op_param.h 71.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
38
using framework::Variable;
W
wangliu 已提交
39 40
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
41

N
nhzlx 已提交
42 43 44 45 46 47 48 49 50
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
51
class OpParam {
朔-望's avatar
朔-望 已提交
52
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
53 54 55 56
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
57 58 59 60 61
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

62 63 64 65 66 67 68 69 70
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
71 72 73 74 75
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

103 104 105 106
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
107 108 109 110 111 112

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

113 114 115 116 117
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
118 119 120 121 122
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

123 124 125 126 127
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
132 133 134 135 136 137 138 139 140 141 142 143
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
144 145 146 147
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
164

E
eclipsess 已提交
165 166 167 168 169 170 171 172 173 174
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
175 176 177 178
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
179

180
  template <typename T>
W
wangliu 已提交
181 182
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
183 184 185
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
186 187 188 189 190
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

220 221 222 223 224
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
225 226 227 228 229
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
235 236 237 238 239 240
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

241 242 243 244 245
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
252 253 254 255 256
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
257 258 259 260 261 262
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

263 264 265 266 267 268 269 270 271 272 273
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
274
  static const T GetAttr(const string &key, const AttributeMap &map) {
275 276
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
277 278
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
279 280
    return ((Attribute)map.at(key)).GetString();
  }
281

282 283 284 285
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

286
  template <typename T>
W
wangliu 已提交
287
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
288
                        const Scope &scope) {
W
wangliu 已提交
289 290
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
291 292 293 294 295 296
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
297
    }
298
  }
朔-望's avatar
朔-望 已提交
299

E
eclipsess 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

333
  template <typename T>
W
wangliu 已提交
334 335 336
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
337 338
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
339
    vector<T *> var_res;
340 341 342
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
343
    }
344 345
    return var_res;
  }
E
eclipsess 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
359 360
};

N
nhzlx 已提交
361
template <typename Dtype>
362
class ConvParam : public OpParam {
N
nhzlx 已提交
363 364 365
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
366
 public:
367
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
368
            const AttributeMap &attrs, const Scope &scope) {
369 370 371 372 373 374 375 376 377
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
378
  }
朔-望's avatar
朔-望 已提交
379

N
nhzlx 已提交
380
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
381

N
nhzlx 已提交
382
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
383

N
nhzlx 已提交
384
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
385

W
wangliu 已提交
386
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
387

W
wangliu 已提交
388
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
389

W
wangliu 已提交
390
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
391

392
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
393

朔-望's avatar
朔-望 已提交
394
 private:
N
nhzlx 已提交
395 396 397
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
398 399 400
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
401
  int groups;
朔-望's avatar
朔-望 已提交
402
};
N
nhzlx 已提交
403 404
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
template <typename Dtype>
朔-望's avatar
朔-望 已提交
407
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
408 409 410
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
411
 public:
412
  ElementwiseAddParam(const VariableNameMap &inputs,
413 414
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
415 416 417
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
418 419 420
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
421
  const GType *InputX() const { return input_x_; }
422

xiebaiyuan's avatar
xiebaiyuan 已提交
423
  const GType *InputY() const { return input_y_; }
424

xiebaiyuan's avatar
xiebaiyuan 已提交
425
  GType *Out() const { return out_; }
426 427 428

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
429
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
430 431 432
  GType *input_x_;
  GType *input_y_;
  GType *out_;
433
  int axis_;
Z
zhangyang 已提交
434 435 436
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
437
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
438 439

 public:
H
hanbuhe 已提交
440 441
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
442
#endif
朔-望's avatar
朔-望 已提交
443 444
};

E
eclipsess 已提交
445
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
475
#endif
E
eclipsess 已提交
476

477
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
478 479
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
480 481
#endif

482
#ifdef ELEMENTWISESUB_OP
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
512
#endif
513

L
liuruilong 已提交
514
#ifdef MUL_OP
N
nhzlx 已提交
515
template <typename Dtype>
朔-望's avatar
朔-望 已提交
516
class MulParam : OpParam {
N
nhzlx 已提交
517 518 519
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
520
 public:
521
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
522
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
523 524 525
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
526 527 528
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
529

xiebaiyuan's avatar
xiebaiyuan 已提交
530
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
531

xiebaiyuan's avatar
xiebaiyuan 已提交
532
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
533

xiebaiyuan's avatar
xiebaiyuan 已提交
534
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
535

536
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
537

538
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
539

朔-望's avatar
朔-望 已提交
540
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
541 542 543
  GType *input_x_;
  GType *input_y_;
  GType *out_;
544 545
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
546 547 548
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
549
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
550 551

 public:
Z
zhangyang 已提交
552 553
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
554
#endif
朔-望's avatar
朔-望 已提交
555
};
L
liuruilong 已提交
556
#endif
朔-望's avatar
朔-望 已提交
557

L
liuruilong 已提交
558
#ifdef CONCAT_OP
N
nhzlx 已提交
559
template <typename Dtype>
朔-望's avatar
朔-望 已提交
560
class ConcatParam : public OpParam {
N
nhzlx 已提交
561 562 563
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
564
 public:
565
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
566
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
567 568
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
569 570
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
571

N
nhzlx 已提交
572
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
573

xiebaiyuan's avatar
xiebaiyuan 已提交
574
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
575

576
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
577

朔-望's avatar
朔-望 已提交
578
 private:
N
nhzlx 已提交
579
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
580
  GType *out_;
581
  int axis_;
Z
zhangyang 已提交
582 583 584 585 586 587 588 589 590
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
591
};
L
liuruilong 已提交
592
#endif
朔-望's avatar
朔-望 已提交
593

E
eclipsess 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
625
#ifdef LRN_OP
N
nhzlx 已提交
626
template <typename Dtype>
E
eclipsess 已提交
627
class LrnParam : public OpParam {
N
nhzlx 已提交
628 629 630
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
631
 public:
632
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
633
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
634 635 636
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
637 638 639 640
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
641
    data_format_ = GetStringAttr("data_format", attrs);
642
  }
E
eclipsess 已提交
643

N
nhzlx 已提交
644
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
645

N
nhzlx 已提交
646
  RType *Out() const { return out_; }
E
eclipsess 已提交
647

N
nhzlx 已提交
648
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
649

650
  const int &N() const { return n_; }
E
eclipsess 已提交
651

652
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
653

654
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
655

656
  const float &K() const { return k_; }
E
eclipsess 已提交
657

W
wangliu 已提交
658
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
659

朔-望's avatar
朔-望 已提交
660
 private:
N
nhzlx 已提交
661 662 663
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
664 665 666 667
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
668
  string data_format_;
E
eclipsess 已提交
669
};
L
liuruilong 已提交
670 671 672
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
673
template <typename Dtype>
E
eclipsess 已提交
674
class BatchNormParam : OpParam {
N
nhzlx 已提交
675 676 677
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
678
 public:
679
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
680
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
681 682 683 684 685 686
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
687 688
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
689
    //    is_test_ = GetAttr<bool>("is_test", attrs);
690
  }
E
eclipsess 已提交
691

N
nhzlx 已提交
692
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
693

N
nhzlx 已提交
694
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
695

N
nhzlx 已提交
696
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
697

N
nhzlx 已提交
698
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
699

N
nhzlx 已提交
700
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
701

N
nhzlx 已提交
702
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
703

704
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
705

706
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
707

708
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
709

W
wangliu 已提交
710
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
711

朔-望's avatar
朔-望 已提交
712
 private:
N
nhzlx 已提交
713 714 715 716 717 718
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
719 720 721
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
722
  string data_format_;
E
eclipsess 已提交
723
};
L
liuruilong 已提交
724 725 726
#endif

#ifdef POOL_OP
N
nhzlx 已提交
727
template <typename Dtype>
728
class PoolParam : public OpParam {
N
nhzlx 已提交
729 730 731
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
732
 public:
733
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
734
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
735
    input_ = InputXFrom<GType>(inputs, scope);
736

N
nhzlx 已提交
737
    output_ = OutFrom<GType>(outputs, scope);
738
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
739 740 741
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
742
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
743
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
744
  }
745

N
nhzlx 已提交
746
  const RType *Input() const { return input_; }
747

N
nhzlx 已提交
748
  RType *Output() const { return output_; }
749

W
wangliu 已提交
750
  const string &PoolingType() const { return pooling_type_; }
751

W
wangliu 已提交
752
  const vector<int> &Ksize() const { return ksize_; }
753

W
wangliu 已提交
754
  const vector<int> &Strides() const { return strides_; }
755

W
wangliu 已提交
756
  const vector<int> &Paddings() const { return paddings_; }
757

758
  bool isCeilMode() const { return ceil_mode_; }
759

Z
zhangyang 已提交
760
  bool isGlobalPooling() const { return global_pooling_; }
761

朔-望's avatar
朔-望 已提交
762
 private:
N
nhzlx 已提交
763 764
  RType *input_;
  RType *output_;
W
wangliu 已提交
765 766 767 768
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
769
  bool ceil_mode_;
770
  bool global_pooling_ = false;
Z
zhangyang 已提交
771
#ifdef PADDLE_MOBILE_FPGA
772 773

 private:
H
hanbuhe 已提交
774
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
775 776

 public:
H
hanbuhe 已提交
777 778
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
779
#endif
780
};
L
liuruilong 已提交
781 782 783
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
784
template <typename Dtype>
E
eclipsess 已提交
785
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
786 787 788
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
789 790
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
791
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
792 793 794 795
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
796 797 798 799
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
800 801 802 803 804

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
805 806 807 808 809 810
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
811
  const RType *Input() const { return input_; }
E
eclipsess 已提交
812

N
nhzlx 已提交
813
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
814

N
nhzlx 已提交
815
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
816

N
nhzlx 已提交
817
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
818

W
wangliu 已提交
819
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
820

W
wangliu 已提交
821
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
822

W
wangliu 已提交
823
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
824

W
wangliu 已提交
825
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
826 827 828 829 830 831 832 833 834 835 836

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

837 838 839 840
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
841
 private:
N
nhzlx 已提交
842 843 844 845
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
846 847 848 849
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
850 851 852 853 854
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
855
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
856
};
L
liuruilong 已提交
857
#endif
E
eclipsess 已提交
858

L
liuruilong 已提交
859
#ifdef BOXCODER_OP
N
nhzlx 已提交
860
template <typename Dtype>
E
eclipsess 已提交
861
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
862 863 864
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
865 866
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
867
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
868 869 870 871
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
872
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
873
  }
N
nhzlx 已提交
874
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
875

N
nhzlx 已提交
876
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
877

N
nhzlx 已提交
878
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
879

N
nhzlx 已提交
880
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
881 882 883 884

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
885 886 887 888
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
889 890
  std::string code_type_;
};
L
liuruilong 已提交
891
#endif
W
wangliu 已提交
892

L
liuruilong 已提交
893
#ifdef SOFTMAX_OP
N
nhzlx 已提交
894
template <typename Dtype>
W
wangliu 已提交
895
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
896 897 898
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
899 900
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
901
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
902 903
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
904
  }
N
nhzlx 已提交
905 906
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
907 908

 private:
N
nhzlx 已提交
909 910
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
911 912 913 914

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
915
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
916 917 918
  fpga::BypassArgs fpga_bypass_args;

 public:
919
  RType *FloatInput() const {
H
hanbuhe 已提交
920 921 922 923 924 925
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
926
};
L
liuruilong 已提交
927
#endif
W
wangliu 已提交
928

L
liuruilong 已提交
929
#ifdef SIGMOID_OP
N
nhzlx 已提交
930
template <typename Dtype>
W
wangliu 已提交
931
class SigmoidParam : public OpParam {
N
nhzlx 已提交
932 933 934
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
935 936
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
937
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
938 939
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
940
  }
N
nhzlx 已提交
941 942
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
943 944

 private:
N
nhzlx 已提交
945 946
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
947
};
L
liuruilong 已提交
948 949 950
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
951
template <typename Dtype>
E
eclipsess 已提交
952
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
953 954 955
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
956 957 958 959
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
960 961 962
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
963 964 965 966 967 968 969 970
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
971
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
972

N
nhzlx 已提交
973
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
974

N
nhzlx 已提交
975
  RType *Out() const { return out_; }
E
eclipsess 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
990 991 992
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
993 994 995 996 997 998 999
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1000
#endif
W
wangliu 已提交
1001

L
lijiancheng0614 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1024
template <typename Dtype>
L
liuruilong 已提交
1025
class FeedParam : public OpParam {
N
nhzlx 已提交
1026 1027 1028
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1029 1030
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1031
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
1032 1033
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
1034
    auto var = scope->Var("batch_size");
W
wangliu 已提交
1035
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1036
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1037 1038
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1039
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1040

L
liuruilong 已提交
1041
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1042 1043
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
1044
  int batch_size;
L
liuruilong 已提交
1045 1046
};

N
nhzlx 已提交
1047
template <typename Dtype>
L
liuruilong 已提交
1048
class FetchParam : public OpParam {
N
nhzlx 已提交
1049 1050 1051
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1052 1053
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1054
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1055 1056
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
1057
  }
N
nhzlx 已提交
1058 1059
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
1060

L
liuruilong 已提交
1061
 private:
N
nhzlx 已提交
1062 1063
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
1064 1065
};

L
lijiancheng0614 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1102
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1103
template <typename Dtype>
E
eclipsess 已提交
1104
class TransposeParam : public OpParam {
N
nhzlx 已提交
1105 1106 1107
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1108 1109 1110
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1111 1112
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1113 1114 1115
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1116
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1117

N
nhzlx 已提交
1118
  RType *Out() const { return out_; }
E
eclipsess 已提交
1119 1120 1121 1122

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1123 1124
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1125 1126
  vector<int> axis_;
};
L
liuruilong 已提交
1127
#endif
E
eclipsess 已提交
1128

xiebaiyuan's avatar
xiebaiyuan 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1195
#ifdef RESHAPE_OP
N
nhzlx 已提交
1196
template <typename Dtype>
E
eclipsess 已提交
1197
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1198 1199 1200
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1201 1202 1203
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1204 1205 1206
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1207
    shape_ = GetAttr<vector<int>>("shape", attrs);
1208 1209 1210 1211 1212 1213 1214

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1215 1216
  }

N
nhzlx 已提交
1217
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1218

N
nhzlx 已提交
1219
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1220

N
nhzlx 已提交
1221
  RType *Out() const { return out_; }
E
eclipsess 已提交
1222 1223 1224 1225 1226 1227

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1228 1229 1230
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1231 1232 1233
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1234
#endif
E
eclipsess 已提交
1235

T
Tian 已提交
1236
#ifdef SCALE_OP
N
nhzlx 已提交
1237
template <typename Dtype>
I
itminner 已提交
1238
class ScaleParam : public OpParam {
N
nhzlx 已提交
1239 1240 1241
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1242 1243 1244
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1245 1246 1247
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1248 1249 1250 1251 1252 1253
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1254
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1255

N
nhzlx 已提交
1256
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1257

N
nhzlx 已提交
1258
  RType *Out() const { return out_; }
I
itminner 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1269 1270 1271
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1272 1273 1274 1275 1276
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1277 1278 1279
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1280
template <typename Dtype>
I
itminner 已提交
1281
class SliceParam : public OpParam {
N
nhzlx 已提交
1282 1283 1284
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1285 1286 1287
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1288 1289 1290
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1291 1292 1293 1294 1295
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1296
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1297

N
nhzlx 已提交
1298
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1299

N
nhzlx 已提交
1300
  RType *Out() const { return out_; }
I
itminner 已提交
1301 1302 1303 1304 1305 1306 1307 1308

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1309 1310 1311
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1312 1313 1314 1315
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1316 1317 1318
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1319
template <typename Dtype>
T
Tian 已提交
1320
class ResizeParam : public OpParam {
N
nhzlx 已提交
1321 1322 1323
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1324 1325 1326
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1327 1328 1329
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1330 1331 1332 1333 1334 1335
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1336

N
nhzlx 已提交
1337
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1338

N
nhzlx 已提交
1339
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1340

N
nhzlx 已提交
1341
  RType *Out() const { return out_; }
T
Tian 已提交
1342

I
itminner 已提交
1343
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1344

I
itminner 已提交
1345
  const int &Height() const { return height_; }
T
Tian 已提交
1346

I
itminner 已提交
1347
  const int &Width() const { return width_; }
T
Tian 已提交
1348

I
itminner 已提交
1349
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1350

I
itminner 已提交
1351
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1352

I
itminner 已提交
1353
 private:
N
nhzlx 已提交
1354 1355 1356
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1357 1358 1359 1360 1361
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1362 1363 1364
};
#endif

L
liuruilong 已提交
1365
#ifdef RELU_OP
L
liuruilong 已提交
1366 1367 1368
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1369
template <typename Dtype>
E
eclipsess 已提交
1370
class ReluParam : public OpParam {
N
nhzlx 已提交
1371 1372 1373
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1374 1375 1376
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1377 1378
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1379 1380
  }

N
nhzlx 已提交
1381
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1382

N
nhzlx 已提交
1383
  RType *Out() const { return out_; }
E
eclipsess 已提交
1384 1385

 private:
N
nhzlx 已提交
1386 1387
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1388
};
L
liuruilong 已提交
1389
#endif
E
eclipsess 已提交
1390

T
Tian 已提交
1391
#ifdef PRELU_OP
N
nhzlx 已提交
1392
template <typename Dtype>
T
Tian 已提交
1393
class PReluParam : public OpParam {
N
nhzlx 已提交
1394 1395 1396
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1397 1398 1399
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1400
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1401
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1402
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1403
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1404
    out_ = OutFrom<GType>(outputs, scope);
1405
    mode_ = GetStringAttr("mode", attrs);
1406
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1407
  }
N
nhzlx 已提交
1408
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1409
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1410
  RType *Out() const { return out_; }
1411
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1412

I
itminner 已提交
1413
 private:
N
nhzlx 已提交
1414 1415
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1416
  RType *alpha_;
1417
  std::string mode_;
T
Tian 已提交
1418 1419 1420
};
#endif

N
nhzlx 已提交
1421
template <typename Dtype>
L
liuruilong 已提交
1422
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1423 1424 1425
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1426
 public:
L
liuruilong 已提交
1427
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1428
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1429 1430 1431 1432
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1433 1434 1435 1436
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1437
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1438

N
nhzlx 已提交
1439
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1440

N
nhzlx 已提交
1441
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1442

xiebaiyuan's avatar
xiebaiyuan 已提交
1443
  GType *Out() const { return out_; }
E
eclipsess 已提交
1444 1445 1446 1447 1448 1449 1450 1451

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1452
  GType *input_x_;
N
nhzlx 已提交
1453 1454
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1455
  GType *out_;
E
eclipsess 已提交
1456 1457 1458
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1459 1460 1461
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1462
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1463 1464

 public:
Z
zhangyang 已提交
1465 1466
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1467
#endif
E
eclipsess 已提交
1468
};
1469 1470

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1471 1472
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1473
#endif
E
eclipsess 已提交
1474

N
nhzlx 已提交
1475
template <typename Dtype>
1476
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1477 1478 1479
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1480
 public:
L
liuruilong 已提交
1481
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1482
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1483 1484 1485 1486 1487
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1488
  }
N
nhzlx 已提交
1489
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1490 1491 1492

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1493
  RType *Output() const { return output_; }
W
wangliu 已提交
1494

L
liuruilong 已提交
1495
 protected:
N
nhzlx 已提交
1496
  RType *bias_;
W
wangliu 已提交
1497
  int axis_;
N
nhzlx 已提交
1498
  RType *output_;
Z
zhangyang 已提交
1499 1500 1501
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1502
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1503 1504

 public:
Z
zhangyang 已提交
1505 1506
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1507
#endif
W
wangliu 已提交
1508 1509
};

N
nhzlx 已提交
1510 1511
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1512

Z
zhangyang 已提交
1513
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1514 1515
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1516
 public:
L
liuruilong 已提交
1517
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1518 1519
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1520
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1521 1522 1523
};
#endif

1524
#ifdef FUSION_CONVADDPRELU_OP
1525 1526 1527 1528
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1529 1530 1531 1532

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1533 1534 1535
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1536
    mode_ = OpParam::GetStringAttr("mode", attrs);
1537
    framework::DDim dims = alpha_->dims();
1538 1539 1540
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1557
  fpga::SplitConvArgs fpga_conv_args;
1558 1559

 public:
Z
zhangyang 已提交
1560 1561
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1562 1563 1564 1565 1566
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1567 1568 1569 1570
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1571 1572 1573 1574

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1575 1576 1577 1578
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1579
    mode_ = OpParam::GetStringAttr("mode", attrs);
1580
    framework::DDim dims = alpha_->dims();
1581 1582 1583 1584 1585 1586
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1587
    if (keyX1_ == keyOutput_) {
1588
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1589
    } else if (keyY1_ == keyOutput_) {
1590
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1615
  fpga::SplitConvArgs fpga_conv_args;
1616 1617

 public:
Z
zhangyang 已提交
1618 1619
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1620 1621 1622 1623
#endif
};
#endif

E
eclipsess 已提交
1624
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1625
template <typename Dtype>
1626
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1627 1628 1629
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1630 1631 1632
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1645
  }
N
nhzlx 已提交
1646
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1647 1648 1649

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1650
  RType *Output() const { return output_; }
E
eclipsess 已提交
1651

N
nhzlx 已提交
1652
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1653

N
nhzlx 已提交
1654
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1655

N
nhzlx 已提交
1656
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1657

N
nhzlx 已提交
1658
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1659 1660 1661 1662 1663 1664 1665

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1666
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1667

N
nhzlx 已提交
1668
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1669

N
nhzlx 已提交
1670
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1671

N
nhzlx 已提交
1672
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1673 1674

 protected:
N
nhzlx 已提交
1675
  RType *bias_;
E
eclipsess 已提交
1676
  int axis_;
N
nhzlx 已提交
1677 1678 1679 1680 1681
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1682 1683 1684
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1685 1686
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1687 1688 1689
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1690
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1691 1692

 public:
Z
zhangyang 已提交
1693 1694
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1695 1696 1697 1698 1699 1700
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1701
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1702 1703 1704 1705 1706 1707
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1722
    if (keyX_ == keyBNY_) {
1723
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1724
    } else if (keyY_ == keyBNY_) {
1725
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1726
    }
1727
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1776
  fpga::SplitConvArgs fpga_conv_args;
1777 1778

 public:
Z
zhangyang 已提交
1779 1780
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1781
#endif
E
eclipsess 已提交
1782
};
1783
#endif
E
eclipsess 已提交
1784

Z
zhangyang 已提交
1785
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1786
template <typename Dtype>
1787
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1788 1789 1790
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1791 1792 1793
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1804
  }
N
nhzlx 已提交
1805
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1806

N
nhzlx 已提交
1807
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1808

N
nhzlx 已提交
1809
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1810

N
nhzlx 已提交
1811
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1812

N
nhzlx 已提交
1813
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1814 1815 1816 1817 1818 1819 1820

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1821
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1822

N
nhzlx 已提交
1823
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1824

N
nhzlx 已提交
1825
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1826

N
nhzlx 已提交
1827
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1828 1829

 protected:
N
nhzlx 已提交
1830 1831 1832 1833 1834
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1835 1836 1837
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1838 1839
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1840 1841 1842
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1843
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1844 1845

 public:
Z
zhangyang 已提交
1846 1847
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1848 1849 1850 1851
#endif
};
#endif

1852
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1853
template <typename Dtype>
1854
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1855 1856 1857
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1858 1859 1860
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1873
  }
N
nhzlx 已提交
1874
  RType *Bias() const { return bias_; }
1875 1876 1877

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1878
  RType *Output() const { return output_y_; }
1879

N
nhzlx 已提交
1880
  const RType *InputBias() const { return input_bias_; }
1881

N
nhzlx 已提交
1882
  const RType *InputMean() const { return input_mean_; }
1883

N
nhzlx 已提交
1884
  const RType *InputScale() const { return input_scale_; }
1885

N
nhzlx 已提交
1886
  const RType *InputVariance() const { return input_variance_; }
1887 1888 1889 1890 1891 1892 1893

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1894
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1895

N
nhzlx 已提交
1896
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1897

N
nhzlx 已提交
1898
  const RType *NewScale() const { return new_scale_; }
1899

N
nhzlx 已提交
1900
  const RType *NewBias() const { return new_bias_; }
1901 1902

 protected:
N
nhzlx 已提交
1903
  RType *bias_;
1904
  int axis_;
N
nhzlx 已提交
1905 1906 1907 1908 1909
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1910 1911 1912
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1913 1914
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1915 1916 1917
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1918
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1919 1920

 public:
Z
zhangyang 已提交
1921 1922
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1923
#endif
1924
};
E
eclipsess 已提交
1925
#endif
Y
Yao,kun 已提交
1926

E
eclipsess 已提交
1927
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1928
template <typename Dtype>
1929
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1930 1931 1932
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1933 1934 1935
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1946
  }
N
nhzlx 已提交
1947
  RType *Output() const { return output_; }
E
eclipsess 已提交
1948

N
nhzlx 已提交
1949
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1950

N
nhzlx 已提交
1951
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1952

N
nhzlx 已提交
1953
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1954

N
nhzlx 已提交
1955
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1956 1957 1958 1959 1960 1961 1962

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1963
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1964

N
nhzlx 已提交
1965
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1966

N
nhzlx 已提交
1967
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1968

N
nhzlx 已提交
1969
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1970 1971

 protected:
N
nhzlx 已提交
1972 1973 1974 1975 1976
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1977 1978 1979
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1980 1981
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1982 1983 1984 1985
};

#endif

1986
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1987
template <typename Dtype>
1988
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1989 1990 1991
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1992 1993 1994
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2005
  }
N
nhzlx 已提交
2006
  RType *Output() const { return output_; }
2007

N
nhzlx 已提交
2008
  const RType *InputBias() const { return input_bias_; }
2009

N
nhzlx 已提交
2010
  const RType *InputMean() const { return input_mean_; }
2011

N
nhzlx 已提交
2012
  const RType *InputScale() const { return input_scale_; }
2013

N
nhzlx 已提交
2014
  const RType *InputVariance() const { return input_variance_; }
2015 2016 2017 2018 2019 2020 2021

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2022
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2023

N
nhzlx 已提交
2024
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2025

N
nhzlx 已提交
2026
  const RType *NewScale() const { return new_scale_; }
2027

N
nhzlx 已提交
2028
  const RType *NewBias() const { return new_bias_; }
2029 2030

 protected:
N
nhzlx 已提交
2031 2032 2033 2034 2035
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2036 2037 2038
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2039 2040
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2041 2042 2043
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2044
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
2045 2046

 public:
Z
zhangyang 已提交
2047 2048
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2049
#endif
2050 2051 2052
};
#endif

Y
Yao,kun 已提交
2053
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2054
template <typename Dtype>
Y
Yao,kun 已提交
2055
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2056 2057 2058
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2059 2060 2061 2062
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2063 2064
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2065 2066 2067 2068 2069
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2070
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2071

E
eclipsess 已提交
2072
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2073 2074 2075 2076 2077 2078 2079 2080

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2081 2082
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2083 2084 2085 2086
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2087
#endif
Y
Yao,kun 已提交
2088

2089
#ifdef DROPOUT_OP
N
nhzlx 已提交
2090
template <typename Dtype>
Y
Yao,kun 已提交
2091
class DropoutParam : public OpParam {
N
nhzlx 已提交
2092 2093 2094
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2095 2096 2097
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2098 2099
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2100 2101

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2102 2103
  }

N
nhzlx 已提交
2104
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2105

N
nhzlx 已提交
2106
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2107

Y
yangfei 已提交
2108 2109
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2110
 private:
N
nhzlx 已提交
2111 2112
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2113
  float dropout_prob_;
Y
Yao,kun 已提交
2114
};
2115
#endif
Y
Yao,kun 已提交
2116

H
hjchen2 已提交
2117
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2118
template <typename Dtype>
L
liuruilong 已提交
2119
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2120 2121 2122
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2123 2124 2125 2126
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2127 2128 2129
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2130 2131 2132 2133 2134 2135
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2136
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2137

N
nhzlx 已提交
2138
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2139

N
nhzlx 已提交
2140
  RType *Output() const { return output_; }
L
liuruilong 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2151 2152 2153
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2154 2155 2156 2157 2158 2159 2160
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2186 2187
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2232
    axis = GetAttr<int>("axis", attrs);
2233 2234 2235
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2236
  const int &Axis() const { return axis; }
2237 2238 2239 2240

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2241
  int axis;
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2255
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2256
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2257 2258 2259 2260 2261 2262
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2263 2264
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2265 2266 2267 2268 2269
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2270 2271 2272

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2273
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2274
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2275 2276 2277
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2294 2295
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2296 2297
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2298
  const RType *InputOutPutSize() const { return input_outsize_; }
2299
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2300 2301
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2302 2303 2304 2305 2306

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2307 2308
  int out_h_;
  int out_w_;
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2324
  const RType *Input() const { return input_; }
2325 2326 2327 2328 2329 2330 2331 2332
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2333
#ifdef QUANT_OP
2334
template <typename Dtype>
2335 2336 2337 2338 2339
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2340 2341
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2342 2343 2344 2345 2346 2347 2348
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2349
      is_static_ = true;
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
2371
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
2372
};
2373
#endif
2374

2375
#ifdef DEQUANT_OP
2376
template <typename Dtype>
2377 2378 2379 2380 2381
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2382 2383
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};
2403
#endif
2404

朔-望's avatar
朔-望 已提交
2405 2406
}  // namespace operators
}  // namespace paddle_mobile