conv.py 51.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
C
cnn 已提交
18 19 20 21 22 23
    'Conv1D',
    'Conv2D',
    'Conv3D',
    'Conv1DTranspose',
    'Conv2DTranspose',
    'Conv3DTranspose',
24 25 26 27
]

import numpy as np

28
from ...fluid import get_flags
L
LielinJiang 已提交
29 30
from ...fluid import core
from ...device import get_cudnn_version
31 32 33 34 35 36 37 38 39 40 41 42 43
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


44 45 46 47 48 49 50 51
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

77 78 79 80 81 82 83 84 85 86 87 88
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

89 90 91 92 93 94
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
                "data_format must be one of {}, but got data_format='{}'".
                format(valid_format, data_format))

L
LielinJiang 已提交
95 96 97 98 99 100 101
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
102 103 104 105 106
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
107
        self._padding_mode = padding_mode
L
LielinJiang 已提交
108
        self.output_padding = output_padding
L
LielinJiang 已提交
109
        if dims != 1:
110
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
111
                padding, channel_last, dims)
L
LielinJiang 已提交
112 113 114 115 116

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
117 118 119 120
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
121 122
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
123 124 125
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

126 127
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
128

L
LielinJiang 已提交
129 130 131
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
132 133 134 135 136 137 138
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

L
LielinJiang 已提交
139
        self.weight = self.create_parameter(
L
LielinJiang 已提交
140 141 142
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
143 144 145
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
146 147 148 149 150 151
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
L
LielinJiang 已提交
152 153 154 155
        if self._op_type == 'conv2d' and (in_channels == groups and
                                          in_channels != 1 and
                                          out_channels % in_channels == 0):
            self._op_type = 'depthwise_conv2d'
156 157 158 159 160 161 162
            if core.is_compiled_with_rocm():
                self._use_cudnn = True
            else:
                self._use_cudnn = False

        if (core.is_compiled_with_cuda() and get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
L
LielinJiang 已提交
163 164
            self._use_cudnn = False

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
        if self._padding_mode is not 'zeros':
            main_str += ', padding_mode={_padding_mode}'
        if self.output_padding != 0:
            main_str += ', output_padding={_output_padding}'
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
182

C
cnn 已提交
183
class Conv1D(_ConvNd):
184
    r"""
C
cnn 已提交
185
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
186 187 188 189 190 191 192 193 194 195 196
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
197 198 199

    For each input :math:`X` , the equation is:

W
whs 已提交
200
    .. math::
W
whs 已提交
201 202 203

        Out = \sigma (W \\ast X + b)

W
whs 已提交
204
    Where:
W
whs 已提交
205

W
whs 已提交
206 207 208 209 210 211
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
212

W
whs 已提交
213
    Example:
W
whs 已提交
214

W
whs 已提交
215
        - Input:
W
whs 已提交
216

W
whs 已提交
217
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
218

W
whs 已提交
219
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
220

W
whs 已提交
221
        - Output:
W
whs 已提交
222

W
whs 已提交
223
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
224

W
whs 已提交
225
        Where
W
whs 已提交
226

W
whs 已提交
227
        .. math::
W
whs 已提交
228

W
whs 已提交
229
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
230

W
whs 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
257
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
258 259 260 261 262 263 264 265 266
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
267

W
whs 已提交
268 269 270
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
271

W
whs 已提交
272 273 274 275 276 277
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
278

W
whs 已提交
279 280
    Examples:
        .. code-block:: python
W
whs 已提交
281

W
whs 已提交
282
          import paddle
C
cnn 已提交
283
          from paddle.nn import Conv1D
W
whs 已提交
284 285 286 287 288 289 290 291 292 293 294 295
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
296
          conv = Conv1D(3, 2, 3)
W
whs 已提交
297 298
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
299
          print(y_t)
W
whs 已提交
300 301
          # [[[133. 238.]
          #   [160. 211.]]]
302
    """
S
swtkiwi 已提交
303

304
    def __init__(self,
305 306 307
                 in_channels,
                 out_channels,
                 kernel_size,
308
                 stride=1,
309
                 padding=0,
310 311
                 dilation=1,
                 groups=1,
312 313
                 padding_mode='zeros',
                 weight_attr=None,
314
                 bias_attr=None,
L
LielinJiang 已提交
315
                 data_format="NCL"):
C
cnn 已提交
316
        super(Conv1D, self).__init__(
317 318 319 320
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
321
            1,
322 323 324 325 326 327 328 329
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
330

331
    def forward(self, x):
L
LielinJiang 已提交
332 333
        padding = 0
        if self._padding_mode != "zeros":
334
            x = F.pad(x,
W
whs 已提交
335
                      self._reversed_padding_repeated_twice,
336 337
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
338 339
        else:
            padding = self._padding
340

L
LielinJiang 已提交
341
        out = F.conv1d(
342
            x,
343 344
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
345
            padding=padding,
346 347 348 349 350 351 352
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
353
class Conv1DTranspose(_ConvNd):
354
    r"""
C
cnn 已提交
355
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
C
cnn 已提交
427
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
452 453 454

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
455 456 457 458 459 460
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
461
          from paddle.nn import Conv1DTranspose
462 463 464 465 466 467 468 469 470
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
471
          conv = Conv1DTranspose(2, 1, 2)
472 473
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
474
          print(y_t)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
491
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
505 506

    def forward(self, x, output_size=None):
507
        out = F.conv1d_transpose(
508 509 510 511
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
512 513 514 515 516 517 518 519 520
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
521
class Conv2D(_ConvNd):
522
    r"""
C
cnn 已提交
523
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
571
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
616 617 618
          
          paddle.disable_static()
          
619
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
620
          
C
cnn 已提交
621
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
640
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
661 662

        out = F.conv._conv_nd(
L
LielinJiang 已提交
663 664 665
            x,
            self.weight,
            bias=self.bias,
666
            stride=self._stride,
667
            padding=self._updated_padding,
L
LielinJiang 已提交
668
            padding_algorithm=self._padding_algorithm,
669 670
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
671 672 673 674
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
675 676 677
        return out


C
cnn 已提交
678
class Conv2DTranspose(_ConvNd):
679
    r"""
C
cnn 已提交
680
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
696 697 698

    ..  math::

699
        Out = \sigma (W \\ast X + b)
700

701
    Where:
702

703 704 705 706 707 708
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
709
    
710
    Parameters:
L
LielinJiang 已提交
711 712 713 714 715
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
716 717 718
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
719 720 721 722 723 724 725
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
726 727
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
L
LielinJiang 已提交
728
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
729 730
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
731
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
732 733 734 735 736
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
737
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
738 739 740
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
741
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
742 743 744 745
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
746
        data_format(str, optional): Data format that specifies the layout of input.
747
            It can be "NCHW" or "NHWC". Default: "NCHW".
748

749
    Attribute:
750

751
        **weight** (Parameter): the learnable weights of filters of this layer.
752

753
        **bias** (Parameter or None): the learnable bias of this layer.
754

L
LielinJiang 已提交
755
    Shape:
756

L
LielinJiang 已提交
757
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
758

L
LielinJiang 已提交
759
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
760

L
LielinJiang 已提交
761
        Where
762 763 764 765 766 767 768 769 770 771 772

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

773
    Examples:
774

775
       .. code-block:: python
776

L
LielinJiang 已提交
777 778
          import paddle
          import paddle.nn as nn
C
cnn 已提交
779 780
          
          paddle.disable_static()
781 782 783

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
784
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
785 786 787
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
788 789 790 791
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
792 793 794
                 in_channels,
                 out_channels,
                 kernel_size,
795
                 stride=1,
L
LielinJiang 已提交
796 797
                 padding=0,
                 output_padding=0,
798 799
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
800
                 weight_attr=None,
801
                 bias_attr=None,
L
LielinJiang 已提交
802
                 data_format="NCHW"):
C
cnn 已提交
803
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
819
        if output_size is None:
L
LielinJiang 已提交
820
            output_padding = self.output_padding
821
        else:
L
LielinJiang 已提交
822
            output_padding = 0
823

824
        out = F.conv2d_transpose(
L
LielinJiang 已提交
825
            x,
826 827 828
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
829
            output_padding=output_padding,
830 831 832
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
833
            output_size=output_size,
834 835 836 837
            data_format=self._data_format)
        return out


C
cnn 已提交
838
class Conv3D(_ConvNd):
839
    r"""
840 841
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
842 843 844 845 846 847 848 849 850
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
851 852 853

    ..  math::

854
        Out = \sigma (W \\ast X + b)
855

856
    In the above equation:
857

858 859 860 861 862 863
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
864

865
    Parameters:
866 867
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
868 869
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
870 871
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
872
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
873 874 875 876 877 878
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
879
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
880 881
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
882
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
883 884 885 886
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
887 888
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
889 890 891 892
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
893
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
894 895 896 897
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
898
        data_format(str, optional): Data format that specifies the layout of input.
899
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
900

901
    Attribute:
902

903
        **weight** (Parameter): the learnable weights of filters of this layer.
904

905
        **bias** (Parameter): the learnable bias of this layer.
906

907
    Shape:
908

909
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
910

911
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
912

913
        Where
914 915 916 917 918 919 920 921 922

        ..  math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1

923 924 925
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
926

927
    Examples:
928

929
        .. code-block:: python
930

931 932
          import paddle
          import paddle.nn as nn
C
cnn 已提交
933 934
          
          paddle.disable_static()
935 936

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
937
          
C
cnn 已提交
938
          conv = nn.Conv3D(4, 6, (3, 3, 3))
939 940 941
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
942 943 944 945
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
946 947 948
                 in_channels,
                 out_channels,
                 kernel_size,
949
                 stride=1,
L
LielinJiang 已提交
950
                 padding=0,
951 952
                 dilation=1,
                 groups=1,
953 954
                 padding_mode='zeros',
                 weight_attr=None,
955
                 bias_attr=None,
956
                 data_format="NCDHW"):
C
cnn 已提交
957
        super(Conv3D, self).__init__(
958 959 960 961 962 963 964 965 966 967 968 969 970
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
971

972 973 974 975 976 977
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
978 979

        out = F.conv._conv_nd(
980
            x,
981 982 983
            self.weight,
            bias=self.bias,
            stride=self._stride,
984
            padding=self._updated_padding,
L
LielinJiang 已提交
985
            padding_algorithm=self._padding_algorithm,
986 987
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
988 989 990 991
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
992 993 994
        return out


C
cnn 已提交
995
class Conv3DTranspose(_ConvNd):
996
    r"""
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1010 1011 1012
    
    ..  math::

1013
        Out = \sigma (W \\ast X + b)
1014

1015
    In the above equation:
1016

1017 1018 1019 1020 1021 1022
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1023

1024
    **Note**:
1025

1026
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1027
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1028
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1029 1030 1031 1032 1033 1034
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1035
          conv3d_transpose can compute the kernel size automatically.
1036

1037
    Parameters:
L
LielinJiang 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1047 1048 1049 1050 1051 1052 1053
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1054 1055 1056
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
1057 1058
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1059
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1060 1061 1062 1063 1064
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1065
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1066 1067 1068
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1069
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1070 1071 1072 1073
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
1074 1075 1076 1077 1078
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1079
        data_format(str, optional): Data format that specifies the layout of input.
1080
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1081

1082
    Attribute:
1083

1084
        **weight** (Parameter): the learnable weights of filters of this layer.
1085

1086
        **bias** (Parameter): the learnable bias of this layer.
1087

L
LielinJiang 已提交
1088
    Shape:
1089

L
LielinJiang 已提交
1090
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1091

L
LielinJiang 已提交
1092
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1093

L
LielinJiang 已提交
1094
        Where
1095 1096 1097 1098 1099 1100 1101 1102 1103

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1104 1105 1106 1107
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1108

1109
       .. code-block:: python
1110

L
LielinJiang 已提交
1111 1112
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1113 1114
          
          paddle.disable_static()
1115 1116

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1117
          
C
cnn 已提交
1118
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1119 1120 1121
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1122 1123 1124 1125
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1126 1127 1128
                 in_channels,
                 out_channels,
                 kernel_size,
1129
                 stride=1,
L
LielinJiang 已提交
1130 1131
                 padding=0,
                 output_padding=0,
1132 1133
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1134
                 weight_attr=None,
1135
                 bias_attr=None,
L
LielinJiang 已提交
1136
                 data_format="NCDHW"):
C
cnn 已提交
1137
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1152
    def forward(self, x, output_size=None):
1153
        if output_size is None:
L
LielinJiang 已提交
1154
            output_padding = self.output_padding
1155
        else:
L
LielinJiang 已提交
1156
            output_padding = 0
1157

1158
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1159
            x,
1160 1161 1162
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1163
            output_padding=output_padding,
1164 1165 1166
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1167
            output_size=output_size,
1168 1169
            data_format=self._data_format)
        return out