channels,
                                              kernel_size,
                                              True,
                                              2,
                                              stride=stride,
                                              padding=padding,
                                              dilation=dilation,
                                              output_padding=output_padding,
                                              groups=groups,
                                              weight_attr=weight_attr,
                                              bias_attr=bias_attr,
                                              data_format=data_format)
L
LielinJiang 已提交
818 819

    def forward(self, x, output_size=None):
820
        if output_size is None:
821
            output_padding = self.output_padding
822
        else:
L
LielinJiang 已提交
823
            output_padding = 0
824

825 826 827 828 829 830 831 832 833 834
        out = F.conv2d_transpose(x,
                                 self.weight,
                                 bias=self.bias,
                                 padding=self._padding,
                                 output_padding=output_padding,
                                 stride=self._stride,
                                 dilation=self._dilation,
                                 groups=self._groups,
                                 output_size=output_size,
                                 data_format=self._data_format)
835 836 837
        return out


C
cnn 已提交
838
class Conv3D(_ConvNd):
839
    r"""
840 841
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
842
    and strides, paddings, dilations, groups parameters. Input(Input) and
843
    Output(Output) are multidimensional tensors with a shape of
844 845 846 847 848 849 850
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
851 852 853

    ..  math::

854
        Out = \sigma (W \ast X + b)
855

856
    In the above equation:
857

858 859 860
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
861
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
862 863
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
864

865
    Parameters:
866 867
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
868
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
869
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
870 871
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
872
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
873
            1. a string in ['valid', 'same'].
874
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
875 876 877 878
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
879
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
880 881
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
882
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
883 884 885 886
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
887 888
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
889 890 891
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
892
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
893
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
894 895 896 897
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
898
        data_format(str, optional): Data format that specifies the layout of input.
899
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
900

901
    Attribute:
902

903
        **weight** (Parameter): the learnable weights of filters of this layer.
904

905
        **bias** (Parameter): the learnable bias of this layer.
906

907
    Shape:
908

909
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
910

W
wangguanzhong 已提交
911 912 913 914
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

915
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
916

917
        Where
918 919 920

        ..  math::

921
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
922

923
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
924

925
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
926

927
    Examples:
928

929
        .. code-block:: python
930

931 932
          import paddle
          import paddle.nn as nn
933

C
cnn 已提交
934
          paddle.disable_static()
935 936

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
937

C
cnn 已提交
938
          conv = nn.Conv3D(4, 6, (3, 3, 3))
939 940 941
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
942 943 944 945
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
946 947 948
                 in_channels,
                 out_channels,
                 kernel_size,
949
                 stride=1,
L
LielinJiang 已提交
950
                 padding=0,
951 952
                 dilation=1,
                 groups=1,
953 954
                 padding_mode='zeros',
                 weight_attr=None,
955
                 bias_attr=None,
956
                 data_format="NCDHW"):
957 958 959 960 961 962 963 964 965 966 967 968 969
        super(Conv3D, self).__init__(in_channels,
                                     out_channels,
                                     kernel_size,
                                     False,
                                     3,
                                     stride=stride,
                                     padding=padding,
                                     padding_mode=padding_mode,
                                     dilation=dilation,
                                     groups=groups,
                                     weight_attr=weight_attr,
                                     bias_attr=bias_attr,
                                     data_format=data_format)
970

971 972 973 974 975 976
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
977

978 979 980 981 982 983 984 985 986 987 988 989
        out = F.conv._conv_nd(x,
                              self.weight,
                              bias=self.bias,
                              stride=self._stride,
                              padding=self._updated_padding,
                              padding_algorithm=self._padding_algorithm,
                              dilation=self._dilation,
                              groups=self._groups,
                              data_format=self._data_format,
                              channel_dim=self._channel_dim,
                              op_type=self._op_type,
                              use_cudnn=self._use_cudnn)
990 991 992
        return out


C
cnn 已提交
993
class Conv3DTranspose(_ConvNd):
994
    r"""
995 996 997 998 999 1000 1001 1002
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1003
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1004 1005 1006 1007
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1008

1009 1010
    ..  math::

1011
        Out = \sigma (W \ast X + b)
1012

1013
    In the above equation:
1014

1015
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1016
    * :math:`W`: Filter value, a tensor with CMDHW format.
1017
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
1018
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1019 1020
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1021

1022
    **Note**:
1023

1024
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1025
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1026
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1027
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1028 1029 1030 1031 1032
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
1033
          conv3d_transpose can compute the kernel size automatically.
1034

1035
    Parameters:
L
LielinJiang 已提交
1036 1037
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1038
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1039 1040
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
1041 1042 1043
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1044
            The default value is 1.
1045 1046
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
1047
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
1048 1049 1050 1051
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1052 1053
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1054
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1055 1056
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1057
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1058 1059 1060 1061 1062
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1063
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1064 1065 1066
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1067
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1068 1069 1070 1071
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1072
        data_format(str, optional): Data format that specifies the layout of input.
1073
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1074

1075
    Attribute:
1076

1077
        **weight** (Parameter): the learnable weights of filters of this layer.
1078

1079
        **bias** (Parameter): the learnable bias of this layer.
1080

L
LielinJiang 已提交
1081
    Shape:
1082

L
LielinJiang 已提交
1083
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1084

W
wangguanzhong 已提交
1085 1086 1087 1088
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1089
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1090

L
LielinJiang 已提交
1091
        Where
1092 1093 1094 1095

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
1096

1097
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
1098

1099
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
1100

1101
    Examples:
1102

1103
       .. code-block:: python
1104

L
LielinJiang 已提交
1105 1106
          import paddle
          import paddle.nn as nn
1107

C
cnn 已提交
1108
          paddle.disable_static()
1109 1110

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
1111

C
cnn 已提交
1112
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1113 1114 1115
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1116 1117 1118 1119
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1120 1121 1122
                 in_channels,
                 out_channels,
                 kernel_size,
1123
                 stride=1,
L
LielinJiang 已提交
1124 1125
                 padding=0,
                 output_padding=0,
1126 1127
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1128
                 weight_attr=None,
1129
                 bias_attr=None,
L
LielinJiang 已提交
1130
                 data_format="NCDHW"):
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        super(Conv3DTranspose, self).__init__(in_channels,
                                              out_channels,
                                              kernel_size,
                                              True,
                                              3,
                                              stride=stride,
                                              padding=padding,
                                              dilation=dilation,
                                              output_padding=output_padding,
                                              groups=groups,
                                              weight_attr=weight_attr,
                                              bias_attr=bias_attr,
                                              data_format=data_format)
L
LielinJiang 已提交
1144

1145
    def forward(self, x, output_size=None):
1146
        if output_size is None:
1147
            output_padding = self.output_padding
1148
        else:
L
LielinJiang 已提交
1149
            output_padding = 0
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        out = F.conv3d_transpose(x,
                                 self.weight,
                                 bias=self.bias,
                                 padding=self._padding,
                                 output_padding=output_padding,
                                 stride=self._stride,
                                 dilation=self._dilation,
                                 groups=self._groups,
                                 output_size=output_size,
                                 data_format=self._data_format)
1161
        return out