conv.py 51.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
20 21 22 23 24 25 26

from ...device import (
    get_cudnn_version,
    is_compiled_with_cuda,
    is_compiled_with_rocm,
)
from ...fluid.layers import utils
Z
zhiboniu 已提交
27
from .. import Layer
28 29
from .. import functional as F
from ..functional.conv import _update_padding_nd
30
from ..initializer import Normal
31

32 33
__all__ = []

34 35 36

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
37
    std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
38
    return Normal(0.0, std)
39 40


41 42 43 44 45 46 47 48
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


Z
zhiboniu 已提交
49
class _ConvNd(Layer):
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        transposed,
        dims,
        stride=1,
        padding=0,
        padding_mode='zeros',
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
67
        super().__init__()
68 69 70
        assert (
            weight_attr is not False
        ), "weight_attr should not be False in Conv."
L
LielinJiang 已提交
71 72 73 74 75 76 77
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

78 79 80
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
81 82 83 84
                "padding_mode must be one of {}, but got padding_mode='{}'".format(
                    valid_padding_modes, padding_mode
                )
            )
85

86 87 88 89 90
        if padding_mode in {
            'reflect',
            'replicate',
            'circular',
        } and not isinstance(padding, int):
91 92 93 94
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

95 96 97
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
98 99 100 101
                "data_format must be one of {}, but got data_format='{}'".format(
                    valid_format, data_format
                )
            )
102

103 104 105 106 107
        channel_last = (
            (data_format == "NHWC")
            or (data_format == "NDHWC")
            or (data_format == "NLC")
        )
L
LielinJiang 已提交
108 109 110 111 112
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
113 114
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
115 116 117
        self._kernel_size = utils.convert_to_list(
            kernel_size, dims, 'kernel_size'
        )
L
LielinJiang 已提交
118
        self._padding = padding
119
        self._padding_mode = padding_mode
120
        self.output_padding = output_padding
L
LielinJiang 已提交
121
        if dims != 1:
122
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
123 124
                padding, channel_last, dims
            )
L
LielinJiang 已提交
125 126

        if transposed:
127 128 129 130
            filter_shape = [
                self._in_channels,
                out_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
131
        else:
132 133 134 135
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
136 137 138
                _paired_padding = utils.convert_to_list(
                    padding, dims, 'padding'
                )
139
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
140 141
                    _paired_padding, 2
                )
142

143 144 145 146
                (
                    self._updated_padding,
                    self._padding_algorithm,
                ) = _update_padding_nd(0, channel_last, dims)
L
LielinJiang 已提交
147

148 149 150 151
            filter_shape = [
                out_channels,
                in_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
152

L
LielinJiang 已提交
153 154 155 156
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
157
            std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
158
            return Normal(0.0, std)
L
LielinJiang 已提交
159

L
LielinJiang 已提交
160
        self.weight = self.create_parameter(
L
LielinJiang 已提交
161 162
            shape=filter_shape,
            attr=self._param_attr,
163 164 165 166 167
            default_initializer=_get_default_param_initializer(),
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True
        )
L
LielinJiang 已提交
168

L
LielinJiang 已提交
169 170
        cudnn_version = get_cudnn_version()

171 172 173 174 175
        self._use_cudnn = (
            True
            if (is_compiled_with_cuda() and cudnn_version is not None)
            else False
        )
L
LielinJiang 已提交
176 177

        self._op_type = "conv" + str(dims) + 'd'
178 179 180 181 182
        if self._op_type == 'conv2d' and (
            in_channels == groups
            and in_channels != 1
            and out_channels % in_channels == 0
        ):
L
LielinJiang 已提交
183
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
184
            if is_compiled_with_rocm():
185 186 187 188
                self._use_cudnn = True
            else:
                self._use_cudnn = False

189 190 191 192 193 194
        if (
            is_compiled_with_cuda()
            and get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
L
LielinJiang 已提交
195 196
            self._use_cudnn = False

197 198 199 200 201 202
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
203
        if self._padding_mode != 'zeros':
204
            main_str += ', padding_mode={_padding_mode}'
205 206
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
207 208 209 210 211 212 213
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
214

C
cnn 已提交
215
class Conv1D(_ConvNd):
216
    r"""
C
cnn 已提交
217
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
218 219 220 221 222 223
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
224
    C is the number of input feature map, K is the size of the kernel.
W
whs 已提交
225 226 227 228
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
229 230 231

    For each input :math:`X` , the equation is:

W
whs 已提交
232
    .. math::
W
whs 已提交
233

234
        Out = \sigma (W \ast X + b)
W
whs 已提交
235

W
whs 已提交
236
    Where:
W
whs 已提交
237

W
whs 已提交
238 239 240
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
241
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
W
whs 已提交
242 243
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
244

W
whs 已提交
245
    Example:
W
whs 已提交
246

W
whs 已提交
247
        - Input:
W
whs 已提交
248

W
whs 已提交
249
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
250

W
whs 已提交
251
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
252

W
whs 已提交
253
        - Output:
W
whs 已提交
254

W
whs 已提交
255
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
256

W
whs 已提交
257
        Where
W
whs 已提交
258

W
whs 已提交
259
        .. math::
W
whs 已提交
260

261
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
262

W
whs 已提交
263 264 265 266
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
267
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
268
            it must contain one integer, (kernel_size).
269
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
270 271 272 273 274 275
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
276
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
277 278 279 280 281 282 283 284 285 286 287 288
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
289
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
290 291 292
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
293
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
294 295 296 297 298
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
299

W
whs 已提交
300
    Attribute:
W
wangguanzhong 已提交
301

W
whs 已提交
302
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
303

W
whs 已提交
304
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
305

W
whs 已提交
306 307
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
308 309
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
310
        - output: 3-D tensor with same shape as input x.
311

W
whs 已提交
312 313
    Examples:
        .. code-block:: python
W
whs 已提交
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
            import paddle
            from paddle.nn import Conv1D

            x = paddle.to_tensor([[[4, 8, 1, 9],
                                    [7, 2, 0, 9],
                                    [6, 9, 2, 6]]], dtype="float32")
            w = paddle.to_tensor([[[9, 3, 4],
                                    [0, 0, 7],
                                    [2, 5, 6]],
                                    [[0, 3, 4],
                                    [2, 9, 7],
                                    [5, 6, 8]]], dtype="float32")

            conv = Conv1D(3, 2, 3)
            conv.weight.set_value(w)
            y = conv(x)
            print(y)
            # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[133., 238.],
            #          [160., 211.]]])
335
    """
S
swtkiwi 已提交
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
351
        super().__init__(
352 353 354 355 356 357 358 359 360 361 362 363 364 365
            in_channels,
            out_channels,
            kernel_size,
            False,
            1,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
366

367
    def forward(self, x):
L
LielinJiang 已提交
368 369
        padding = 0
        if self._padding_mode != "zeros":
370 371 372 373 374 375
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )
L
LielinJiang 已提交
376 377
        else:
            padding = self._padding
378

379 380 381 382 383 384 385 386 387 388
        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
389 390 391
        return out


C
cnn 已提交
392
class Conv1DTranspose(_ConvNd):
393
    r"""
C
cnn 已提交
394
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

410
        Out = \sigma (W \ast X + b)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
446
          and :math:`L^\prime_{out} + stride`.
447 448 449 450 451

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
452
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
453 454 455 456
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
457
            If stride is a tuple/list, it must contain one integer, (stride_size).
458 459 460 461 462 463 464
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
465
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
466
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
467 468 469 470 471 472 473
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
474
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
491 492

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
493 494
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
495
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
496 497 498 499 500
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
            import paddle
            from paddle.nn import Conv1DTranspose

            # shape: (1, 2, 4)
            x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2]]], dtype="float32")
            # shape: (2, 1, 2)
            w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

            conv = Conv1DTranspose(2, 1, 2)
            conv.weight.set_value(w)
            y = conv(x)
            print(y)
            # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[60., 16., 99., 75., 4. ]]])
517 518
    """

519 520 521 522 523 524 525 526 527 528 529 530 531 532
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        groups=1,
        dilation=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
533
        super().__init__(
534 535 536 537 538 539 540 541 542 543 544 545 546 547
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
548 549

    def forward(self, x, output_size=None):
550 551 552 553 554 555 556 557 558 559 560 561
        out = F.conv1d_transpose(
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
L
LielinJiang 已提交
562 563 564
        return out


C
cnn 已提交
565
class Conv2D(_ConvNd):
566
    r"""
C
cnn 已提交
567
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

587
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
588 589 590 591 592 593

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
594
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
L
LielinJiang 已提交
595 596
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
597

L
LielinJiang 已提交
598 599 600 601
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
602
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
603 604 605 606
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
607
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
L
LielinJiang 已提交
608 609 610 611
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
612
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
613 614
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
615
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
616 617 618 619 620 621 622 623 624
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
625
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
644 645 646 647
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
648 649 650 651 652 653
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

654
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
655

656
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
657 658 659 660 661 662 663

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
664

C
cnn 已提交
665
          paddle.disable_static()
666

667
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
668

C
cnn 已提交
669
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
670 671 672 673 674 675
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

676 677 678 679 680 681 682 683 684 685 686 687 688 689
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
690
        super().__init__(
691 692 693 694 695 696 697 698 699 700 701 702 703 704
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
705 706 707

    def forward(self, x):
        if self._padding_mode != 'zeros':
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
729 730 731
        return out


C
cnn 已提交
732
class Conv2DTranspose(_ConvNd):
733
    r"""
C
cnn 已提交
734
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
735 736 737 738 739
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
740 741
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
742 743 744 745 746 747
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
748
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
749
    For each input :math:`X`, the equation is:
750 751 752

    ..  math::

753
        Out = \sigma (W \ast X + b)
754

755
    Where:
756

757
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
758
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
759
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
760
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
761 762
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
763

764
    Parameters:
L
LielinJiang 已提交
765 766
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
767
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
768 769
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
770
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
771 772
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
773 774
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
775
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides
776 777 778 779
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
780 781
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
782
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
783 784
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
785
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
786 787 788 789 790
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
791
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
792 793 794
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
795
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
796 797 798 799
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
800
        data_format(str, optional): Data format that specifies the layout of input.
801
            It can be "NCHW" or "NHWC". Default: "NCHW".
802

803
    Attribute:
804

805
        **weight** (Parameter): the learnable weights of filters of this layer.
806

807
        **bias** (Parameter or None): the learnable bias of this layer.
808

L
LielinJiang 已提交
809
    Shape:
810

L
LielinJiang 已提交
811
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
812

W
wangguanzhong 已提交
813 814 815 816
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
817
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
818

L
LielinJiang 已提交
819
        Where
820 821 822 823 824 825 826 827 828 829 830

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

831
    Examples:
832

833
       .. code-block:: python
834

L
LielinJiang 已提交
835 836
          import paddle
          import paddle.nn as nn
837

C
cnn 已提交
838
          paddle.disable_static()
839 840 841

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
842
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
843 844 845
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
846 847 848
          # (2, 6, 10, 10)
    """

849 850 851 852 853 854 855 856 857 858 859 860 861 862
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
863
        super().__init__(
864 865 866 867 868 869 870 871 872 873 874 875 876 877
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
878 879

    def forward(self, x, output_size=None):
880
        if output_size is None:
881
            output_padding = self.output_padding
882
        else:
L
LielinJiang 已提交
883
            output_padding = 0
884

885 886 887 888 889 890 891 892 893 894 895 896
        out = F.conv2d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
897 898 899
        return out


C
cnn 已提交
900
class Conv3D(_ConvNd):
901
    r"""
902 903
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
904
    and strides, paddings, dilations, groups parameters. Input(Input) and
905
    Output(Output) are multidimensional tensors with a shape of
906 907 908 909 910 911 912
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
913 914 915

    ..  math::

916
        Out = \sigma (W \ast X + b)
917

918
    In the above equation:
919

920 921 922
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
923
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
924 925
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
926

927
    Parameters:
928 929
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
930
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
931
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
932 933
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
934
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
935
            1. a string in ['valid', 'same'].
936
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
937 938 939 940
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
941
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
942 943
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
944
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
945 946 947 948
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
949 950
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
951 952 953
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
954
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
955
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
956 957 958 959
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
960
        data_format(str, optional): Data format that specifies the layout of input.
961
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
962

963
    Attribute:
964

965
        **weight** (Parameter): the learnable weights of filters of this layer.
966

967
        **bias** (Parameter): the learnable bias of this layer.
968

969
    Shape:
970

971
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
972

W
wangguanzhong 已提交
973 974 975 976
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

977
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
978

979
        Where
980 981 982

        ..  math::

983
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
984

985
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
986

987
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
988

989
    Examples:
990

991
        .. code-block:: python
992

993 994
          import paddle
          import paddle.nn as nn
995

C
cnn 已提交
996
          paddle.disable_static()
997 998

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
999

C
cnn 已提交
1000
          conv = nn.Conv3D(4, 6, (3, 3, 3))
1001 1002 1003
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1004 1005 1006
          # (2, 6, 6, 6, 6)
    """

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
1021
        super().__init__(
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
1036

1037 1038
    def forward(self, x):
        if self._padding_mode != 'zeros':
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
1060 1061 1062
        return out


C
cnn 已提交
1063
class Conv3DTranspose(_ConvNd):
1064
    r"""
1065 1066 1067 1068 1069 1070 1071 1072
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1073
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1074 1075 1076 1077
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1078

1079 1080
    ..  math::

1081
        Out = \sigma (W \ast X + b)
1082

1083
    In the above equation:
1084

1085
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1086
    * :math:`W`: Filter value, a tensor with CMDHW format.
1087
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
1088
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1089 1090
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1091

1092
    **Note**:
1093

1094
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1095
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1096
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1097
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1098 1099 1100 1101 1102
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
1103
          conv3d_transpose can compute the kernel size automatically.
1104

1105
    Parameters:
L
LielinJiang 已提交
1106 1107
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1108
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1109 1110
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
1111 1112 1113
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1114
            The default value is 1.
1115 1116
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
1117
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
1118 1119 1120 1121
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1122 1123
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1124
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1125 1126
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1127
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1128 1129 1130 1131 1132
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1133
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1134 1135 1136
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1137
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1138 1139 1140 1141
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1142
        data_format(str, optional): Data format that specifies the layout of input.
1143
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1144

1145
    Attribute:
1146

1147
        **weight** (Parameter): the learnable weights of filters of this layer.
1148

1149
        **bias** (Parameter): the learnable bias of this layer.
1150

L
LielinJiang 已提交
1151
    Shape:
1152

L
LielinJiang 已提交
1153
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1154

W
wangguanzhong 已提交
1155 1156 1157 1158
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1159
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1160

L
LielinJiang 已提交
1161
        Where
1162 1163 1164 1165

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
1166

1167
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
1168

1169
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
1170

1171
    Examples:
1172

1173
       .. code-block:: python
1174

L
LielinJiang 已提交
1175 1176
          import paddle
          import paddle.nn as nn
1177

C
cnn 已提交
1178
          paddle.disable_static()
1179 1180

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
1181

C
cnn 已提交
1182
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1183 1184 1185
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1186 1187 1188
          # (2, 6, 10, 10, 10)
    """

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
1203
        super().__init__(
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
1218

1219
    def forward(self, x, output_size=None):
1220
        if output_size is None:
1221
            output_padding = self.output_padding
1222
        else:
L
LielinJiang 已提交
1223
            output_padding = 0
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        out = F.conv3d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
1237
        return out