conv.py 51.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
L
LielinJiang 已提交
20
from ...device import get_cudnn_version
Z
zhiboniu 已提交
21 22
from .. import Layer
from ..initializer import Normal
23 24 25
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd
Z
zhiboniu 已提交
26 27
from ...device import is_compiled_with_cuda
from ...device import is_compiled_with_rocm
28

29 30
__all__ = []

31 32 33

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
34
    std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
35
    return Normal(0.0, std)
36 37


38 39 40 41 42 43 44 45
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


Z
zhiboniu 已提交
46
class _ConvNd(Layer):
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        transposed,
        dims,
        stride=1,
        padding=0,
        padding_mode='zeros',
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
L
LielinJiang 已提交
64
        super(_ConvNd, self).__init__()
65 66 67
        assert (
            weight_attr is not False
        ), "weight_attr should not be False in Conv."
L
LielinJiang 已提交
68 69 70 71 72 73 74
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

75 76 77
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
78 79 80 81
                "padding_mode must be one of {}, but got padding_mode='{}'".format(
                    valid_padding_modes, padding_mode
                )
            )
82

83 84 85 86 87
        if padding_mode in {
            'reflect',
            'replicate',
            'circular',
        } and not isinstance(padding, int):
88 89 90 91
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

92 93 94
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
95 96 97 98
                "data_format must be one of {}, but got data_format='{}'".format(
                    valid_format, data_format
                )
            )
99

100 101 102 103 104
        channel_last = (
            (data_format == "NHWC")
            or (data_format == "NDHWC")
            or (data_format == "NLC")
        )
L
LielinJiang 已提交
105 106 107 108 109
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
110 111
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
112 113 114
        self._kernel_size = utils.convert_to_list(
            kernel_size, dims, 'kernel_size'
        )
L
LielinJiang 已提交
115
        self._padding = padding
116
        self._padding_mode = padding_mode
117
        self.output_padding = output_padding
L
LielinJiang 已提交
118
        if dims != 1:
119
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
120 121
                padding, channel_last, dims
            )
L
LielinJiang 已提交
122 123

        if transposed:
124 125 126 127
            filter_shape = [
                self._in_channels,
                out_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
128
        else:
129 130 131 132
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
133 134 135
                _paired_padding = utils.convert_to_list(
                    padding, dims, 'padding'
                )
136
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
137 138
                    _paired_padding, 2
                )
139

140 141 142 143
                (
                    self._updated_padding,
                    self._padding_algorithm,
                ) = _update_padding_nd(0, channel_last, dims)
L
LielinJiang 已提交
144

145 146 147 148
            filter_shape = [
                out_channels,
                in_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
149

L
LielinJiang 已提交
150 151 152 153
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
154
            std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
155
            return Normal(0.0, std)
L
LielinJiang 已提交
156

L
LielinJiang 已提交
157
        self.weight = self.create_parameter(
L
LielinJiang 已提交
158 159
            shape=filter_shape,
            attr=self._param_attr,
160 161 162 163 164
            default_initializer=_get_default_param_initializer(),
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True
        )
L
LielinJiang 已提交
165

L
LielinJiang 已提交
166 167
        cudnn_version = get_cudnn_version()

168 169 170 171 172
        self._use_cudnn = (
            True
            if (is_compiled_with_cuda() and cudnn_version is not None)
            else False
        )
L
LielinJiang 已提交
173 174

        self._op_type = "conv" + str(dims) + 'd'
175 176 177 178 179
        if self._op_type == 'conv2d' and (
            in_channels == groups
            and in_channels != 1
            and out_channels % in_channels == 0
        ):
L
LielinJiang 已提交
180
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
181
            if is_compiled_with_rocm():
182 183 184 185
                self._use_cudnn = True
            else:
                self._use_cudnn = False

186 187 188 189 190 191
        if (
            is_compiled_with_cuda()
            and get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
L
LielinJiang 已提交
192 193
            self._use_cudnn = False

194 195 196 197 198 199
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
200
        if self._padding_mode != 'zeros':
201
            main_str += ', padding_mode={_padding_mode}'
202 203
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
204 205 206 207 208 209 210
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
211

C
cnn 已提交
212
class Conv1D(_ConvNd):
213
    r"""
C
cnn 已提交
214
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
215 216 217 218 219 220
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
221
    C is the number of input feature map, K is the size of the kernel.
W
whs 已提交
222 223 224 225
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
226 227 228

    For each input :math:`X` , the equation is:

W
whs 已提交
229
    .. math::
W
whs 已提交
230

231
        Out = \sigma (W \ast X + b)
W
whs 已提交
232

W
whs 已提交
233
    Where:
W
whs 已提交
234

W
whs 已提交
235 236 237
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
238
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
W
whs 已提交
239 240
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
241

W
whs 已提交
242
    Example:
W
whs 已提交
243

W
whs 已提交
244
        - Input:
W
whs 已提交
245

W
whs 已提交
246
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
247

W
whs 已提交
248
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
249

W
whs 已提交
250
        - Output:
W
whs 已提交
251

W
whs 已提交
252
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
253

W
whs 已提交
254
        Where
W
whs 已提交
255

W
whs 已提交
256
        .. math::
W
whs 已提交
257

258
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
259

W
whs 已提交
260 261 262 263
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
264
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
265
            it must contain one integer, (kernel_size).
266
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
267 268 269 270 271 272
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
273
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
274 275 276 277 278 279 280 281 282 283 284 285
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
286
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
287 288 289
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
290
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
291 292 293 294 295
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
296

W
whs 已提交
297
    Attribute:
W
wangguanzhong 已提交
298

W
whs 已提交
299
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
300

W
whs 已提交
301
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
302

W
whs 已提交
303 304
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
305 306
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
307
        - output: 3-D tensor with same shape as input x.
308

W
whs 已提交
309 310
    Examples:
        .. code-block:: python
W
whs 已提交
311

W
whs 已提交
312
          import paddle
C
cnn 已提交
313
          from paddle.nn import Conv1D
W
whs 已提交
314 315 316 317 318 319 320 321 322 323 324 325
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
326
          conv = Conv1D(3, 2, 3)
W
whs 已提交
327 328
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
329
          print(y_t)
W
whs 已提交
330 331
          # [[[133. 238.]
          #   [160. 211.]]]
332
    """
S
swtkiwi 已提交
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
        super(Conv1D, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            1,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
363

364
    def forward(self, x):
L
LielinJiang 已提交
365 366
        padding = 0
        if self._padding_mode != "zeros":
367 368 369 370 371 372
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )
L
LielinJiang 已提交
373 374
        else:
            padding = self._padding
375

376 377 378 379 380 381 382 383 384 385
        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
386 387 388
        return out


C
cnn 已提交
389
class Conv1DTranspose(_ConvNd):
390
    r"""
C
cnn 已提交
391
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

407
        Out = \sigma (W \ast X + b)
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
443
          and :math:`L^\prime_{out} + stride`.
444 445 446 447 448

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
449
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
450 451 452 453
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
454
            If stride is a tuple/list, it must contain one integer, (stride_size).
455 456 457 458 459 460 461
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
462
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
463
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
464 465 466 467 468 469 470
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
471
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
488 489

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
490 491
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
492
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
493 494 495 496 497 498
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
499
          from paddle.nn import Conv1DTranspose
500
          import numpy as np
501

502 503 504 505 506 507 508
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
509
          conv = Conv1DTranspose(2, 1, 2)
510 511
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
512
          print(y_t)
513

514 515 516
          # [[[60. 16. 99. 75.  4.]]]
    """

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        groups=1,
        dilation=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
        super(Conv1DTranspose, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
546 547

    def forward(self, x, output_size=None):
548 549 550 551 552 553 554 555 556 557 558 559
        out = F.conv1d_transpose(
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
L
LielinJiang 已提交
560 561 562
        return out


C
cnn 已提交
563
class Conv2D(_ConvNd):
564
    r"""
C
cnn 已提交
565
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

585
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
586 587 588 589 590 591

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
592
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
L
LielinJiang 已提交
593 594
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
595

L
LielinJiang 已提交
596 597 598 599
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
600
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
601 602 603 604
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
605
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
L
LielinJiang 已提交
606 607 608 609
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
610
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
611 612
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
613
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
614 615 616 617 618 619 620 621 622
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
623
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
642 643 644 645
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
646 647 648 649 650 651
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

652
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
653

654
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
655 656 657 658 659 660 661

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
662

C
cnn 已提交
663
          paddle.disable_static()
664

665
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
666

C
cnn 已提交
667
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
668 669 670 671 672 673
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
        super(Conv2D, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
703 704 705

    def forward(self, x):
        if self._padding_mode != 'zeros':
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
727 728 729
        return out


C
cnn 已提交
730
class Conv2DTranspose(_ConvNd):
731
    r"""
C
cnn 已提交
732
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
733 734 735 736 737
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
738 739
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
740 741 742 743 744 745
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
746
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
747
    For each input :math:`X`, the equation is:
748 749 750

    ..  math::

751
        Out = \sigma (W \ast X + b)
752

753
    Where:
754

755
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
756
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
757
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
758
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
759 760
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
761

762
    Parameters:
L
LielinJiang 已提交
763 764
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
765
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
766 767
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
768
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
769 770
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
771 772
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
773
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides
774 775 776 777
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
778 779
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
780
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
781 782
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
783
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
784 785 786 787 788
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
789
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
790 791 792
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
793
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
794 795 796 797
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
798
        data_format(str, optional): Data format that specifies the layout of input.
799
            It can be "NCHW" or "NHWC". Default: "NCHW".
800

801
    Attribute:
802

803
        **weight** (Parameter): the learnable weights of filters of this layer.
804

805
        **bias** (Parameter or None): the learnable bias of this layer.
806

L
LielinJiang 已提交
807
    Shape:
808

L
LielinJiang 已提交
809
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
810

W
wangguanzhong 已提交
811 812 813 814
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
815
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
816

L
LielinJiang 已提交
817
        Where
818 819 820 821 822 823 824 825 826 827 828

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

829
    Examples:
830

831
       .. code-block:: python
832

L
LielinJiang 已提交
833 834
          import paddle
          import paddle.nn as nn
835

C
cnn 已提交
836
          paddle.disable_static()
837 838 839

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
840
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
841 842 843
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
844 845 846
          # (2, 6, 10, 10)
    """

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
        super(Conv2DTranspose, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
876 877

    def forward(self, x, output_size=None):
878
        if output_size is None:
879
            output_padding = self.output_padding
880
        else:
L
LielinJiang 已提交
881
            output_padding = 0
882

883 884 885 886 887 888 889 890 891 892 893 894
        out = F.conv2d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
895 896 897
        return out


C
cnn 已提交
898
class Conv3D(_ConvNd):
899
    r"""
900 901
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
902
    and strides, paddings, dilations, groups parameters. Input(Input) and
903
    Output(Output) are multidimensional tensors with a shape of
904 905 906 907 908 909 910
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
911 912 913

    ..  math::

914
        Out = \sigma (W \ast X + b)
915

916
    In the above equation:
917

918 919 920
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
921
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
922 923
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
924

925
    Parameters:
926 927
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
928
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
929
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
930 931
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
932
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
933
            1. a string in ['valid', 'same'].
934
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
935 936 937 938
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
939
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
940 941
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
942
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
943 944 945 946
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
947 948
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
949 950 951
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
952
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
953
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
954 955 956 957
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
958
        data_format(str, optional): Data format that specifies the layout of input.
959
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
960

961
    Attribute:
962

963
        **weight** (Parameter): the learnable weights of filters of this layer.
964

965
        **bias** (Parameter): the learnable bias of this layer.
966

967
    Shape:
968

969
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
970

W
wangguanzhong 已提交
971 972 973 974
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

975
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
976

977
        Where
978 979 980

        ..  math::

981
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
982

983
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
984

985
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
986

987
    Examples:
988

989
        .. code-block:: python
990

991 992
          import paddle
          import paddle.nn as nn
993

C
cnn 已提交
994
          paddle.disable_static()
995 996

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
997

C
cnn 已提交
998
          conv = nn.Conv3D(4, 6, (3, 3, 3))
999 1000 1001
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1002 1003 1004
          # (2, 6, 6, 6, 6)
    """

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
        super(Conv3D, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
1034

1035 1036
    def forward(self, x):
        if self._padding_mode != 'zeros':
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
1058 1059 1060
        return out


C
cnn 已提交
1061
class Conv3DTranspose(_ConvNd):
1062
    r"""
1063 1064 1065 1066 1067 1068 1069 1070
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1071
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1072 1073 1074 1075
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1076

1077 1078
    ..  math::

1079
        Out = \sigma (W \ast X + b)
1080

1081
    In the above equation:
1082

1083
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1084
    * :math:`W`: Filter value, a tensor with CMDHW format.
1085
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
1086
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1087 1088
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1089

1090
    **Note**:
1091

1092
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1093
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1094
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1095
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1096 1097 1098 1099 1100
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
1101
          conv3d_transpose can compute the kernel size automatically.
1102

1103
    Parameters:
L
LielinJiang 已提交
1104 1105
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1106
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1107 1108
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
1109 1110 1111
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1112
            The default value is 1.
1113 1114
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
1115
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
1116 1117 1118 1119
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1120 1121
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1122
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1123 1124
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1125
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1126 1127 1128 1129 1130
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1131
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1132 1133 1134
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1135
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1136 1137 1138 1139
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1140
        data_format(str, optional): Data format that specifies the layout of input.
1141
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1142

1143
    Attribute:
1144

1145
        **weight** (Parameter): the learnable weights of filters of this layer.
1146

1147
        **bias** (Parameter): the learnable bias of this layer.
1148

L
LielinJiang 已提交
1149
    Shape:
1150

L
LielinJiang 已提交
1151
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1152

W
wangguanzhong 已提交
1153 1154 1155 1156
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1157
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1158

L
LielinJiang 已提交
1159
        Where
1160 1161 1162 1163

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
1164

1165
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
1166

1167
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
1168

1169
    Examples:
1170

1171
       .. code-block:: python
1172

L
LielinJiang 已提交
1173 1174
          import paddle
          import paddle.nn as nn
1175

C
cnn 已提交
1176
          paddle.disable_static()
1177 1178

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
1179

C
cnn 已提交
1180
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1181 1182 1183
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1184 1185 1186
          # (2, 6, 10, 10, 10)
    """

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
        super(Conv3DTranspose, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
1216

1217
    def forward(self, x, output_size=None):
1218
        if output_size is None:
1219
            output_padding = self.output_padding
1220
        else:
L
LielinJiang 已提交
1221
            output_padding = 0
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        out = F.conv3d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
1235
        return out