op_param.h 64.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
80 81 82 83 84
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

85 86 87 88 89 90 91 92 93
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
94 95 96 97 98
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

126 127 128 129
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
130 131 132 133 134 135

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

136 137 138 139 140
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
141 142 143 144 145
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

146 147 148 149 150
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
151 152 153 154
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
155 156 157 158 159 160 161 162 163 164 165 166
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
167 168 169 170
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
187

E
eclipsess 已提交
188 189 190 191 192 193 194 195 196 197
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
198 199 200 201
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
202

203
  template <typename T>
W
wangliu 已提交
204 205
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
206 207 208
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

238 239 240 241 242 243 244 245 246 247
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

254 255 256 257 258
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
259 260 261 262 263 264
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
270 271 272 273 274 275
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

276 277 278 279 280 281 282 283 284 285 286
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
287
  static const T GetAttr(const string &key, const AttributeMap &map) {
288 289 290
    return ((Attribute)map.at(key)).Get<T>();
  }

291 292 293 294
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

295
  template <typename T>
W
wangliu 已提交
296
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
297
                        const Scope &scope) {
W
wangliu 已提交
298 299
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
300 301 302 303 304 305
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
306
    }
307
  }
朔-望's avatar
朔-望 已提交
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

329
  template <typename T>
W
wangliu 已提交
330 331 332
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
333 334
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
335
    vector<T *> var_res;
336 337 338
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
339
    }
340 341
    return var_res;
  }
朔-望's avatar
朔-望 已提交
342 343
};

N
nhzlx 已提交
344
template <typename Dtype>
345
class ConvParam : public OpParam {
N
nhzlx 已提交
346 347 348
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
349
 public:
350
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
351
            const AttributeMap &attrs, const Scope &scope) {
352 353 354 355 356 357 358 359 360
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
361
  }
朔-望's avatar
朔-望 已提交
362

N
nhzlx 已提交
363
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
364

N
nhzlx 已提交
365
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
366

N
nhzlx 已提交
367
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
368

W
wangliu 已提交
369
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
370

W
wangliu 已提交
371
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
372

W
wangliu 已提交
373
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
374

375
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
376

朔-望's avatar
朔-望 已提交
377
 private:
N
nhzlx 已提交
378 379 380
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
381 382 383
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
384
  int groups;
朔-望's avatar
朔-望 已提交
385
};
N
nhzlx 已提交
386 387
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
388

N
nhzlx 已提交
389
template <typename Dtype>
朔-望's avatar
朔-望 已提交
390
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
391 392 393
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
394
 public:
395
  ElementwiseAddParam(const VariableNameMap &inputs,
396 397
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
398 399 400
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
401 402 403
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
404
  const GType *InputX() const { return input_x_; }
405

xiebaiyuan's avatar
xiebaiyuan 已提交
406
  const GType *InputY() const { return input_y_; }
407

xiebaiyuan's avatar
xiebaiyuan 已提交
408
  GType *Out() const { return out_; }
409 410 411

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
412
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
413 414 415
  GType *input_x_;
  GType *input_y_;
  GType *out_;
416
  int axis_;
Z
zhangyang 已提交
417 418 419
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
420
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
421 422

 public:
H
hanbuhe 已提交
423 424
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
425
#endif
朔-望's avatar
朔-望 已提交
426 427
};

428
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
429 430
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
431 432 433
#endif

#ifdef MUL_OP
N
nhzlx 已提交
434
template <typename Dtype>
朔-望's avatar
朔-望 已提交
435
class MulParam : OpParam {
N
nhzlx 已提交
436 437 438
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
439
 public:
440
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
441
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
442 443 444
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
445 446 447
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
448

xiebaiyuan's avatar
xiebaiyuan 已提交
449
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
450

xiebaiyuan's avatar
xiebaiyuan 已提交
451
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
452

xiebaiyuan's avatar
xiebaiyuan 已提交
453
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
454

455
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
456

457
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
458

朔-望's avatar
朔-望 已提交
459
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
460 461 462
  GType *input_x_;
  GType *input_y_;
  GType *out_;
463 464
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
465
};
L
liuruilong 已提交
466
#endif
朔-望's avatar
朔-望 已提交
467

L
liuruilong 已提交
468
#ifdef CONCAT_OP
N
nhzlx 已提交
469
template <typename Dtype>
朔-望's avatar
朔-望 已提交
470
class ConcatParam : public OpParam {
N
nhzlx 已提交
471 472 473
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
474
 public:
475
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
476
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
477 478
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
479 480
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
481

N
nhzlx 已提交
482
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
483

xiebaiyuan's avatar
xiebaiyuan 已提交
484
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
485

486
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
487

朔-望's avatar
朔-望 已提交
488
 private:
N
nhzlx 已提交
489
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
490
  GType *out_;
491
  int axis_;
Z
zhangyang 已提交
492 493 494 495 496 497 498 499 500
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
501
};
L
liuruilong 已提交
502
#endif
朔-望's avatar
朔-望 已提交
503

L
liuruilong 已提交
504
#ifdef LRN_OP
N
nhzlx 已提交
505
template <typename Dtype>
E
eclipsess 已提交
506
class LrnParam : public OpParam {
N
nhzlx 已提交
507 508 509
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
510
 public:
511
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
512
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
513 514 515
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
516 517 518 519
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
520
    data_format_ = GetAttr<string>("data_format", attrs);
521
  }
E
eclipsess 已提交
522

N
nhzlx 已提交
523
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
524

N
nhzlx 已提交
525
  RType *Out() const { return out_; }
E
eclipsess 已提交
526

N
nhzlx 已提交
527
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
528

529
  const int &N() const { return n_; }
E
eclipsess 已提交
530

531
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
532

533
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
534

535
  const float &K() const { return k_; }
E
eclipsess 已提交
536

W
wangliu 已提交
537
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
538

朔-望's avatar
朔-望 已提交
539
 private:
N
nhzlx 已提交
540 541 542
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
543 544 545 546
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
547
  string data_format_;
E
eclipsess 已提交
548
};
L
liuruilong 已提交
549 550 551
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
552
template <typename Dtype>
E
eclipsess 已提交
553
class BatchNormParam : OpParam {
N
nhzlx 已提交
554 555 556
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
557
 public:
558
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
559
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
560 561 562 563 564 565
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
566 567
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
568
    //    is_test_ = GetAttr<bool>("is_test", attrs);
569
  }
E
eclipsess 已提交
570

N
nhzlx 已提交
571
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
572

N
nhzlx 已提交
573
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
574

N
nhzlx 已提交
575
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
576

N
nhzlx 已提交
577
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
578

N
nhzlx 已提交
579
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
580

N
nhzlx 已提交
581
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
582

583
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
584

585
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
586

587
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
588

W
wangliu 已提交
589
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
590

朔-望's avatar
朔-望 已提交
591
 private:
N
nhzlx 已提交
592 593 594 595 596 597
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
598 599 600
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
601
  string data_format_;
E
eclipsess 已提交
602
};
L
liuruilong 已提交
603 604 605
#endif

#ifdef POOL_OP
N
nhzlx 已提交
606
template <typename Dtype>
607
class PoolParam : public OpParam {
N
nhzlx 已提交
608 609 610
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
611
 public:
612
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
613
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
614
    input_ = InputXFrom<GType>(inputs, scope);
615

N
nhzlx 已提交
616
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
617 618 619 620
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
621
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
622
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
623
  }
624

N
nhzlx 已提交
625
  const RType *Input() const { return input_; }
626

N
nhzlx 已提交
627
  RType *Output() const { return output_; }
628

W
wangliu 已提交
629
  const string &PoolingType() const { return pooling_type_; }
630

W
wangliu 已提交
631
  const vector<int> &Ksize() const { return ksize_; }
632

W
wangliu 已提交
633
  const vector<int> &Strides() const { return strides_; }
634

W
wangliu 已提交
635
  const vector<int> &Paddings() const { return paddings_; }
636

637
  bool isCeilMode() const { return ceil_mode_; }
638

Z
zhangyang 已提交
639
  bool isGlobalPooling() const { return global_pooling_; }
640

朔-望's avatar
朔-望 已提交
641
 private:
N
nhzlx 已提交
642 643
  RType *input_;
  RType *output_;
W
wangliu 已提交
644 645 646 647
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
648
  bool ceil_mode_;
649
  bool global_pooling_ = false;
Z
zhangyang 已提交
650
#ifdef PADDLE_MOBILE_FPGA
651 652

 private:
H
hanbuhe 已提交
653
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
654 655

 public:
H
hanbuhe 已提交
656 657
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
658
#endif
659
};
L
liuruilong 已提交
660 661 662
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
663
template <typename Dtype>
E
eclipsess 已提交
664
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
665 666 667
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
668 669
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
670
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
671 672 673 674
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
675 676 677 678
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
679

xiebaiyuan's avatar
xiebaiyuan 已提交
680 681 682
    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
683
    }
E
eclipsess 已提交
684 685 686 687 688 689
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
690
  const RType *Input() const { return input_; }
E
eclipsess 已提交
691

N
nhzlx 已提交
692
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
693

N
nhzlx 已提交
694
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
695

N
nhzlx 已提交
696
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
697

W
wangliu 已提交
698
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
699

W
wangliu 已提交
700
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
701

W
wangliu 已提交
702
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
703

W
wangliu 已提交
704
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
705 706 707 708 709 710 711 712 713 714 715

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

716 717 718 719
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
720
 private:
N
nhzlx 已提交
721 722 723 724
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
725 726 727 728
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
729 730 731 732 733
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
734
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
735
};
L
liuruilong 已提交
736
#endif
E
eclipsess 已提交
737

L
liuruilong 已提交
738
#ifdef BOXCODER_OP
N
nhzlx 已提交
739
template <typename Dtype>
E
eclipsess 已提交
740
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
741 742 743
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
744 745
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
746
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
747 748 749 750
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
751 752
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
753
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
754

N
nhzlx 已提交
755
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
756

N
nhzlx 已提交
757
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
758

N
nhzlx 已提交
759
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
760 761 762 763

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
764 765 766 767
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
768 769
  std::string code_type_;
};
L
liuruilong 已提交
770
#endif
W
wangliu 已提交
771

L
liuruilong 已提交
772
#ifdef SOFTMAX_OP
N
nhzlx 已提交
773
template <typename Dtype>
W
wangliu 已提交
774
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
775 776 777
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
778 779
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
780
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
781 782
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
783
  }
N
nhzlx 已提交
784 785
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
786 787

 private:
N
nhzlx 已提交
788 789
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
790 791 792 793

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
794
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
795 796 797
  fpga::BypassArgs fpga_bypass_args;

 public:
798
  RType *FloatInput() const {
H
hanbuhe 已提交
799 800 801 802 803 804
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
805
};
L
liuruilong 已提交
806
#endif
W
wangliu 已提交
807

L
liuruilong 已提交
808
#ifdef SIGMOID_OP
N
nhzlx 已提交
809
template <typename Dtype>
W
wangliu 已提交
810
class SigmoidParam : public OpParam {
N
nhzlx 已提交
811 812 813
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
814 815
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
816
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
817 818
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
819
  }
N
nhzlx 已提交
820 821
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
822 823

 private:
N
nhzlx 已提交
824 825
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
826
};
L
liuruilong 已提交
827 828 829
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
830
template <typename Dtype>
E
eclipsess 已提交
831
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
832 833 834
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
835 836 837 838
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
839 840 841
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
842 843 844 845 846 847 848 849
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
850
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
851

N
nhzlx 已提交
852
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
853

N
nhzlx 已提交
854
  RType *Out() const { return out_; }
E
eclipsess 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
869 870 871
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
872 873 874 875 876 877 878
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
879
#endif
W
wangliu 已提交
880

N
nhzlx 已提交
881
template <typename Dtype>
L
liuruilong 已提交
882
class FeedParam : public OpParam {
N
nhzlx 已提交
883 884 885
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
886 887
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
888
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
889 890
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
891
    auto var = scope->Var("batch_size");
W
wangliu 已提交
892
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
893
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
894 895
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
896
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
897

L
liuruilong 已提交
898
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
899 900
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
901
  int batch_size;
L
liuruilong 已提交
902 903
};

N
nhzlx 已提交
904
template <typename Dtype>
L
liuruilong 已提交
905
class FetchParam : public OpParam {
N
nhzlx 已提交
906 907 908
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
909 910
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
911
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
912 913
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
914
  }
N
nhzlx 已提交
915 916
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
917

L
liuruilong 已提交
918
 private:
N
nhzlx 已提交
919 920
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
921 922
};

L
liuruilong 已提交
923
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
924
template <typename Dtype>
E
eclipsess 已提交
925
class TransposeParam : public OpParam {
N
nhzlx 已提交
926 927 928
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
929 930 931
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
932 933
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
934 935 936
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
937
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
938

N
nhzlx 已提交
939
  RType *Out() const { return out_; }
E
eclipsess 已提交
940 941 942 943

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
944 945
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
946 947
  vector<int> axis_;
};
L
liuruilong 已提交
948
#endif
E
eclipsess 已提交
949

xiebaiyuan's avatar
xiebaiyuan 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1016
#ifdef RESHAPE_OP
N
nhzlx 已提交
1017
template <typename Dtype>
E
eclipsess 已提交
1018
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1019 1020 1021
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1022 1023 1024
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1025 1026 1027
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1028
    shape_ = GetAttr<vector<int>>("shape", attrs);
1029 1030 1031 1032 1033 1034 1035

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1036 1037
  }

N
nhzlx 已提交
1038
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1039

N
nhzlx 已提交
1040
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1041

N
nhzlx 已提交
1042
  RType *Out() const { return out_; }
E
eclipsess 已提交
1043 1044 1045 1046 1047 1048

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1049 1050 1051
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1052 1053 1054
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1055
#endif
E
eclipsess 已提交
1056

T
Tian 已提交
1057
#ifdef SCALE_OP
N
nhzlx 已提交
1058
template <typename Dtype>
I
itminner 已提交
1059
class ScaleParam : public OpParam {
N
nhzlx 已提交
1060 1061 1062
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1063 1064 1065
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1066 1067 1068
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1069 1070 1071 1072 1073 1074
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1075
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1076

N
nhzlx 已提交
1077
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1078

N
nhzlx 已提交
1079
  RType *Out() const { return out_; }
I
itminner 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1090 1091 1092
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1093 1094 1095 1096 1097
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1098 1099 1100
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1101
template <typename Dtype>
I
itminner 已提交
1102
class SliceParam : public OpParam {
N
nhzlx 已提交
1103 1104 1105
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1106 1107 1108
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1109 1110 1111
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1112 1113 1114 1115 1116
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1117
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1118

N
nhzlx 已提交
1119
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1120

N
nhzlx 已提交
1121
  RType *Out() const { return out_; }
I
itminner 已提交
1122 1123 1124 1125 1126 1127 1128 1129

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1130 1131 1132
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1133 1134 1135 1136
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1137 1138 1139
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1140
template <typename Dtype>
T
Tian 已提交
1141
class ResizeParam : public OpParam {
N
nhzlx 已提交
1142 1143 1144
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1145 1146 1147
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1148 1149 1150
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1151 1152 1153 1154 1155 1156
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1157

N
nhzlx 已提交
1158
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1159

N
nhzlx 已提交
1160
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1161

N
nhzlx 已提交
1162
  RType *Out() const { return out_; }
T
Tian 已提交
1163

I
itminner 已提交
1164
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1165

I
itminner 已提交
1166
  const int &Height() const { return height_; }
T
Tian 已提交
1167

I
itminner 已提交
1168
  const int &Width() const { return width_; }
T
Tian 已提交
1169

I
itminner 已提交
1170
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1171

I
itminner 已提交
1172
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1173

I
itminner 已提交
1174
 private:
N
nhzlx 已提交
1175 1176 1177
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1178 1179 1180 1181 1182
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1183 1184 1185
};
#endif

L
liuruilong 已提交
1186
#ifdef RELU_OP
L
liuruilong 已提交
1187 1188 1189
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1190
template <typename Dtype>
E
eclipsess 已提交
1191
class ReluParam : public OpParam {
N
nhzlx 已提交
1192 1193 1194
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1195 1196 1197
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1198 1199
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1200 1201
  }

N
nhzlx 已提交
1202
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1203

N
nhzlx 已提交
1204
  RType *Out() const { return out_; }
E
eclipsess 已提交
1205 1206

 private:
N
nhzlx 已提交
1207 1208
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1209
};
L
liuruilong 已提交
1210
#endif
E
eclipsess 已提交
1211

T
Tian 已提交
1212
#ifdef PRELU_OP
N
nhzlx 已提交
1213
template <typename Dtype>
T
Tian 已提交
1214
class PReluParam : public OpParam {
N
nhzlx 已提交
1215 1216 1217
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1218 1219 1220
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1221
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1222
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1223
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1224
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1225
    out_ = OutFrom<GType>(outputs, scope);
1226 1227
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1228
  }
N
nhzlx 已提交
1229
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1230
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1231
  RType *Out() const { return out_; }
1232
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1233

I
itminner 已提交
1234
 private:
N
nhzlx 已提交
1235 1236
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1237
  RType *alpha_;
1238
  std::string mode_;
T
Tian 已提交
1239 1240 1241
};
#endif

N
nhzlx 已提交
1242
template <typename Dtype>
L
liuruilong 已提交
1243
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1244 1245 1246
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1247
 public:
L
liuruilong 已提交
1248
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1249
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1250 1251 1252 1253
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1254 1255 1256 1257
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1258
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1259

N
nhzlx 已提交
1260
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1261

N
nhzlx 已提交
1262
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1263

xiebaiyuan's avatar
xiebaiyuan 已提交
1264
  GType *Out() const { return out_; }
E
eclipsess 已提交
1265 1266 1267 1268 1269 1270 1271 1272

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1273
  GType *input_x_;
N
nhzlx 已提交
1274 1275
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1276
  GType *out_;
E
eclipsess 已提交
1277 1278 1279
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1280 1281 1282
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1283
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1284 1285

 public:
Z
zhangyang 已提交
1286 1287
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1288
#endif
E
eclipsess 已提交
1289
};
1290 1291

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1292 1293
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1294
#endif
E
eclipsess 已提交
1295

N
nhzlx 已提交
1296
template <typename Dtype>
1297
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1298 1299 1300
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1301
 public:
L
liuruilong 已提交
1302
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1303
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1304 1305 1306 1307 1308
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1309
  }
N
nhzlx 已提交
1310
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1311 1312 1313

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1314
  RType *Output() const { return output_; }
W
wangliu 已提交
1315

L
liuruilong 已提交
1316
 protected:
N
nhzlx 已提交
1317
  RType *bias_;
W
wangliu 已提交
1318
  int axis_;
N
nhzlx 已提交
1319
  RType *output_;
Z
zhangyang 已提交
1320 1321 1322
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1323
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1324 1325

 public:
Z
zhangyang 已提交
1326 1327
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1328
#endif
W
wangliu 已提交
1329 1330
};

N
nhzlx 已提交
1331 1332
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1333

Z
zhangyang 已提交
1334
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1335 1336
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1337
 public:
L
liuruilong 已提交
1338
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1339 1340
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1341
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1342 1343 1344
};
#endif

1345
#ifdef FUSION_CONVADDPRELU_OP
1346 1347 1348 1349
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1350 1351 1352 1353

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1354 1355 1356 1357
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1358
    framework::DDim dims = alpha_->dims();
1359 1360 1361
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1378
  fpga::WrapperConvArgs fpga_conv_args;
1379 1380

 public:
Z
zhangyang 已提交
1381 1382
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1383 1384 1385 1386 1387
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1388 1389 1390 1391
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1392 1393 1394 1395

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1396 1397 1398 1399 1400
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1401
    framework::DDim dims = alpha_->dims();
1402 1403 1404 1405 1406 1407
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1408
    if (keyX1_ == keyOutput_) {
1409
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1410
    } else if (keyY1_ == keyOutput_) {
1411
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1436
  fpga::WrapperConvArgs fpga_conv_args;
1437 1438

 public:
Z
zhangyang 已提交
1439 1440
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1441 1442 1443 1444
#endif
};
#endif

E
eclipsess 已提交
1445
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1446
template <typename Dtype>
1447
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1448 1449 1450
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1451 1452 1453
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1466
  }
N
nhzlx 已提交
1467
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1468 1469 1470

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1471
  RType *Output() const { return output_; }
E
eclipsess 已提交
1472

N
nhzlx 已提交
1473
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1474

N
nhzlx 已提交
1475
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1476

N
nhzlx 已提交
1477
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1478

N
nhzlx 已提交
1479
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1480 1481 1482 1483 1484 1485 1486

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1487
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1488

N
nhzlx 已提交
1489
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1490

N
nhzlx 已提交
1491
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1492

N
nhzlx 已提交
1493
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1494 1495

 protected:
N
nhzlx 已提交
1496
  RType *bias_;
E
eclipsess 已提交
1497
  int axis_;
N
nhzlx 已提交
1498 1499 1500 1501 1502
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1503 1504 1505
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1506 1507
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1508 1509 1510
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1511
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1512 1513

 public:
Z
zhangyang 已提交
1514 1515
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1516 1517 1518 1519 1520 1521
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1522
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1523 1524 1525 1526 1527 1528
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1543
    if (keyX_ == keyBNY_) {
1544
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1545
    } else if (keyY_ == keyBNY_) {
1546
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1547
    }
1548
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1597
  fpga::WrapperConvArgs fpga_conv_args;
1598 1599

 public:
Z
zhangyang 已提交
1600 1601
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1602
#endif
E
eclipsess 已提交
1603
};
1604
#endif
E
eclipsess 已提交
1605

Z
zhangyang 已提交
1606
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1607
template <typename Dtype>
1608
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1609 1610 1611
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1612 1613 1614
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1625
  }
N
nhzlx 已提交
1626
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1627

N
nhzlx 已提交
1628
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1629

N
nhzlx 已提交
1630
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1631

N
nhzlx 已提交
1632
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1633

N
nhzlx 已提交
1634
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1635 1636 1637 1638 1639 1640 1641

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1642
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1643

N
nhzlx 已提交
1644
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1645

N
nhzlx 已提交
1646
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1647

N
nhzlx 已提交
1648
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1649 1650

 protected:
N
nhzlx 已提交
1651 1652 1653 1654 1655
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1656 1657 1658
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1659 1660
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1661 1662 1663
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1664
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1665 1666

 public:
Z
zhangyang 已提交
1667 1668
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1669 1670 1671 1672
#endif
};
#endif

1673
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1674
template <typename Dtype>
1675
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1676 1677 1678
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1679 1680 1681
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1694
  }
N
nhzlx 已提交
1695
  RType *Bias() const { return bias_; }
1696 1697 1698

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1699
  RType *Output() const { return output_y_; }
1700

N
nhzlx 已提交
1701
  const RType *InputBias() const { return input_bias_; }
1702

N
nhzlx 已提交
1703
  const RType *InputMean() const { return input_mean_; }
1704

N
nhzlx 已提交
1705
  const RType *InputScale() const { return input_scale_; }
1706

N
nhzlx 已提交
1707
  const RType *InputVariance() const { return input_variance_; }
1708 1709 1710 1711 1712 1713 1714

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1715
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1716

N
nhzlx 已提交
1717
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1718

N
nhzlx 已提交
1719
  const RType *NewScale() const { return new_scale_; }
1720

N
nhzlx 已提交
1721
  const RType *NewBias() const { return new_bias_; }
1722 1723

 protected:
N
nhzlx 已提交
1724
  RType *bias_;
1725
  int axis_;
N
nhzlx 已提交
1726 1727 1728 1729 1730
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1731 1732 1733
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1734 1735
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1736 1737 1738
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1739
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1740 1741

 public:
Z
zhangyang 已提交
1742 1743
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1744
#endif
1745
};
E
eclipsess 已提交
1746
#endif
Y
Yao,kun 已提交
1747

E
eclipsess 已提交
1748
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1749
template <typename Dtype>
1750
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1751 1752 1753
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1754 1755 1756
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1767
  }
N
nhzlx 已提交
1768
  RType *Output() const { return output_; }
E
eclipsess 已提交
1769

N
nhzlx 已提交
1770
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1771

N
nhzlx 已提交
1772
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1773

N
nhzlx 已提交
1774
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1775

N
nhzlx 已提交
1776
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1777 1778 1779 1780 1781 1782 1783

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1784
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1785

N
nhzlx 已提交
1786
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1787

N
nhzlx 已提交
1788
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1789

N
nhzlx 已提交
1790
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1791 1792

 protected:
N
nhzlx 已提交
1793 1794 1795 1796 1797
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1798 1799 1800
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1801 1802
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1803 1804 1805 1806
};

#endif

1807
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1808
template <typename Dtype>
1809
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1810 1811 1812
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1813 1814 1815
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1826
  }
N
nhzlx 已提交
1827
  RType *Output() const { return output_; }
1828

N
nhzlx 已提交
1829
  const RType *InputBias() const { return input_bias_; }
1830

N
nhzlx 已提交
1831
  const RType *InputMean() const { return input_mean_; }
1832

N
nhzlx 已提交
1833
  const RType *InputScale() const { return input_scale_; }
1834

N
nhzlx 已提交
1835
  const RType *InputVariance() const { return input_variance_; }
1836 1837 1838 1839 1840 1841 1842

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1843
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1844

N
nhzlx 已提交
1845
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1846

N
nhzlx 已提交
1847
  const RType *NewScale() const { return new_scale_; }
1848

N
nhzlx 已提交
1849
  const RType *NewBias() const { return new_bias_; }
1850 1851

 protected:
N
nhzlx 已提交
1852 1853 1854 1855 1856
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1857 1858 1859
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1860 1861
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1862 1863 1864
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1865
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1866 1867

 public:
Z
zhangyang 已提交
1868 1869
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1870
#endif
1871 1872 1873
};
#endif

Y
Yao,kun 已提交
1874
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1875
template <typename Dtype>
Y
Yao,kun 已提交
1876
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1877 1878 1879
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1880 1881 1882 1883
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1884 1885
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1886 1887 1888 1889 1890
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1891
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1892

N
nhzlx 已提交
1893
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1894 1895 1896 1897 1898 1899 1900 1901

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1902 1903
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1904 1905 1906 1907
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1908
#endif
Y
Yao,kun 已提交
1909

1910
#ifdef DROPOUT_OP
N
nhzlx 已提交
1911
template <typename Dtype>
Y
Yao,kun 已提交
1912
class DropoutParam : public OpParam {
N
nhzlx 已提交
1913 1914 1915
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1916 1917 1918
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1919 1920
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1921 1922

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1923 1924
  }

N
nhzlx 已提交
1925
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1926

N
nhzlx 已提交
1927
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1928

Y
yangfei 已提交
1929 1930
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1931
 private:
N
nhzlx 已提交
1932 1933
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1934
  float dropout_prob_;
Y
Yao,kun 已提交
1935
};
1936
#endif
Y
Yao,kun 已提交
1937

L
liuruilong 已提交
1938
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1939
template <typename Dtype>
L
liuruilong 已提交
1940
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1941 1942 1943
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1944 1945 1946 1947
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1948 1949 1950
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1951 1952 1953 1954 1955 1956
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1957
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1958

N
nhzlx 已提交
1959
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1960

N
nhzlx 已提交
1961
  RType *Output() const { return output_; }
L
liuruilong 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1972 1973 1974
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1975 1976 1977 1978 1979 1980 1981
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2053
    axis = GetAttr<int>("axis", attrs);
2054 2055 2056
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2057
  const int &Axis() const { return axis; }
2058 2059 2060 2061

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2062
  int axis;
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2076
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2077
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2078 2079 2080 2081 2082 2083
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2084 2085
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2086 2087 2088 2089 2090
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2091 2092 2093

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2094
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2095
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2096 2097 2098
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2115 2116
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2117 2118
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2119
  const RType *InputOutPutSize() const { return input_outsize_; }
2120
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2121 2122
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2123 2124 2125 2126 2127

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2128 2129
  int out_h_;
  int out_w_;
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2145
  const RType *Input() const { return input_; }
2146 2147 2148 2149 2150 2151 2152 2153
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2154 2155
}  // namespace operators
}  // namespace paddle_mobile