conv.py 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
L
LielinJiang 已提交
20
from ...device import get_cudnn_version
Z
zhiboniu 已提交
21 22
from .. import Layer
from ..initializer import Normal
23 24 25
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd
Z
zhiboniu 已提交
26 27
from ...device import is_compiled_with_cuda
from ...device import is_compiled_with_rocm
28

29 30
__all__ = []

31 32 33 34

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
Z
zhiboniu 已提交
35
    return Normal(0.0, std)
36 37


38 39 40 41 42 43 44 45
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


Z
zhiboniu 已提交
46
class _ConvNd(Layer):
L
LielinJiang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

71 72 73 74 75 76 77 78 79 80 81 82
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

83 84 85 86 87 88
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
                "data_format must be one of {}, but got data_format='{}'".
                format(valid_format, data_format))

L
LielinJiang 已提交
89 90 91 92 93 94 95
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
96 97 98 99 100
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
101
        self._padding_mode = padding_mode
102
        self.output_padding = output_padding
L
LielinJiang 已提交
103
        if dims != 1:
104
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
105
                padding, channel_last, dims)
L
LielinJiang 已提交
106 107 108 109 110

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
111 112 113 114
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
115 116
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
117 118 119
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

120 121
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
122

L
LielinJiang 已提交
123 124 125
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
126 127 128 129 130
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
Z
zhiboniu 已提交
131
            return Normal(0.0, std)
L
LielinJiang 已提交
132

L
LielinJiang 已提交
133
        self.weight = self.create_parameter(
L
LielinJiang 已提交
134 135 136
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
137 138 139
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
140 141
        cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
142
        self._use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
143 144 145
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
L
LielinJiang 已提交
146 147 148 149
        if self._op_type == 'conv2d' and (in_channels == groups and
                                          in_channels != 1 and
                                          out_channels % in_channels == 0):
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
150
            if is_compiled_with_rocm():
151 152 153 154
                self._use_cudnn = True
            else:
                self._use_cudnn = False

Z
zhiboniu 已提交
155 156
        if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"]):
L
LielinJiang 已提交
157 158
            self._use_cudnn = False

159 160 161 162 163 164 165 166
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
        if self._padding_mode is not 'zeros':
            main_str += ', padding_mode={_padding_mode}'
167 168
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
169 170 171 172 173 174 175
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
176

C
cnn 已提交
177
class Conv1D(_ConvNd):
178
    r"""
C
cnn 已提交
179
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
180 181 182 183 184 185 186 187 188 189 190
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
191 192 193

    For each input :math:`X` , the equation is:

W
whs 已提交
194
    .. math::
W
whs 已提交
195

196
        Out = \sigma (W \ast X + b)
W
whs 已提交
197

W
whs 已提交
198
    Where:
W
whs 已提交
199

W
whs 已提交
200 201 202
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
203
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
W
whs 已提交
204 205
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
206

W
whs 已提交
207
    Example:
W
whs 已提交
208

W
whs 已提交
209
        - Input:
W
whs 已提交
210

W
whs 已提交
211
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
212

W
whs 已提交
213
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
214

W
whs 已提交
215
        - Output:
W
whs 已提交
216

W
whs 已提交
217
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
218

W
whs 已提交
219
        Where
W
whs 已提交
220

W
whs 已提交
221
        .. math::
W
whs 已提交
222

223
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
224

W
whs 已提交
225 226 227 228
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
229
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
230
            it must contain one integer, (kernel_size).
231
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
232 233 234 235 236 237
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
238
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
239 240 241 242 243 244 245 246 247 248 249 250
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
251
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
252 253 254
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
255
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
256 257 258 259 260
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
261

W
whs 已提交
262
    Attribute:
W
wangguanzhong 已提交
263

W
whs 已提交
264
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
265

W
whs 已提交
266
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
267

W
whs 已提交
268 269
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
270 271
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
272 273 274 275
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
276

W
whs 已提交
277 278
    Examples:
        .. code-block:: python
W
whs 已提交
279

W
whs 已提交
280
          import paddle
C
cnn 已提交
281
          from paddle.nn import Conv1D
W
whs 已提交
282 283 284 285 286 287 288 289 290 291 292 293
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
294
          conv = Conv1D(3, 2, 3)
W
whs 已提交
295 296
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
297
          print(y_t)
W
whs 已提交
298 299
          # [[[133. 238.]
          #   [160. 211.]]]
300
    """
S
swtkiwi 已提交
301

302
    def __init__(self,
303 304 305
                 in_channels,
                 out_channels,
                 kernel_size,
306
                 stride=1,
307
                 padding=0,
308 309
                 dilation=1,
                 groups=1,
310 311
                 padding_mode='zeros',
                 weight_attr=None,
312
                 bias_attr=None,
L
LielinJiang 已提交
313
                 data_format="NCL"):
C
cnn 已提交
314
        super(Conv1D, self).__init__(
315 316 317 318
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
319
            1,
320 321 322 323 324 325 326 327
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
328

329
    def forward(self, x):
L
LielinJiang 已提交
330 331
        padding = 0
        if self._padding_mode != "zeros":
332
            x = F.pad(x,
W
whs 已提交
333
                      self._reversed_padding_repeated_twice,
334 335
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
336 337
        else:
            padding = self._padding
338

L
LielinJiang 已提交
339
        out = F.conv1d(
340
            x,
341 342
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
343
            padding=padding,
344 345 346 347 348 349 350
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
351
class Conv1DTranspose(_ConvNd):
352
    r"""
C
cnn 已提交
353
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

369
        Out = \sigma (W \ast X + b)
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
405
          and :math:`L^\prime_{out} + stride`.
406 407 408 409 410

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
411
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
412 413 414 415
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
416
            If stride is a tuple/list, it must contain one integer, (stride_size).
417 418 419 420 421 422 423
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
424
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
425
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
426 427 428 429 430 431 432
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
433
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
450 451

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
452 453
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
454
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
455 456 457 458 459 460
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
461
          from paddle.nn import Conv1DTranspose
462 463 464 465 466 467 468 469 470
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
471
          conv = Conv1DTranspose(2, 1, 2)
472 473
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
474
          print(y_t)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
491
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
505 506

    def forward(self, x, output_size=None):
507
        out = F.conv1d_transpose(
508 509 510 511
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
512
            output_padding=self.output_padding,
L
LielinJiang 已提交
513 514 515 516 517 518 519 520
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
521
class Conv2D(_ConvNd):
522
    r"""
C
cnn 已提交
523
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

543
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
544 545 546 547 548 549

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
550
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
L
LielinJiang 已提交
551 552 553 554 555 556 557
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
558
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
559 560 561 562 563 564 565 566 567
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
568
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
569 570
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
571
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
572 573 574 575 576 577 578 579 580
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
581
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
600 601 602 603
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
604 605 606 607 608 609
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

610
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
611

612
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
613 614 615 616 617 618 619

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
620 621 622
          
          paddle.disable_static()
          
623
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
624
          
C
cnn 已提交
625
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
644
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
665 666

        out = F.conv._conv_nd(
L
LielinJiang 已提交
667 668 669
            x,
            self.weight,
            bias=self.bias,
670
            stride=self._stride,
671
            padding=self._updated_padding,
L
LielinJiang 已提交
672
            padding_algorithm=self._padding_algorithm,
673 674
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
675 676 677 678
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
679 680 681
        return out


C
cnn 已提交
682
class Conv2DTranspose(_ConvNd):
683
    r"""
C
cnn 已提交
684
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
685 686 687 688 689
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
690 691
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
692 693 694 695 696 697
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
698
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
699
    For each input :math:`X`, the equation is:
700 701 702

    ..  math::

703
        Out = \sigma (W \ast X + b)
704

705
    Where:
706

707
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
708
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
709
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
710
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
711 712
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
713
    
714
    Parameters:
L
LielinJiang 已提交
715 716
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
717
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
718 719
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
720
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
721 722
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
723 724 725 726 727 728 729
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
730 731
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
732
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
733 734
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
735
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
736 737 738 739 740
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
741
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
742 743 744
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
745
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
746 747 748 749
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
750
        data_format(str, optional): Data format that specifies the layout of input.
751
            It can be "NCHW" or "NHWC". Default: "NCHW".
752

753
    Attribute:
754

755
        **weight** (Parameter): the learnable weights of filters of this layer.
756

757
        **bias** (Parameter or None): the learnable bias of this layer.
758

L
LielinJiang 已提交
759
    Shape:
760

L
LielinJiang 已提交
761
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
762

W
wangguanzhong 已提交
763 764 765 766
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
767
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
768

L
LielinJiang 已提交
769
        Where
770 771 772 773 774 775 776 777 778 779 780

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

781
    Examples:
782

783
       .. code-block:: python
784

L
LielinJiang 已提交
785 786
          import paddle
          import paddle.nn as nn
C
cnn 已提交
787 788
          
          paddle.disable_static()
789 790 791

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
792
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
793 794 795
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
796 797 798 799
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
800 801 802
                 in_channels,
                 out_channels,
                 kernel_size,
803
                 stride=1,
L
LielinJiang 已提交
804 805
                 padding=0,
                 output_padding=0,
806 807
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
808
                 weight_attr=None,
809
                 bias_attr=None,
L
LielinJiang 已提交
810
                 data_format="NCHW"):
C
cnn 已提交
811
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
827
        if output_size is None:
828
            output_padding = self.output_padding
829
        else:
L
LielinJiang 已提交
830
            output_padding = 0
831

832
        out = F.conv2d_transpose(
L
LielinJiang 已提交
833
            x,
834 835 836
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
837
            output_padding=output_padding,
838 839 840
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
841
            output_size=output_size,
842 843 844 845
            data_format=self._data_format)
        return out


C
cnn 已提交
846
class Conv3D(_ConvNd):
847
    r"""
848 849
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
850 851 852 853 854 855 856 857 858
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
859 860 861

    ..  math::

862
        Out = \sigma (W \ast X + b)
863

864
    In the above equation:
865

866 867 868
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
869
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
870 871
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
872

873
    Parameters:
874 875
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
876
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
877
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
878 879
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
880
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
881 882 883 884 885 886
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
887
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
888 889
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
890
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
891 892 893 894
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
895 896
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
897 898 899
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
900
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
901
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
902 903 904 905
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
906
        data_format(str, optional): Data format that specifies the layout of input.
907
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
908

909
    Attribute:
910

911
        **weight** (Parameter): the learnable weights of filters of this layer.
912

913
        **bias** (Parameter): the learnable bias of this layer.
914

915
    Shape:
916

917
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
918

W
wangguanzhong 已提交
919 920 921 922
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

923
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
924

925
        Where
926 927 928

        ..  math::

929
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
930

931
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
932

933
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
934

935 936 937
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
938

939
    Examples:
940

941
        .. code-block:: python
942

943 944
          import paddle
          import paddle.nn as nn
C
cnn 已提交
945 946
          
          paddle.disable_static()
947 948

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
949
          
C
cnn 已提交
950
          conv = nn.Conv3D(4, 6, (3, 3, 3))
951 952 953
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
954 955 956 957
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
958 959 960
                 in_channels,
                 out_channels,
                 kernel_size,
961
                 stride=1,
L
LielinJiang 已提交
962
                 padding=0,
963 964
                 dilation=1,
                 groups=1,
965 966
                 padding_mode='zeros',
                 weight_attr=None,
967
                 bias_attr=None,
968
                 data_format="NCDHW"):
C
cnn 已提交
969
        super(Conv3D, self).__init__(
970 971 972 973 974 975 976 977 978 979 980 981 982
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
983

984 985 986 987 988 989
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
990 991

        out = F.conv._conv_nd(
992
            x,
993 994 995
            self.weight,
            bias=self.bias,
            stride=self._stride,
996
            padding=self._updated_padding,
L
LielinJiang 已提交
997
            padding_algorithm=self._padding_algorithm,
998 999
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1000 1001 1002 1003
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
1004 1005 1006
        return out


C
cnn 已提交
1007
class Conv3DTranspose(_ConvNd):
1008
    r"""
1009 1010 1011 1012 1013 1014 1015 1016
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1017
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1018 1019 1020 1021
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1022 1023 1024
    
    ..  math::

1025
        Out = \sigma (W \ast X + b)
1026

1027
    In the above equation:
1028

1029
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1030
    * :math:`W`: Filter value, a tensor with CMDHW format.
1031
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
1032
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1033 1034
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1035

1036
    **Note**:
1037

1038
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1039
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1040
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1041 1042 1043 1044 1045 1046
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1047
          conv3d_transpose can compute the kernel size automatically.
1048

1049
    Parameters:
L
LielinJiang 已提交
1050 1051
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1052
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1053 1054 1055
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1056
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1057 1058
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1059 1060 1061 1062 1063 1064 1065
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1066 1067
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1068
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1069 1070
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1071
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1072 1073 1074 1075 1076
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1077
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1078 1079 1080
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1081
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1082 1083 1084 1085
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1086
        data_format(str, optional): Data format that specifies the layout of input.
1087
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1088

1089
    Attribute:
1090

1091
        **weight** (Parameter): the learnable weights of filters of this layer.
1092

1093
        **bias** (Parameter): the learnable bias of this layer.
1094

L
LielinJiang 已提交
1095
    Shape:
1096

L
LielinJiang 已提交
1097
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1098

W
wangguanzhong 已提交
1099 1100 1101 1102
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1103
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1104

L
LielinJiang 已提交
1105
        Where
1106 1107 1108 1109 1110 1111 1112 1113 1114

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1115 1116 1117 1118
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1119

1120
       .. code-block:: python
1121

L
LielinJiang 已提交
1122 1123
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1124 1125
          
          paddle.disable_static()
1126 1127

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1128
          
C
cnn 已提交
1129
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1130 1131 1132
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1133 1134 1135 1136
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1137 1138 1139
                 in_channels,
                 out_channels,
                 kernel_size,
1140
                 stride=1,
L
LielinJiang 已提交
1141 1142
                 padding=0,
                 output_padding=0,
1143 1144
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1145
                 weight_attr=None,
1146
                 bias_attr=None,
L
LielinJiang 已提交
1147
                 data_format="NCDHW"):
C
cnn 已提交
1148
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1163
    def forward(self, x, output_size=None):
1164
        if output_size is None:
1165
            output_padding = self.output_padding
1166
        else:
L
LielinJiang 已提交
1167
            output_padding = 0
1168

1169
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1170
            x,
1171 1172 1173
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1174
            output_padding=output_padding,
1175 1176 1177
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1178
            output_size=output_size,
1179 1180
            data_format=self._data_format)
        return out