op_param.h 73.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
38
using framework::Variable;
W
wangliu 已提交
39 40
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
41

N
nhzlx 已提交
42 43 44 45 46 47 48 49 50
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
51
class OpParam {
朔-望's avatar
朔-望 已提交
52
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
53 54 55 56
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
57 58 59 60 61
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

62 63 64 65 66 67 68 69 70
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
71 72 73 74 75
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

103 104 105 106
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
107 108 109 110 111 112

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

113 114 115 116 117
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
118 119 120 121 122
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

123 124 125 126 127
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
132 133 134 135 136 137 138 139 140 141 142 143
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
144 145 146 147
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
164

E
eclipsess 已提交
165 166 167 168 169 170 171 172 173 174
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
175 176 177 178
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
179

180
  template <typename T>
W
wangliu 已提交
181 182
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
183 184 185
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
186 187 188 189 190
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

220 221 222 223 224
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
225 226 227 228 229
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
235 236 237 238 239 240
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

241 242 243 244 245
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
252 253 254 255 256 257
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
258 259 260 261 262
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
263 264 265 266 267 268
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

269 270 271 272 273 274 275 276 277 278 279
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
280
  static const T GetAttr(const string &key, const AttributeMap &map) {
281 282
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
283 284
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
285 286
    return ((Attribute)map.at(key)).GetString();
  }
287

288 289 290 291
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

292
  template <typename T>
W
wangliu 已提交
293
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
294
                        const Scope &scope) {
W
wangliu 已提交
295 296
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
297 298 299 300 301 302
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
303
    }
304
  }
朔-望's avatar
朔-望 已提交
305

E
eclipsess 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

339
  template <typename T>
W
wangliu 已提交
340 341 342
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
343 344
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
345
    vector<T *> var_res;
346 347 348
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
349
    }
350 351
    return var_res;
  }
E
eclipsess 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
365 366
};

N
nhzlx 已提交
367
template <typename Dtype>
368
class ConvParam : public OpParam {
N
nhzlx 已提交
369 370 371
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
372
 public:
373
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
374
            const AttributeMap &attrs, const Scope &scope) {
375 376 377 378 379 380 381 382 383
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
384
  }
朔-望's avatar
朔-望 已提交
385

N
nhzlx 已提交
386
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
387

N
nhzlx 已提交
388
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
389

N
nhzlx 已提交
390
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
391

W
wangliu 已提交
392
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
393

W
wangliu 已提交
394
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
395

W
wangliu 已提交
396
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
397

398
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
399

朔-望's avatar
朔-望 已提交
400
 private:
N
nhzlx 已提交
401 402 403
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
404 405 406
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
407
  int groups;
朔-望's avatar
朔-望 已提交
408
};
N
nhzlx 已提交
409 410
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
411

N
nhzlx 已提交
412
template <typename Dtype>
朔-望's avatar
朔-望 已提交
413
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
414 415 416
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
417
 public:
418
  ElementwiseAddParam(const VariableNameMap &inputs,
419 420
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
421 422 423
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
424 425 426
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
427
  const GType *InputX() const { return input_x_; }
428

xiebaiyuan's avatar
xiebaiyuan 已提交
429
  const GType *InputY() const { return input_y_; }
430

xiebaiyuan's avatar
xiebaiyuan 已提交
431
  GType *Out() const { return out_; }
432 433 434

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
435
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
436 437 438
  GType *input_x_;
  GType *input_y_;
  GType *out_;
439
  int axis_;
Z
zhangyang 已提交
440 441 442
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
443
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
444 445

 public:
H
hanbuhe 已提交
446 447
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
448
#endif
朔-望's avatar
朔-望 已提交
449 450
};

E
eclipsess 已提交
451
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
481
#endif
E
eclipsess 已提交
482

483
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
484 485
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
486 487
#endif

488
#ifdef ELEMENTWISESUB_OP
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
518
#endif
519

L
liuruilong 已提交
520
#ifdef MUL_OP
N
nhzlx 已提交
521
template <typename Dtype>
朔-望's avatar
朔-望 已提交
522
class MulParam : OpParam {
N
nhzlx 已提交
523 524 525
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
526
 public:
527
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
528
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
529 530 531
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
532 533 534
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
535

xiebaiyuan's avatar
xiebaiyuan 已提交
536
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
537

xiebaiyuan's avatar
xiebaiyuan 已提交
538
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
539

xiebaiyuan's avatar
xiebaiyuan 已提交
540
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
541

542
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
543

544
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
545

朔-望's avatar
朔-望 已提交
546
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
547 548 549
  GType *input_x_;
  GType *input_y_;
  GType *out_;
550 551
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
552 553 554
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
555
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
556 557

 public:
Z
zhangyang 已提交
558 559
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
560
#endif
朔-望's avatar
朔-望 已提交
561
};
L
liuruilong 已提交
562
#endif
朔-望's avatar
朔-望 已提交
563

L
liuruilong 已提交
564
#ifdef CONCAT_OP
N
nhzlx 已提交
565
template <typename Dtype>
朔-望's avatar
朔-望 已提交
566
class ConcatParam : public OpParam {
N
nhzlx 已提交
567 568 569
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
570
 public:
571
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
572
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
573 574
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
575 576
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
577

N
nhzlx 已提交
578
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
579

xiebaiyuan's avatar
xiebaiyuan 已提交
580
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
581

582
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
583

朔-望's avatar
朔-望 已提交
584
 private:
N
nhzlx 已提交
585
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
586
  GType *out_;
587
  int axis_;
Z
zhangyang 已提交
588 589 590 591 592 593 594 595 596
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
597
};
L
liuruilong 已提交
598
#endif
朔-望's avatar
朔-望 已提交
599

E
eclipsess 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
631
#ifdef LRN_OP
N
nhzlx 已提交
632
template <typename Dtype>
E
eclipsess 已提交
633
class LrnParam : public OpParam {
N
nhzlx 已提交
634 635 636
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
637
 public:
638
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
639
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
640 641 642
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
643 644 645 646
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
647
    data_format_ = GetStringAttr("data_format", attrs);
648
  }
E
eclipsess 已提交
649

N
nhzlx 已提交
650
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
651

N
nhzlx 已提交
652
  RType *Out() const { return out_; }
E
eclipsess 已提交
653

N
nhzlx 已提交
654
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
655

656
  const int &N() const { return n_; }
E
eclipsess 已提交
657

658
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
659

660
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
661

662
  const float &K() const { return k_; }
E
eclipsess 已提交
663

W
wangliu 已提交
664
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
665

朔-望's avatar
朔-望 已提交
666
 private:
N
nhzlx 已提交
667 668 669
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
670 671 672 673
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
674
  string data_format_;
E
eclipsess 已提交
675
};
L
liuruilong 已提交
676 677 678
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
679
template <typename Dtype>
E
eclipsess 已提交
680
class BatchNormParam : OpParam {
N
nhzlx 已提交
681 682 683
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
684
 public:
685
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
686
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
687 688 689 690 691 692
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
693 694
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
695
    //    is_test_ = GetAttr<bool>("is_test", attrs);
696
  }
E
eclipsess 已提交
697

N
nhzlx 已提交
698
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
699

N
nhzlx 已提交
700
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
701

N
nhzlx 已提交
702
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
703

N
nhzlx 已提交
704
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
705

N
nhzlx 已提交
706
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
707

N
nhzlx 已提交
708
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
709

710
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
711

712
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
713

714
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
715

W
wangliu 已提交
716
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
717

朔-望's avatar
朔-望 已提交
718
 private:
N
nhzlx 已提交
719 720 721 722 723 724
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
725 726 727
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
728
  string data_format_;
E
eclipsess 已提交
729
};
L
liuruilong 已提交
730 731 732
#endif

#ifdef POOL_OP
N
nhzlx 已提交
733
template <typename Dtype>
734
class PoolParam : public OpParam {
N
nhzlx 已提交
735 736 737
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
738
 public:
739
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
740
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
741
    input_ = InputXFrom<GType>(inputs, scope);
742

N
nhzlx 已提交
743
    output_ = OutFrom<GType>(outputs, scope);
744
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
745 746 747
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
748
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
749
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
750
  }
751

N
nhzlx 已提交
752
  const RType *Input() const { return input_; }
753

N
nhzlx 已提交
754
  RType *Output() const { return output_; }
755

W
wangliu 已提交
756
  const string &PoolingType() const { return pooling_type_; }
757

W
wangliu 已提交
758
  const vector<int> &Ksize() const { return ksize_; }
759

W
wangliu 已提交
760
  const vector<int> &Strides() const { return strides_; }
761

W
wangliu 已提交
762
  const vector<int> &Paddings() const { return paddings_; }
763

764
  bool isCeilMode() const { return ceil_mode_; }
765

Z
zhangyang 已提交
766
  bool isGlobalPooling() const { return global_pooling_; }
767

朔-望's avatar
朔-望 已提交
768
 private:
N
nhzlx 已提交
769 770
  RType *input_;
  RType *output_;
W
wangliu 已提交
771 772 773 774
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
775
  bool ceil_mode_;
776
  bool global_pooling_ = false;
Z
zhangyang 已提交
777
#ifdef PADDLE_MOBILE_FPGA
778 779

 private:
H
hanbuhe 已提交
780
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
781 782

 public:
H
hanbuhe 已提交
783 784
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
785
#endif
786
};
L
liuruilong 已提交
787 788 789
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
790
template <typename Dtype>
E
eclipsess 已提交
791
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
792 793 794
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
795 796
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
797
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
798 799 800 801
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
802 803 804 805
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
806 807 808 809 810

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
811 812 813 814 815 816
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
817
  const RType *Input() const { return input_; }
E
eclipsess 已提交
818

N
nhzlx 已提交
819
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
820

N
nhzlx 已提交
821
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
822

N
nhzlx 已提交
823
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
824

W
wangliu 已提交
825
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
826

W
wangliu 已提交
827
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
828

W
wangliu 已提交
829
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
830

W
wangliu 已提交
831
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
832 833 834 835 836 837 838 839 840 841 842

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

843 844 845 846
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
847
 private:
N
nhzlx 已提交
848 849 850 851
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
852 853 854 855
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
856 857 858 859 860
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
861
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
862
};
L
liuruilong 已提交
863
#endif
E
eclipsess 已提交
864

L
liuruilong 已提交
865
#ifdef BOXCODER_OP
N
nhzlx 已提交
866
template <typename Dtype>
E
eclipsess 已提交
867
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
868 869 870
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
871 872
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
873
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
874 875 876 877
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
878
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
879
  }
N
nhzlx 已提交
880
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
881

N
nhzlx 已提交
882
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
883

N
nhzlx 已提交
884
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
885

N
nhzlx 已提交
886
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
887 888 889 890

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
891 892 893 894
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
895 896
  std::string code_type_;
};
L
liuruilong 已提交
897
#endif
W
wangliu 已提交
898

L
liuruilong 已提交
899
#ifdef SOFTMAX_OP
N
nhzlx 已提交
900
template <typename Dtype>
W
wangliu 已提交
901
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
902 903 904
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
905 906
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
907
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
908 909
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
910
  }
N
nhzlx 已提交
911 912
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
913 914

 private:
N
nhzlx 已提交
915 916
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
917 918 919 920

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
921
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
922 923 924
  fpga::BypassArgs fpga_bypass_args;

 public:
925
  RType *FloatInput() const {
H
hanbuhe 已提交
926 927 928 929 930 931
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
932
};
L
liuruilong 已提交
933
#endif
W
wangliu 已提交
934

L
liuruilong 已提交
935
#ifdef SIGMOID_OP
N
nhzlx 已提交
936
template <typename Dtype>
W
wangliu 已提交
937
class SigmoidParam : public OpParam {
N
nhzlx 已提交
938 939 940
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
941 942
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
943
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
944 945
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
946
  }
N
nhzlx 已提交
947 948
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
949 950

 private:
N
nhzlx 已提交
951 952
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
953
};
L
liuruilong 已提交
954 955 956
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
957
template <typename Dtype>
E
eclipsess 已提交
958
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
959 960 961
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
962 963 964 965
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
966 967 968
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
969 970 971 972 973 974 975 976
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
977
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
978

N
nhzlx 已提交
979
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
980

N
nhzlx 已提交
981
  RType *Out() const { return out_; }
E
eclipsess 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
996 997 998
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
999 1000 1001 1002 1003 1004 1005
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1006
#endif
W
wangliu 已提交
1007

L
lijiancheng0614 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1030
template <typename Dtype>
L
liuruilong 已提交
1031
class FeedParam : public OpParam {
N
nhzlx 已提交
1032 1033 1034
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1035 1036
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1037
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
1038 1039
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
1040
    auto var = scope->Var("batch_size");
W
wangliu 已提交
1041
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1042
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1043 1044
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1045
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1046

L
liuruilong 已提交
1047
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1048 1049
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
1050
  int batch_size;
L
liuruilong 已提交
1051 1052
};

N
nhzlx 已提交
1053
template <typename Dtype>
L
liuruilong 已提交
1054
class FetchParam : public OpParam {
N
nhzlx 已提交
1055 1056 1057
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1058 1059
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1060
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1061 1062
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
1063
  }
N
nhzlx 已提交
1064 1065
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
1066

L
liuruilong 已提交
1067
 private:
N
nhzlx 已提交
1068 1069
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
1070 1071
};

L
lijiancheng0614 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1108
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1109
template <typename Dtype>
E
eclipsess 已提交
1110
class TransposeParam : public OpParam {
N
nhzlx 已提交
1111 1112 1113
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1114 1115 1116
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1117 1118
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1119 1120 1121
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1122
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1123

N
nhzlx 已提交
1124
  RType *Out() const { return out_; }
E
eclipsess 已提交
1125 1126 1127 1128

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1129 1130
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1131 1132
  vector<int> axis_;
};
L
liuruilong 已提交
1133
#endif
E
eclipsess 已提交
1134

xiebaiyuan's avatar
xiebaiyuan 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1201
#ifdef RESHAPE_OP
N
nhzlx 已提交
1202
template <typename Dtype>
E
eclipsess 已提交
1203
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1204 1205 1206
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1207 1208 1209
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1210 1211 1212
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1213
    shape_ = GetAttr<vector<int>>("shape", attrs);
1214 1215 1216 1217 1218 1219 1220

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1221 1222
  }

N
nhzlx 已提交
1223
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1224

N
nhzlx 已提交
1225
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1226

N
nhzlx 已提交
1227
  RType *Out() const { return out_; }
E
eclipsess 已提交
1228 1229 1230 1231 1232 1233

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1234 1235 1236
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1237 1238 1239
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1240
#endif
E
eclipsess 已提交
1241

L
lijiancheng0614 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

  const RType *InputX() const { return input_x_; }

  const RType *InputShape() const { return input_shape_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
  RType *output_xshape_;
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1285
#ifdef SCALE_OP
N
nhzlx 已提交
1286
template <typename Dtype>
I
itminner 已提交
1287
class ScaleParam : public OpParam {
N
nhzlx 已提交
1288 1289 1290
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1291 1292 1293
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1294 1295 1296
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1297 1298 1299 1300 1301 1302
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1303
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1304

N
nhzlx 已提交
1305
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1306

N
nhzlx 已提交
1307
  RType *Out() const { return out_; }
I
itminner 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1318 1319 1320
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1321 1322 1323 1324 1325
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1326 1327 1328
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1329
template <typename Dtype>
I
itminner 已提交
1330
class SliceParam : public OpParam {
N
nhzlx 已提交
1331 1332 1333
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1334 1335 1336
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1337 1338 1339
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1340 1341 1342 1343 1344
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1345
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1346

N
nhzlx 已提交
1347
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1348

N
nhzlx 已提交
1349
  RType *Out() const { return out_; }
I
itminner 已提交
1350 1351 1352 1353 1354 1355 1356 1357

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1358 1359 1360
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1361 1362 1363 1364
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1365 1366 1367
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1368
template <typename Dtype>
T
Tian 已提交
1369
class ResizeParam : public OpParam {
N
nhzlx 已提交
1370 1371 1372
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1373 1374 1375
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1376 1377 1378
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1379 1380 1381 1382 1383 1384
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1385

N
nhzlx 已提交
1386
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1387

N
nhzlx 已提交
1388
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1389

N
nhzlx 已提交
1390
  RType *Out() const { return out_; }
T
Tian 已提交
1391

I
itminner 已提交
1392
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1393

I
itminner 已提交
1394
  const int &Height() const { return height_; }
T
Tian 已提交
1395

I
itminner 已提交
1396
  const int &Width() const { return width_; }
T
Tian 已提交
1397

I
itminner 已提交
1398
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1399

I
itminner 已提交
1400
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1401

I
itminner 已提交
1402
 private:
N
nhzlx 已提交
1403 1404 1405
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1406 1407 1408 1409 1410
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1411 1412 1413
};
#endif

L
liuruilong 已提交
1414
#ifdef RELU_OP
L
liuruilong 已提交
1415 1416 1417
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1418
template <typename Dtype>
E
eclipsess 已提交
1419
class ReluParam : public OpParam {
N
nhzlx 已提交
1420 1421 1422
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1423 1424 1425
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1426 1427
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1428 1429
  }

N
nhzlx 已提交
1430
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1431

N
nhzlx 已提交
1432
  RType *Out() const { return out_; }
E
eclipsess 已提交
1433 1434

 private:
N
nhzlx 已提交
1435 1436
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1437
};
L
liuruilong 已提交
1438
#endif
E
eclipsess 已提交
1439

T
Tian 已提交
1440
#ifdef PRELU_OP
N
nhzlx 已提交
1441
template <typename Dtype>
T
Tian 已提交
1442
class PReluParam : public OpParam {
N
nhzlx 已提交
1443 1444 1445
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1446 1447 1448
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1449
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1450
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1451
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1452
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1453
    out_ = OutFrom<GType>(outputs, scope);
1454
    mode_ = GetStringAttr("mode", attrs);
1455
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1456
  }
N
nhzlx 已提交
1457
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1458
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1459
  RType *Out() const { return out_; }
1460
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1461

I
itminner 已提交
1462
 private:
N
nhzlx 已提交
1463 1464
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1465
  RType *alpha_;
1466
  std::string mode_;
T
Tian 已提交
1467 1468 1469
};
#endif

N
nhzlx 已提交
1470
template <typename Dtype>
L
liuruilong 已提交
1471
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1472 1473 1474
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1475
 public:
L
liuruilong 已提交
1476
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1477
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1478 1479 1480 1481
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1482 1483 1484 1485
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1486
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1487

N
nhzlx 已提交
1488
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1489

N
nhzlx 已提交
1490
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1491

xiebaiyuan's avatar
xiebaiyuan 已提交
1492
  GType *Out() const { return out_; }
E
eclipsess 已提交
1493 1494 1495 1496 1497 1498 1499 1500

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1501
  GType *input_x_;
N
nhzlx 已提交
1502 1503
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1504
  GType *out_;
E
eclipsess 已提交
1505 1506 1507
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1508 1509 1510
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1511
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1512 1513

 public:
Z
zhangyang 已提交
1514 1515
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1516
#endif
E
eclipsess 已提交
1517
};
1518 1519

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1520 1521
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1522
#endif
E
eclipsess 已提交
1523

N
nhzlx 已提交
1524
template <typename Dtype>
1525
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1526 1527 1528
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1529
 public:
L
liuruilong 已提交
1530
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1531
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1532 1533 1534 1535 1536
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1537
  }
N
nhzlx 已提交
1538
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1539 1540 1541

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1542
  RType *Output() const { return output_; }
W
wangliu 已提交
1543

L
liuruilong 已提交
1544
 protected:
N
nhzlx 已提交
1545
  RType *bias_;
W
wangliu 已提交
1546
  int axis_;
N
nhzlx 已提交
1547
  RType *output_;
Z
zhangyang 已提交
1548 1549 1550
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1551
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1552 1553

 public:
Z
zhangyang 已提交
1554 1555
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1556
#endif
W
wangliu 已提交
1557 1558
};

N
nhzlx 已提交
1559 1560
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1561

Z
zhangyang 已提交
1562
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1563 1564
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1565
 public:
L
liuruilong 已提交
1566
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1567 1568
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1569
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1570 1571 1572
};
#endif

1573
#ifdef FUSION_CONVADDPRELU_OP
1574 1575 1576 1577
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1578 1579 1580 1581

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1582 1583 1584
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1585
    mode_ = OpParam::GetStringAttr("mode", attrs);
1586
    framework::DDim dims = alpha_->dims();
1587 1588 1589
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1606
  fpga::SplitConvArgs fpga_conv_args;
1607 1608

 public:
Z
zhangyang 已提交
1609 1610
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1611 1612 1613 1614 1615
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1616 1617 1618 1619
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1620 1621 1622 1623

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1624 1625 1626 1627
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1628
    mode_ = OpParam::GetStringAttr("mode", attrs);
1629
    framework::DDim dims = alpha_->dims();
1630 1631 1632 1633 1634 1635
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1636
    if (keyX1_ == keyOutput_) {
1637
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1638
    } else if (keyY1_ == keyOutput_) {
1639
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1664
  fpga::SplitConvArgs fpga_conv_args;
1665 1666

 public:
Z
zhangyang 已提交
1667 1668
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1669 1670 1671 1672
#endif
};
#endif

E
eclipsess 已提交
1673
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1674
template <typename Dtype>
1675
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1676 1677 1678
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1679 1680 1681
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1694
  }
N
nhzlx 已提交
1695
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1696 1697 1698

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1699
  RType *Output() const { return output_; }
E
eclipsess 已提交
1700

N
nhzlx 已提交
1701
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1702

N
nhzlx 已提交
1703
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1704

N
nhzlx 已提交
1705
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1706

N
nhzlx 已提交
1707
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1708 1709 1710 1711 1712 1713 1714

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1715
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1716

N
nhzlx 已提交
1717
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1718

N
nhzlx 已提交
1719
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1720

N
nhzlx 已提交
1721
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1722 1723

 protected:
N
nhzlx 已提交
1724
  RType *bias_;
E
eclipsess 已提交
1725
  int axis_;
N
nhzlx 已提交
1726 1727 1728 1729 1730
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1731 1732 1733
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1734 1735
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1736 1737 1738
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1739
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1740 1741

 public:
Z
zhangyang 已提交
1742 1743
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1744 1745 1746 1747 1748 1749
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1750
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1751 1752 1753 1754 1755 1756
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1771
    if (keyX_ == keyBNY_) {
1772
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1773
    } else if (keyY_ == keyBNY_) {
1774
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1775
    }
1776
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1825
  fpga::SplitConvArgs fpga_conv_args;
1826 1827

 public:
Z
zhangyang 已提交
1828 1829
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1830
#endif
E
eclipsess 已提交
1831
};
1832
#endif
E
eclipsess 已提交
1833

Z
zhangyang 已提交
1834
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1835
template <typename Dtype>
1836
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1837 1838 1839
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1840 1841 1842
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1853
  }
N
nhzlx 已提交
1854
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1855

N
nhzlx 已提交
1856
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1857

N
nhzlx 已提交
1858
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1859

N
nhzlx 已提交
1860
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1861

N
nhzlx 已提交
1862
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1863 1864 1865 1866 1867 1868 1869

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1870
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1871

N
nhzlx 已提交
1872
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1873

N
nhzlx 已提交
1874
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1875

N
nhzlx 已提交
1876
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1877 1878

 protected:
N
nhzlx 已提交
1879 1880 1881 1882 1883
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1884 1885 1886
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1887 1888
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1889 1890 1891
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1892
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1893 1894

 public:
Z
zhangyang 已提交
1895 1896
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1897 1898 1899 1900
#endif
};
#endif

1901
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1902
template <typename Dtype>
1903
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1904 1905 1906
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1907 1908 1909
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1922
  }
N
nhzlx 已提交
1923
  RType *Bias() const { return bias_; }
1924 1925 1926

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1927
  RType *Output() const { return output_y_; }
1928

N
nhzlx 已提交
1929
  const RType *InputBias() const { return input_bias_; }
1930

N
nhzlx 已提交
1931
  const RType *InputMean() const { return input_mean_; }
1932

N
nhzlx 已提交
1933
  const RType *InputScale() const { return input_scale_; }
1934

N
nhzlx 已提交
1935
  const RType *InputVariance() const { return input_variance_; }
1936 1937 1938 1939 1940 1941 1942

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1943
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1944

N
nhzlx 已提交
1945
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1946

N
nhzlx 已提交
1947
  const RType *NewScale() const { return new_scale_; }
1948

N
nhzlx 已提交
1949
  const RType *NewBias() const { return new_bias_; }
1950 1951

 protected:
N
nhzlx 已提交
1952
  RType *bias_;
1953
  int axis_;
N
nhzlx 已提交
1954 1955 1956 1957 1958
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1959 1960 1961
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1962 1963
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1964 1965 1966
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1967
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1968 1969

 public:
Z
zhangyang 已提交
1970 1971
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1972
#endif
1973
};
E
eclipsess 已提交
1974
#endif
Y
Yao,kun 已提交
1975

E
eclipsess 已提交
1976
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1977
template <typename Dtype>
1978
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1979 1980 1981
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1982 1983 1984
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1995
  }
N
nhzlx 已提交
1996
  RType *Output() const { return output_; }
E
eclipsess 已提交
1997

N
nhzlx 已提交
1998
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1999

N
nhzlx 已提交
2000
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2001

N
nhzlx 已提交
2002
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2003

N
nhzlx 已提交
2004
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2005 2006 2007 2008 2009 2010 2011

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2012
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2013

N
nhzlx 已提交
2014
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2015

N
nhzlx 已提交
2016
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2017

N
nhzlx 已提交
2018
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2019 2020

 protected:
N
nhzlx 已提交
2021 2022 2023 2024 2025
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2026 2027 2028
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2029 2030
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2031 2032 2033 2034
};

#endif

2035
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2036
template <typename Dtype>
2037
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2038 2039 2040
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2041 2042 2043
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2054
  }
N
nhzlx 已提交
2055
  RType *Output() const { return output_; }
2056

N
nhzlx 已提交
2057
  const RType *InputBias() const { return input_bias_; }
2058

N
nhzlx 已提交
2059
  const RType *InputMean() const { return input_mean_; }
2060

N
nhzlx 已提交
2061
  const RType *InputScale() const { return input_scale_; }
2062

N
nhzlx 已提交
2063
  const RType *InputVariance() const { return input_variance_; }
2064 2065 2066 2067 2068 2069 2070

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2071
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2072

N
nhzlx 已提交
2073
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2074

N
nhzlx 已提交
2075
  const RType *NewScale() const { return new_scale_; }
2076

N
nhzlx 已提交
2077
  const RType *NewBias() const { return new_bias_; }
2078 2079

 protected:
N
nhzlx 已提交
2080 2081 2082 2083 2084
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2085 2086 2087
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2088 2089
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2090 2091 2092
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2093
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
2094 2095

 public:
Z
zhangyang 已提交
2096 2097
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2098
#endif
2099 2100 2101
};
#endif

Y
Yao,kun 已提交
2102
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2103
template <typename Dtype>
Y
Yao,kun 已提交
2104
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2105 2106 2107
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2108 2109 2110 2111
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2112 2113
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2114 2115 2116 2117 2118
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2119
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2120

N
nhzlx 已提交
2121
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2122 2123 2124 2125 2126 2127 2128 2129

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2130 2131
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2132 2133 2134 2135
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2136
#endif
Y
Yao,kun 已提交
2137

2138
#ifdef DROPOUT_OP
N
nhzlx 已提交
2139
template <typename Dtype>
Y
Yao,kun 已提交
2140
class DropoutParam : public OpParam {
N
nhzlx 已提交
2141 2142 2143
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2144 2145 2146
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2147 2148
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2149 2150

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2151 2152
  }

N
nhzlx 已提交
2153
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2154

N
nhzlx 已提交
2155
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2156

Y
yangfei 已提交
2157 2158
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2159
 private:
N
nhzlx 已提交
2160 2161
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2162
  float dropout_prob_;
Y
Yao,kun 已提交
2163
};
2164
#endif
Y
Yao,kun 已提交
2165

H
hjchen2 已提交
2166
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2167
template <typename Dtype>
L
liuruilong 已提交
2168
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2169 2170 2171
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2172 2173 2174 2175
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2176 2177 2178
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2179 2180 2181 2182 2183 2184
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2185
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2186

N
nhzlx 已提交
2187
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2188

N
nhzlx 已提交
2189
  RType *Output() const { return output_; }
L
liuruilong 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2200 2201 2202
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2203 2204 2205 2206 2207 2208 2209
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2235 2236
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2281
    axis = GetAttr<int>("axis", attrs);
2282 2283 2284
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2285
  const int &Axis() const { return axis; }
2286 2287 2288 2289

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2290
  int axis;
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2304
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2305
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2306 2307 2308 2309 2310 2311
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2312 2313
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2314 2315 2316 2317 2318
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2319 2320 2321

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2322
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2323
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2324 2325 2326
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2343 2344
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2345 2346
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2347
  const RType *InputOutPutSize() const { return input_outsize_; }
2348
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2349 2350
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2351 2352 2353 2354 2355

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2356 2357
  int out_h_;
  int out_w_;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2373
  const RType *Input() const { return input_; }
2374 2375 2376 2377 2378 2379 2380 2381
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2382
#ifdef QUANT_OP
2383
template <typename Dtype>
2384 2385 2386 2387 2388
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2389 2390
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2391 2392 2393 2394 2395 2396 2397
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2398
      is_static_ = true;
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
2420
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
2421
};
2422
#endif
2423

2424
#ifdef DEQUANT_OP
2425
template <typename Dtype>
2426 2427 2428 2429 2430
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2431 2432
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};
2452
#endif
2453

朔-望's avatar
朔-望 已提交
2454 2455
}  // namespace operators
}  // namespace paddle_mobile