conv.py 51.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

19
from ...fluid import get_flags
L
LielinJiang 已提交
20 21
from ...fluid import core
from ...device import get_cudnn_version
22 23 24 25 26 27 28 29 30 31 32 33 34
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


35 36 37 38 39 40 41 42
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

68 69 70 71 72 73 74 75 76 77 78 79
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

80 81 82 83 84 85
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
                "data_format must be one of {}, but got data_format='{}'".
                format(valid_format, data_format))

L
LielinJiang 已提交
86 87 88 89 90 91 92
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
93 94 95 96 97
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
98
        self._padding_mode = padding_mode
L
LielinJiang 已提交
99
        self.output_padding = output_padding
L
LielinJiang 已提交
100
        if dims != 1:
101
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
102
                padding, channel_last, dims)
L
LielinJiang 已提交
103 104 105 106 107

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
108 109 110 111
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
112 113
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
114 115 116
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

117 118
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
119

L
LielinJiang 已提交
120 121 122
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
123 124 125 126 127 128 129
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

L
LielinJiang 已提交
130
        self.weight = self.create_parameter(
L
LielinJiang 已提交
131 132 133
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
134 135 136
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
137 138 139 140 141 142
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
L
LielinJiang 已提交
143 144 145 146
        if self._op_type == 'conv2d' and (in_channels == groups and
                                          in_channels != 1 and
                                          out_channels % in_channels == 0):
            self._op_type = 'depthwise_conv2d'
147 148 149 150 151 152 153
            if core.is_compiled_with_rocm():
                self._use_cudnn = True
            else:
                self._use_cudnn = False

        if (core.is_compiled_with_cuda() and get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
L
LielinJiang 已提交
154 155
            self._use_cudnn = False

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
        if self._padding_mode is not 'zeros':
            main_str += ', padding_mode={_padding_mode}'
        if self.output_padding != 0:
            main_str += ', output_padding={_output_padding}'
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
173

C
cnn 已提交
174
class Conv1D(_ConvNd):
175
    r"""
C
cnn 已提交
176
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
177 178 179 180 181 182 183 184 185 186 187
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
188 189 190

    For each input :math:`X` , the equation is:

W
whs 已提交
191
    .. math::
W
whs 已提交
192

193
        Out = \sigma (W \ast X + b)
W
whs 已提交
194

W
whs 已提交
195
    Where:
W
whs 已提交
196

W
whs 已提交
197 198 199 200 201 202
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
203

W
whs 已提交
204
    Example:
W
whs 已提交
205

W
whs 已提交
206
        - Input:
W
whs 已提交
207

W
whs 已提交
208
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
209

W
whs 已提交
210
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
211

W
whs 已提交
212
        - Output:
W
whs 已提交
213

W
whs 已提交
214
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
215

W
whs 已提交
216
        Where
W
whs 已提交
217

W
whs 已提交
218
        .. math::
W
whs 已提交
219

220
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
221

W
whs 已提交
222 223 224 225
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
226
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
227
            it must contain one integer, (kernel_size).
228
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
229 230 231 232 233 234
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
235
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
236 237 238 239 240 241 242 243 244 245 246 247
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
248
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
249 250 251
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
252
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
253 254 255 256 257
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
258

W
whs 已提交
259 260 261
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
262

W
whs 已提交
263 264 265 266 267 268
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
269

W
whs 已提交
270 271
    Examples:
        .. code-block:: python
W
whs 已提交
272

W
whs 已提交
273
          import paddle
C
cnn 已提交
274
          from paddle.nn import Conv1D
W
whs 已提交
275 276 277 278 279 280 281 282 283 284 285 286
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
287
          conv = Conv1D(3, 2, 3)
W
whs 已提交
288 289
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
290
          print(y_t)
W
whs 已提交
291 292
          # [[[133. 238.]
          #   [160. 211.]]]
293
    """
S
swtkiwi 已提交
294

295
    def __init__(self,
296 297 298
                 in_channels,
                 out_channels,
                 kernel_size,
299
                 stride=1,
300
                 padding=0,
301 302
                 dilation=1,
                 groups=1,
303 304
                 padding_mode='zeros',
                 weight_attr=None,
305
                 bias_attr=None,
L
LielinJiang 已提交
306
                 data_format="NCL"):
C
cnn 已提交
307
        super(Conv1D, self).__init__(
308 309 310 311
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
312
            1,
313 314 315 316 317 318 319 320
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
321

322
    def forward(self, x):
L
LielinJiang 已提交
323 324
        padding = 0
        if self._padding_mode != "zeros":
325
            x = F.pad(x,
W
whs 已提交
326
                      self._reversed_padding_repeated_twice,
327 328
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
329 330
        else:
            padding = self._padding
331

L
LielinJiang 已提交
332
        out = F.conv1d(
333
            x,
334 335
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
336
            padding=padding,
337 338 339 340 341 342 343
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
344
class Conv1DTranspose(_ConvNd):
345
    r"""
C
cnn 已提交
346
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

362
        Out = \sigma (W \ast X + b)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
398
          and :math:`L^\prime_{out} + stride`.
399 400 401 402 403

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
404
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
405 406 407 408
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
409
            If stride is a tuple/list, it must contain one integer, (stride_size).
410 411 412 413 414 415 416
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
417
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
418
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
419 420 421 422 423 424 425
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
426
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
443 444

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
445
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
446 447 448 449 450 451
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
452
          from paddle.nn import Conv1DTranspose
453 454 455 456 457 458 459 460 461
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
462
          conv = Conv1DTranspose(2, 1, 2)
463 464
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
465
          print(y_t)
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
482
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
496 497

    def forward(self, x, output_size=None):
498
        out = F.conv1d_transpose(
499 500 501 502
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
503 504 505 506 507 508 509 510 511
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
512
class Conv2D(_ConvNd):
513
    r"""
C
cnn 已提交
514
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

534
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
549
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
550 551 552 553 554 555 556 557 558
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
559
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
560 561
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
562
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
563 564 565 566 567 568 569 570 571
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
572
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

597
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
598

599
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
600 601 602 603 604 605 606

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
607 608 609
          
          paddle.disable_static()
          
610
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
611
          
C
cnn 已提交
612
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
631
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
652 653

        out = F.conv._conv_nd(
L
LielinJiang 已提交
654 655 656
            x,
            self.weight,
            bias=self.bias,
657
            stride=self._stride,
658
            padding=self._updated_padding,
L
LielinJiang 已提交
659
            padding_algorithm=self._padding_algorithm,
660 661
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
662 663 664 665
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
666 667 668
        return out


C
cnn 已提交
669
class Conv2DTranspose(_ConvNd):
670
    r"""
C
cnn 已提交
671
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
687 688 689

    ..  math::

690
        Out = \sigma (W \ast X + b)
691

692
    Where:
693

694 695 696 697 698 699
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
700
    
701
    Parameters:
L
LielinJiang 已提交
702 703
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
704
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
705 706
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
707
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
708 709
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
710 711 712 713 714 715 716
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
717 718
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
719
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
720 721
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
722
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
723 724 725 726 727
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
728
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
729 730 731
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
732
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
733 734 735 736
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
737
        data_format(str, optional): Data format that specifies the layout of input.
738
            It can be "NCHW" or "NHWC". Default: "NCHW".
739

740
    Attribute:
741

742
        **weight** (Parameter): the learnable weights of filters of this layer.
743

744
        **bias** (Parameter or None): the learnable bias of this layer.
745

L
LielinJiang 已提交
746
    Shape:
747

L
LielinJiang 已提交
748
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
749

L
LielinJiang 已提交
750
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
751

L
LielinJiang 已提交
752
        Where
753 754 755 756 757 758 759 760 761 762 763

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

764
    Examples:
765

766
       .. code-block:: python
767

L
LielinJiang 已提交
768 769
          import paddle
          import paddle.nn as nn
C
cnn 已提交
770 771
          
          paddle.disable_static()
772 773 774

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
775
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
776 777 778
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
779 780 781 782
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
783 784 785
                 in_channels,
                 out_channels,
                 kernel_size,
786
                 stride=1,
L
LielinJiang 已提交
787 788
                 padding=0,
                 output_padding=0,
789 790
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
791
                 weight_attr=None,
792
                 bias_attr=None,
L
LielinJiang 已提交
793
                 data_format="NCHW"):
C
cnn 已提交
794
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
810
        if output_size is None:
L
LielinJiang 已提交
811
            output_padding = self.output_padding
812
        else:
L
LielinJiang 已提交
813
            output_padding = 0
814

815
        out = F.conv2d_transpose(
L
LielinJiang 已提交
816
            x,
817 818 819
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
820
            output_padding=output_padding,
821 822 823
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
824
            output_size=output_size,
825 826 827 828
            data_format=self._data_format)
        return out


C
cnn 已提交
829
class Conv3D(_ConvNd):
830
    r"""
831 832
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
833 834 835 836 837 838 839 840 841
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
842 843 844

    ..  math::

845
        Out = \sigma (W \ast X + b)
846

847
    In the above equation:
848

849 850 851 852 853 854
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
855

856
    Parameters:
857 858
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
859
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
860
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
861 862
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
863
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
864 865 866 867 868 869
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
870
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
871 872
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
873
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
874 875 876 877
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
878 879
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
880 881 882
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
883
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
884
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
885 886 887 888
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
889
        data_format(str, optional): Data format that specifies the layout of input.
890
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
891

892
    Attribute:
893

894
        **weight** (Parameter): the learnable weights of filters of this layer.
895

896
        **bias** (Parameter): the learnable bias of this layer.
897

898
    Shape:
899

900
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
901

902
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
903

904
        Where
905 906 907

        ..  math::

908
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
909

910
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
911

912
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
913

914 915 916
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
917

918
    Examples:
919

920
        .. code-block:: python
921

922 923
          import paddle
          import paddle.nn as nn
C
cnn 已提交
924 925
          
          paddle.disable_static()
926 927

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
928
          
C
cnn 已提交
929
          conv = nn.Conv3D(4, 6, (3, 3, 3))
930 931 932
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
933 934 935 936
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
937 938 939
                 in_channels,
                 out_channels,
                 kernel_size,
940
                 stride=1,
L
LielinJiang 已提交
941
                 padding=0,
942 943
                 dilation=1,
                 groups=1,
944 945
                 padding_mode='zeros',
                 weight_attr=None,
946
                 bias_attr=None,
947
                 data_format="NCDHW"):
C
cnn 已提交
948
        super(Conv3D, self).__init__(
949 950 951 952 953 954 955 956 957 958 959 960 961
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
962

963 964 965 966 967 968
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
969 970

        out = F.conv._conv_nd(
971
            x,
972 973 974
            self.weight,
            bias=self.bias,
            stride=self._stride,
975
            padding=self._updated_padding,
L
LielinJiang 已提交
976
            padding_algorithm=self._padding_algorithm,
977 978
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
979 980 981 982
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
983 984 985
        return out


C
cnn 已提交
986
class Conv3DTranspose(_ConvNd):
987
    r"""
988 989 990 991 992 993 994 995 996 997 998 999 1000
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1001 1002 1003
    
    ..  math::

1004
        Out = \sigma (W \ast X + b)
1005

1006
    In the above equation:
1007

1008 1009 1010 1011 1012 1013
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1014

1015
    **Note**:
1016

1017
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1018
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1019
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1020 1021 1022 1023 1024 1025
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1026
          conv3d_transpose can compute the kernel size automatically.
1027

1028
    Parameters:
L
LielinJiang 已提交
1029 1030
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1031
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1032 1033 1034
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1035
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1036 1037
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1038 1039 1040 1041 1042 1043 1044
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1045 1046
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1047
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1048 1049
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1050
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1051 1052 1053 1054 1055
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1056
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1057 1058 1059
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1060
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1061 1062 1063 1064
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1065
        data_format(str, optional): Data format that specifies the layout of input.
1066
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1067

1068
    Attribute:
1069

1070
        **weight** (Parameter): the learnable weights of filters of this layer.
1071

1072
        **bias** (Parameter): the learnable bias of this layer.
1073

L
LielinJiang 已提交
1074
    Shape:
1075

L
LielinJiang 已提交
1076
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1077

L
LielinJiang 已提交
1078
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1079

L
LielinJiang 已提交
1080
        Where
1081 1082 1083 1084 1085 1086 1087 1088 1089

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1090 1091 1092 1093
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1094

1095
       .. code-block:: python
1096

L
LielinJiang 已提交
1097 1098
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1099 1100
          
          paddle.disable_static()
1101 1102

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1103
          
C
cnn 已提交
1104
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1105 1106 1107
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1108 1109 1110 1111
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1112 1113 1114
                 in_channels,
                 out_channels,
                 kernel_size,
1115
                 stride=1,
L
LielinJiang 已提交
1116 1117
                 padding=0,
                 output_padding=0,
1118 1119
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1120
                 weight_attr=None,
1121
                 bias_attr=None,
L
LielinJiang 已提交
1122
                 data_format="NCDHW"):
C
cnn 已提交
1123
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1138
    def forward(self, x, output_size=None):
1139
        if output_size is None:
L
LielinJiang 已提交
1140
            output_padding = self.output_padding
1141
        else:
L
LielinJiang 已提交
1142
            output_padding = 0
1143

1144
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1145
            x,
1146 1147 1148
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1149
            output_padding=output_padding,
1150 1151 1152
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1153
            output_size=output_size,
1154 1155
            data_format=self._data_format)
        return out