conv.py 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

19
from ...fluid import get_flags
L
LielinJiang 已提交
20 21
from ...fluid import core
from ...device import get_cudnn_version
22 23 24 25 26 27
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd

28 29
__all__ = []

30 31 32 33 34 35 36

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


37 38 39 40 41 42 43 44
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

70 71 72 73 74 75 76 77 78 79 80 81
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

82 83 84 85 86 87
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
                "data_format must be one of {}, but got data_format='{}'".
                format(valid_format, data_format))

L
LielinJiang 已提交
88 89 90 91 92 93 94
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
95 96 97 98 99
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
100
        self._padding_mode = padding_mode
101
        self._output_padding = output_padding
L
LielinJiang 已提交
102
        if dims != 1:
103
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
104
                padding, channel_last, dims)
L
LielinJiang 已提交
105 106 107 108 109

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
110 111 112 113
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
114 115
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
116 117 118
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

119 120
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
121

L
LielinJiang 已提交
122 123 124
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
125 126 127 128 129 130 131
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

L
LielinJiang 已提交
132
        self.weight = self.create_parameter(
L
LielinJiang 已提交
133 134 135
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
136 137 138
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
139 140 141 142 143 144
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
L
LielinJiang 已提交
145 146 147 148
        if self._op_type == 'conv2d' and (in_channels == groups and
                                          in_channels != 1 and
                                          out_channels % in_channels == 0):
            self._op_type = 'depthwise_conv2d'
149 150 151 152 153 154 155
            if core.is_compiled_with_rocm():
                self._use_cudnn = True
            else:
                self._use_cudnn = False

        if (core.is_compiled_with_cuda() and get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
L
LielinJiang 已提交
156 157
            self._use_cudnn = False

158 159 160 161 162 163 164 165
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
        if self._padding_mode is not 'zeros':
            main_str += ', padding_mode={_padding_mode}'
166
        if self._output_padding != 0:
167 168 169 170 171 172 173 174
            main_str += ', output_padding={_output_padding}'
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
175

C
cnn 已提交
176
class Conv1D(_ConvNd):
177
    r"""
C
cnn 已提交
178
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
179 180 181 182 183 184 185 186 187 188 189
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
190 191 192

    For each input :math:`X` , the equation is:

W
whs 已提交
193
    .. math::
W
whs 已提交
194

195
        Out = \sigma (W \ast X + b)
W
whs 已提交
196

W
whs 已提交
197
    Where:
W
whs 已提交
198

W
whs 已提交
199 200 201
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
202
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
W
whs 已提交
203 204
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
205

W
whs 已提交
206
    Example:
W
whs 已提交
207

W
whs 已提交
208
        - Input:
W
whs 已提交
209

W
whs 已提交
210
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
211

W
whs 已提交
212
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
213

W
whs 已提交
214
        - Output:
W
whs 已提交
215

W
whs 已提交
216
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
217

W
whs 已提交
218
        Where
W
whs 已提交
219

W
whs 已提交
220
        .. math::
W
whs 已提交
221

222
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
223

W
whs 已提交
224 225 226 227
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
228
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
229
            it must contain one integer, (kernel_size).
230
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
231 232 233 234 235 236
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
237
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
238 239 240 241 242 243 244 245 246 247 248 249
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
250
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
251 252 253
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
254
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
255 256 257 258 259
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
260

W
whs 已提交
261
    Attribute:
W
wangguanzhong 已提交
262

W
whs 已提交
263
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
264

W
whs 已提交
265
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
266

W
whs 已提交
267 268
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
269 270
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
271 272 273 274
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
275

W
whs 已提交
276 277
    Examples:
        .. code-block:: python
W
whs 已提交
278

W
whs 已提交
279
          import paddle
C
cnn 已提交
280
          from paddle.nn import Conv1D
W
whs 已提交
281 282 283 284 285 286 287 288 289 290 291 292
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
293
          conv = Conv1D(3, 2, 3)
W
whs 已提交
294 295
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
296
          print(y_t)
W
whs 已提交
297 298
          # [[[133. 238.]
          #   [160. 211.]]]
299
    """
S
swtkiwi 已提交
300

301
    def __init__(self,
302 303 304
                 in_channels,
                 out_channels,
                 kernel_size,
305
                 stride=1,
306
                 padding=0,
307 308
                 dilation=1,
                 groups=1,
309 310
                 padding_mode='zeros',
                 weight_attr=None,
311
                 bias_attr=None,
L
LielinJiang 已提交
312
                 data_format="NCL"):
C
cnn 已提交
313
        super(Conv1D, self).__init__(
314 315 316 317
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
318
            1,
319 320 321 322 323 324 325 326
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
327

328
    def forward(self, x):
L
LielinJiang 已提交
329 330
        padding = 0
        if self._padding_mode != "zeros":
331
            x = F.pad(x,
W
whs 已提交
332
                      self._reversed_padding_repeated_twice,
333 334
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
335 336
        else:
            padding = self._padding
337

L
LielinJiang 已提交
338
        out = F.conv1d(
339
            x,
340 341
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
342
            padding=padding,
343 344 345 346 347 348 349
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
350
class Conv1DTranspose(_ConvNd):
351
    r"""
C
cnn 已提交
352
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

368
        Out = \sigma (W \ast X + b)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
404
          and :math:`L^\prime_{out} + stride`.
405 406 407 408 409

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
410
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
411 412 413 414
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
415
            If stride is a tuple/list, it must contain one integer, (stride_size).
416 417 418 419 420 421 422
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
423
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
424
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
425 426 427 428 429 430 431
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
432
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
449 450

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
451 452
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
453
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
454 455 456 457 458 459
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
460
          from paddle.nn import Conv1DTranspose
461 462 463 464 465 466 467 468 469
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
470
          conv = Conv1DTranspose(2, 1, 2)
471 472
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
473
          print(y_t)
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
490
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
504 505

    def forward(self, x, output_size=None):
506
        out = F.conv1d_transpose(
507 508 509 510
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
511
            output_padding=self._output_padding,
L
LielinJiang 已提交
512 513 514 515 516 517 518 519
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
520
class Conv2D(_ConvNd):
521
    r"""
C
cnn 已提交
522
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

542
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
543 544 545 546 547 548

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
549
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
L
LielinJiang 已提交
550 551 552 553 554 555 556
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
557
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
558 559 560 561 562 563 564 565 566
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
567
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
568 569
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
570
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
571 572 573 574 575 576 577 578 579
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
580
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
599 600 601 602
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
603 604 605 606 607 608
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

609
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
610

611
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
612 613 614 615 616 617 618

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
619 620 621
          
          paddle.disable_static()
          
622
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
623
          
C
cnn 已提交
624
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
643
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
664 665

        out = F.conv._conv_nd(
L
LielinJiang 已提交
666 667 668
            x,
            self.weight,
            bias=self.bias,
669
            stride=self._stride,
670
            padding=self._updated_padding,
L
LielinJiang 已提交
671
            padding_algorithm=self._padding_algorithm,
672 673
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
674 675 676 677
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
678 679 680
        return out


C
cnn 已提交
681
class Conv2DTranspose(_ConvNd):
682
    r"""
C
cnn 已提交
683
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
684 685 686 687 688
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
689 690
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
691 692 693 694 695 696
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
697
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
698
    For each input :math:`X`, the equation is:
699 700 701

    ..  math::

702
        Out = \sigma (W \ast X + b)
703

704
    Where:
705

706
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
707
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
708
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
709
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
710 711
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
712
    
713
    Parameters:
L
LielinJiang 已提交
714 715
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
716
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
717 718
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
719
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
720 721
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
722 723 724 725 726 727 728
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
729 730
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
731
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
732 733
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
734
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
735 736 737 738 739
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
740
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
741 742 743
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
744
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
745 746 747 748
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
749
        data_format(str, optional): Data format that specifies the layout of input.
750
            It can be "NCHW" or "NHWC". Default: "NCHW".
751

752
    Attribute:
753

754
        **weight** (Parameter): the learnable weights of filters of this layer.
755

756
        **bias** (Parameter or None): the learnable bias of this layer.
757

L
LielinJiang 已提交
758
    Shape:
759

L
LielinJiang 已提交
760
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
761

W
wangguanzhong 已提交
762 763 764 765
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
766
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
767

L
LielinJiang 已提交
768
        Where
769 770 771 772 773 774 775 776 777 778 779

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

780
    Examples:
781

782
       .. code-block:: python
783

L
LielinJiang 已提交
784 785
          import paddle
          import paddle.nn as nn
C
cnn 已提交
786 787
          
          paddle.disable_static()
788 789 790

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
791
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
792 793 794
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
795 796 797 798
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
799 800 801
                 in_channels,
                 out_channels,
                 kernel_size,
802
                 stride=1,
L
LielinJiang 已提交
803 804
                 padding=0,
                 output_padding=0,
805 806
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
807
                 weight_attr=None,
808
                 bias_attr=None,
L
LielinJiang 已提交
809
                 data_format="NCHW"):
C
cnn 已提交
810
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
826
        if output_size is None:
827
            output_padding = self._output_padding
828
        else:
L
LielinJiang 已提交
829
            output_padding = 0
830

831
        out = F.conv2d_transpose(
L
LielinJiang 已提交
832
            x,
833 834 835
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
836
            output_padding=output_padding,
837 838 839
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
840
            output_size=output_size,
841 842 843 844
            data_format=self._data_format)
        return out


C
cnn 已提交
845
class Conv3D(_ConvNd):
846
    r"""
847 848
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
849 850 851 852 853 854 855 856 857
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
858 859 860

    ..  math::

861
        Out = \sigma (W \ast X + b)
862

863
    In the above equation:
864

865 866 867
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
868
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
869 870
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
871

872
    Parameters:
873 874
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
875
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
876
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
877 878
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
879
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
880 881 882 883 884 885
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
886
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
887 888
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
889
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
890 891 892 893
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
894 895
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
896 897 898
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
899
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
900
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
901 902 903 904
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
905
        data_format(str, optional): Data format that specifies the layout of input.
906
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
907

908
    Attribute:
909

910
        **weight** (Parameter): the learnable weights of filters of this layer.
911

912
        **bias** (Parameter): the learnable bias of this layer.
913

914
    Shape:
915

916
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
917

W
wangguanzhong 已提交
918 919 920 921
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

922
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
923

924
        Where
925 926 927

        ..  math::

928
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
929

930
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
931

932
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
933

934 935 936
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
937

938
    Examples:
939

940
        .. code-block:: python
941

942 943
          import paddle
          import paddle.nn as nn
C
cnn 已提交
944 945
          
          paddle.disable_static()
946 947

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
948
          
C
cnn 已提交
949
          conv = nn.Conv3D(4, 6, (3, 3, 3))
950 951 952
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
953 954 955 956
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
957 958 959
                 in_channels,
                 out_channels,
                 kernel_size,
960
                 stride=1,
L
LielinJiang 已提交
961
                 padding=0,
962 963
                 dilation=1,
                 groups=1,
964 965
                 padding_mode='zeros',
                 weight_attr=None,
966
                 bias_attr=None,
967
                 data_format="NCDHW"):
C
cnn 已提交
968
        super(Conv3D, self).__init__(
969 970 971 972 973 974 975 976 977 978 979 980 981
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
982

983 984 985 986 987 988
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
989 990

        out = F.conv._conv_nd(
991
            x,
992 993 994
            self.weight,
            bias=self.bias,
            stride=self._stride,
995
            padding=self._updated_padding,
L
LielinJiang 已提交
996
            padding_algorithm=self._padding_algorithm,
997 998
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
999 1000 1001 1002
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
1003 1004 1005
        return out


C
cnn 已提交
1006
class Conv3DTranspose(_ConvNd):
1007
    r"""
1008 1009 1010 1011 1012 1013 1014 1015
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1016
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1017 1018 1019 1020
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1021 1022 1023
    
    ..  math::

1024
        Out = \sigma (W \ast X + b)
1025

1026
    In the above equation:
1027

1028
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1029
    * :math:`W`: Filter value, a tensor with CMDHW format.
1030
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
1031
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1032 1033
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1034

1035
    **Note**:
1036

1037
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1038
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1039
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1040 1041 1042 1043 1044 1045
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1046
          conv3d_transpose can compute the kernel size automatically.
1047

1048
    Parameters:
L
LielinJiang 已提交
1049 1050
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1051
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1052 1053 1054
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1055
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1056 1057
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1058 1059 1060 1061 1062 1063 1064
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1065 1066
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1067
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1068 1069
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1070
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1071 1072 1073 1074 1075
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1076
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1077 1078 1079
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1080
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1081 1082 1083 1084
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1085
        data_format(str, optional): Data format that specifies the layout of input.
1086
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1087

1088
    Attribute:
1089

1090
        **weight** (Parameter): the learnable weights of filters of this layer.
1091

1092
        **bias** (Parameter): the learnable bias of this layer.
1093

L
LielinJiang 已提交
1094
    Shape:
1095

L
LielinJiang 已提交
1096
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1097

W
wangguanzhong 已提交
1098 1099 1100 1101
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1102
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1103

L
LielinJiang 已提交
1104
        Where
1105 1106 1107 1108 1109 1110 1111 1112 1113

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1114 1115 1116 1117
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1118

1119
       .. code-block:: python
1120

L
LielinJiang 已提交
1121 1122
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1123 1124
          
          paddle.disable_static()
1125 1126

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1127
          
C
cnn 已提交
1128
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1129 1130 1131
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1132 1133 1134 1135
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1136 1137 1138
                 in_channels,
                 out_channels,
                 kernel_size,
1139
                 stride=1,
L
LielinJiang 已提交
1140 1141
                 padding=0,
                 output_padding=0,
1142 1143
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1144
                 weight_attr=None,
1145
                 bias_attr=None,
L
LielinJiang 已提交
1146
                 data_format="NCDHW"):
C
cnn 已提交
1147
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1162
    def forward(self, x, output_size=None):
1163
        if output_size is None:
1164
            output_padding = self._output_padding
1165
        else:
L
LielinJiang 已提交
1166
            output_padding = 0
1167

1168
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1169
            x,
1170 1171 1172
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1173
            output_padding=output_padding,
1174 1175 1176
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1177
            output_size=output_size,
1178 1179
            data_format=self._data_format)
        return out