op_param.h 70.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
80 81 82 83 84
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

85 86 87 88 89 90 91 92 93
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
94 95 96 97 98
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

126 127 128 129
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
130 131 132 133 134 135

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

136 137 138 139 140
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
141 142 143 144 145
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

146 147 148 149 150
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
151 152 153 154
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
155 156 157 158 159 160 161 162 163 164 165 166
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
167 168 169 170
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
187

E
eclipsess 已提交
188 189 190 191 192 193 194 195 196 197
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
198 199 200 201
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
202

203
  template <typename T>
W
wangliu 已提交
204 205
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
206 207 208
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

238 239 240 241 242 243 244 245 246 247
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

254 255 256 257 258
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
259 260 261 262 263 264
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
270 271 272 273 274 275
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

276 277 278 279 280 281 282 283 284 285 286
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
287
  static const T GetAttr(const string &key, const AttributeMap &map) {
288 289 290
    return ((Attribute)map.at(key)).Get<T>();
  }

291 292 293 294
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

295
  template <typename T>
W
wangliu 已提交
296
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
297
                        const Scope &scope) {
W
wangliu 已提交
298 299
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
300 301 302 303 304 305
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
306
    }
307
  }
朔-望's avatar
朔-望 已提交
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

329
  template <typename T>
W
wangliu 已提交
330 331 332
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
333 334
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
335
    vector<T *> var_res;
336 337 338
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
339
    }
340 341
    return var_res;
  }
朔-望's avatar
朔-望 已提交
342 343
};

L
liuruilong 已提交
344
#ifdef CONV_OP
N
nhzlx 已提交
345
template <typename Dtype>
朔-望's avatar
朔-望 已提交
346
class ConvParam : OpParam {
N
nhzlx 已提交
347 348 349
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
350
 public:
351
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
352
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
353 354 355
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
W
wangliu 已提交
356 357 358
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
359 360
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
361

N
nhzlx 已提交
362
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
363

N
nhzlx 已提交
364
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
365

N
nhzlx 已提交
366
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
367

W
wangliu 已提交
368
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
369

W
wangliu 已提交
370
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
371

W
wangliu 已提交
372
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
373

374
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
375

朔-望's avatar
朔-望 已提交
376
 private:
N
nhzlx 已提交
377 378 379
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
380 381 382
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
383
  int groups;
朔-望's avatar
朔-望 已提交
384
};
N
nhzlx 已提交
385 386
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
L
liuruilong 已提交
387
#endif
朔-望's avatar
朔-望 已提交
388

N
nhzlx 已提交
389
template <typename Dtype>
朔-望's avatar
朔-望 已提交
390
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
391 392 393
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
394
 public:
395
  ElementwiseAddParam(const VariableNameMap &inputs,
396 397
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
398 399 400
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
401 402 403
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
404
  const GType *InputX() const { return input_x_; }
405

xiebaiyuan's avatar
xiebaiyuan 已提交
406
  const GType *InputY() const { return input_y_; }
407

xiebaiyuan's avatar
xiebaiyuan 已提交
408
  GType *Out() const { return out_; }
409 410 411

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
412
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
413 414 415
  GType *input_x_;
  GType *input_y_;
  GType *out_;
416
  int axis_;
Z
zhangyang 已提交
417 418 419
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
420
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
421 422

 public:
H
hanbuhe 已提交
423 424
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
425
#endif
朔-望's avatar
朔-望 已提交
426 427
};

428
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
429 430
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
431 432 433
#endif

#ifdef MUL_OP
N
nhzlx 已提交
434
template <typename Dtype>
朔-望's avatar
朔-望 已提交
435
class MulParam : OpParam {
N
nhzlx 已提交
436 437 438
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
439
 public:
440
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
441
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
442 443 444
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
445 446 447
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
448

xiebaiyuan's avatar
xiebaiyuan 已提交
449
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
450

xiebaiyuan's avatar
xiebaiyuan 已提交
451
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
452

xiebaiyuan's avatar
xiebaiyuan 已提交
453
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
454

455
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
456

457
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
458

朔-望's avatar
朔-望 已提交
459
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
460 461 462
  GType *input_x_;
  GType *input_y_;
  GType *out_;
463 464
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
465
};
L
liuruilong 已提交
466
#endif
朔-望's avatar
朔-望 已提交
467

L
liuruilong 已提交
468
#ifdef CONCAT_OP
N
nhzlx 已提交
469
template <typename Dtype>
朔-望's avatar
朔-望 已提交
470
class ConcatParam : public OpParam {
N
nhzlx 已提交
471 472 473
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
474
 public:
475
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
476
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
477 478
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
479 480
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
481

N
nhzlx 已提交
482
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
483

xiebaiyuan's avatar
xiebaiyuan 已提交
484
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
485

486
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
487

朔-望's avatar
朔-望 已提交
488
 private:
N
nhzlx 已提交
489
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
490
  GType *out_;
491
  int axis_;
Z
zhangyang 已提交
492 493 494 495 496 497 498 499 500
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
501
};
L
liuruilong 已提交
502
#endif
朔-望's avatar
朔-望 已提交
503

L
liuruilong 已提交
504
#ifdef LRN_OP
N
nhzlx 已提交
505
template <typename Dtype>
E
eclipsess 已提交
506
class LrnParam : public OpParam {
N
nhzlx 已提交
507 508 509
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
510
 public:
511
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
512
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
513 514 515
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
516 517 518 519
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
520
    data_format_ = GetAttr<string>("data_format", attrs);
521
  }
E
eclipsess 已提交
522

N
nhzlx 已提交
523
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
524

N
nhzlx 已提交
525
  RType *Out() const { return out_; }
E
eclipsess 已提交
526

N
nhzlx 已提交
527
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
528

529
  const int &N() const { return n_; }
E
eclipsess 已提交
530

531
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
532

533
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
534

535
  const float &K() const { return k_; }
E
eclipsess 已提交
536

W
wangliu 已提交
537
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
538

朔-望's avatar
朔-望 已提交
539
 private:
N
nhzlx 已提交
540 541 542
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
543 544 545 546
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
547
  string data_format_;
E
eclipsess 已提交
548
};
L
liuruilong 已提交
549 550 551
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
552
template <typename Dtype>
E
eclipsess 已提交
553
class BatchNormParam : OpParam {
N
nhzlx 已提交
554 555 556
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
557
 public:
558
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
559
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
560 561 562 563 564 565
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
566 567
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
568
    //    is_test_ = GetAttr<bool>("is_test", attrs);
569
  }
E
eclipsess 已提交
570

N
nhzlx 已提交
571
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
572

N
nhzlx 已提交
573
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
574

N
nhzlx 已提交
575
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
576

N
nhzlx 已提交
577
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
578

N
nhzlx 已提交
579
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
580

N
nhzlx 已提交
581
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
582

583
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
584

585
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
586

587
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
588

W
wangliu 已提交
589
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
590

朔-望's avatar
朔-望 已提交
591
 private:
N
nhzlx 已提交
592 593 594 595 596 597
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
598 599 600
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
601
  string data_format_;
E
eclipsess 已提交
602
};
L
liuruilong 已提交
603 604 605
#endif

#ifdef POOL_OP
N
nhzlx 已提交
606
template <typename Dtype>
607
class PoolParam : public OpParam {
N
nhzlx 已提交
608 609 610
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
611
 public:
612
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
613
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
614
    input_ = InputXFrom<GType>(inputs, scope);
615

N
nhzlx 已提交
616
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
617 618 619 620
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
621
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
622
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
623
  }
624

N
nhzlx 已提交
625
  const RType *Input() const { return input_; }
626

N
nhzlx 已提交
627
  RType *Output() const { return output_; }
628

W
wangliu 已提交
629
  const string &PoolingType() const { return pooling_type_; }
630

W
wangliu 已提交
631
  const vector<int> &Ksize() const { return ksize_; }
632

W
wangliu 已提交
633
  const vector<int> &Strides() const { return strides_; }
634

W
wangliu 已提交
635
  const vector<int> &Paddings() const { return paddings_; }
636

637
  bool isCeilMode() const { return ceil_mode_; }
638

Z
zhangyang 已提交
639
  bool isGlobalPooling() const { return global_pooling_; }
640

朔-望's avatar
朔-望 已提交
641
 private:
N
nhzlx 已提交
642 643
  RType *input_;
  RType *output_;
W
wangliu 已提交
644 645 646 647
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
648
  bool ceil_mode_;
649
  bool global_pooling_ = false;
Z
zhangyang 已提交
650
#ifdef PADDLE_MOBILE_FPGA
651 652

 private:
H
hanbuhe 已提交
653
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
654 655

 public:
H
hanbuhe 已提交
656 657
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
658
#endif
659
};
L
liuruilong 已提交
660 661 662
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
663
template <typename Dtype>
E
eclipsess 已提交
664
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
665 666 667
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
668 669
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
670
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
671 672 673 674
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
675 676 677 678
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
679

xiebaiyuan's avatar
xiebaiyuan 已提交
680 681 682
    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
683
    }
E
eclipsess 已提交
684 685 686 687 688 689
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
690
  const RType *Input() const { return input_; }
E
eclipsess 已提交
691

N
nhzlx 已提交
692
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
693

N
nhzlx 已提交
694
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
695

N
nhzlx 已提交
696
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
697

W
wangliu 已提交
698
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
699

W
wangliu 已提交
700
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
701

W
wangliu 已提交
702
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
703

W
wangliu 已提交
704
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
705 706 707 708 709 710 711 712 713 714 715

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

716 717 718 719
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
720
 private:
N
nhzlx 已提交
721 722 723 724
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
725 726 727 728
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
729 730 731 732 733
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
734
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
735
};
L
liuruilong 已提交
736
#endif
E
eclipsess 已提交
737

L
liuruilong 已提交
738
#ifdef BOXCODER_OP
N
nhzlx 已提交
739
template <typename Dtype>
E
eclipsess 已提交
740
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
741 742 743
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
744 745
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
746
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
747 748 749 750
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
751 752
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
753
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
754

N
nhzlx 已提交
755
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
756

N
nhzlx 已提交
757
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
758

N
nhzlx 已提交
759
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
760 761 762 763

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
764 765 766 767
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
768 769
  std::string code_type_;
};
L
liuruilong 已提交
770
#endif
W
wangliu 已提交
771

L
liuruilong 已提交
772
#ifdef SOFTMAX_OP
N
nhzlx 已提交
773
template <typename Dtype>
W
wangliu 已提交
774
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
775 776 777
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
778 779
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
780
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
781 782
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
783
  }
N
nhzlx 已提交
784 785
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
786 787

 private:
N
nhzlx 已提交
788 789
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
790 791 792 793

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
794
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
795 796 797
  fpga::BypassArgs fpga_bypass_args;

 public:
798
  RType *FloatInput() const {
H
hanbuhe 已提交
799 800 801 802 803 804
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
805
};
L
liuruilong 已提交
806
#endif
W
wangliu 已提交
807

L
liuruilong 已提交
808
#ifdef SIGMOID_OP
N
nhzlx 已提交
809
template <typename Dtype>
W
wangliu 已提交
810
class SigmoidParam : public OpParam {
N
nhzlx 已提交
811 812 813
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
814 815
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
816
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
817 818
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
819
  }
N
nhzlx 已提交
820 821
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
822 823

 private:
N
nhzlx 已提交
824 825
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
826
};
L
liuruilong 已提交
827 828 829
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
830
template <typename Dtype>
E
eclipsess 已提交
831
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
832 833 834
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
835 836 837 838
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
839 840 841
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
842 843 844 845 846 847 848 849
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
850
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
851

N
nhzlx 已提交
852
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
853

N
nhzlx 已提交
854
  RType *Out() const { return out_; }
E
eclipsess 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
869 870 871
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
872 873 874 875 876 877 878
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
879
#endif
W
wangliu 已提交
880

N
nhzlx 已提交
881
template <typename Dtype>
L
liuruilong 已提交
882
class FeedParam : public OpParam {
N
nhzlx 已提交
883 884 885
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
886 887
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
888
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
889 890
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
891
    auto var = scope->Var("batch_size");
W
wangliu 已提交
892
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
893
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
894 895
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
896
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
897

L
liuruilong 已提交
898
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
899 900
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
901
  int batch_size;
L
liuruilong 已提交
902 903
};

N
nhzlx 已提交
904
template <typename Dtype>
L
liuruilong 已提交
905
class FetchParam : public OpParam {
N
nhzlx 已提交
906 907 908
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
909 910
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
911
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
912 913
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
914
  }
N
nhzlx 已提交
915 916
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
917

L
liuruilong 已提交
918
 private:
N
nhzlx 已提交
919 920
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
921 922
};

L
liuruilong 已提交
923
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
924
template <typename Dtype>
E
eclipsess 已提交
925
class TransposeParam : public OpParam {
N
nhzlx 已提交
926 927 928
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
929 930 931
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
932 933
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
934 935 936
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
937
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
938

N
nhzlx 已提交
939
  RType *Out() const { return out_; }
E
eclipsess 已提交
940 941 942 943

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
944 945
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
946 947
  vector<int> axis_;
};
L
liuruilong 已提交
948
#endif
E
eclipsess 已提交
949

xiebaiyuan's avatar
xiebaiyuan 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1016
#ifdef RESHAPE_OP
N
nhzlx 已提交
1017
template <typename Dtype>
E
eclipsess 已提交
1018
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1019 1020 1021
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1022 1023 1024
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1025 1026 1027
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1028
    shape_ = GetAttr<vector<int>>("shape", attrs);
1029 1030 1031 1032 1033 1034 1035

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1036 1037
  }

N
nhzlx 已提交
1038
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1039

N
nhzlx 已提交
1040
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1041

N
nhzlx 已提交
1042
  RType *Out() const { return out_; }
E
eclipsess 已提交
1043 1044 1045 1046 1047 1048

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1049 1050 1051
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1052 1053 1054
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1055
#endif
E
eclipsess 已提交
1056

T
Tian 已提交
1057
#ifdef SCALE_OP
N
nhzlx 已提交
1058
template <typename Dtype>
I
itminner 已提交
1059
class ScaleParam : public OpParam {
N
nhzlx 已提交
1060 1061 1062
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1063 1064 1065
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1066 1067 1068
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1069 1070 1071 1072 1073 1074
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1075
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1076

N
nhzlx 已提交
1077
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1078

N
nhzlx 已提交
1079
  RType *Out() const { return out_; }
I
itminner 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1090 1091 1092
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1093 1094 1095 1096 1097
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1098 1099 1100
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1101
template <typename Dtype>
I
itminner 已提交
1102
class SliceParam : public OpParam {
N
nhzlx 已提交
1103 1104 1105
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1106 1107 1108
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1109 1110 1111
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1112 1113 1114 1115 1116
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1117
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1118

N
nhzlx 已提交
1119
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1120

N
nhzlx 已提交
1121
  RType *Out() const { return out_; }
I
itminner 已提交
1122 1123 1124 1125 1126 1127 1128 1129

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1130 1131 1132
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1133 1134 1135 1136
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1137 1138 1139
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1140
template <typename Dtype>
T
Tian 已提交
1141
class ResizeParam : public OpParam {
N
nhzlx 已提交
1142 1143 1144
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1145 1146 1147
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1148 1149 1150
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1151 1152 1153 1154 1155 1156
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1157

N
nhzlx 已提交
1158
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1159

N
nhzlx 已提交
1160
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1161

N
nhzlx 已提交
1162
  RType *Out() const { return out_; }
T
Tian 已提交
1163

I
itminner 已提交
1164
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1165

I
itminner 已提交
1166
  const int &Height() const { return height_; }
T
Tian 已提交
1167

I
itminner 已提交
1168
  const int &Width() const { return width_; }
T
Tian 已提交
1169

I
itminner 已提交
1170
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1171

I
itminner 已提交
1172
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1173

I
itminner 已提交
1174
 private:
N
nhzlx 已提交
1175 1176 1177
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1178 1179 1180 1181 1182
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1183 1184 1185
};
#endif

L
liuruilong 已提交
1186
#ifdef RELU_OP
L
liuruilong 已提交
1187 1188 1189
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1190
template <typename Dtype>
E
eclipsess 已提交
1191
class ReluParam : public OpParam {
N
nhzlx 已提交
1192 1193 1194
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1195 1196 1197
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1198 1199
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1200 1201
  }

N
nhzlx 已提交
1202
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1203

N
nhzlx 已提交
1204
  RType *Out() const { return out_; }
E
eclipsess 已提交
1205 1206

 private:
N
nhzlx 已提交
1207 1208
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1209
};
L
liuruilong 已提交
1210
#endif
E
eclipsess 已提交
1211

T
Tian 已提交
1212
#ifdef PRELU_OP
N
nhzlx 已提交
1213
template <typename Dtype>
T
Tian 已提交
1214
class PReluParam : public OpParam {
N
nhzlx 已提交
1215 1216 1217
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1218 1219 1220
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1221
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1222
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1223
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1224
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1225
    out_ = OutFrom<GType>(outputs, scope);
1226 1227
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1228
  }
N
nhzlx 已提交
1229
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1230
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1231
  RType *Out() const { return out_; }
1232
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1233

I
itminner 已提交
1234
 private:
N
nhzlx 已提交
1235 1236
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1237
  RType *alpha_;
1238
  std::string mode_;
T
Tian 已提交
1239 1240 1241
};
#endif

N
nhzlx 已提交
1242
template <typename Dtype>
L
liuruilong 已提交
1243
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1244 1245 1246
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1247
 public:
L
liuruilong 已提交
1248
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1249
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1250 1251 1252 1253
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1254 1255 1256 1257
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1258
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1259

N
nhzlx 已提交
1260
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1261

N
nhzlx 已提交
1262
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1263

xiebaiyuan's avatar
xiebaiyuan 已提交
1264
  GType *Out() const { return out_; }
E
eclipsess 已提交
1265 1266 1267 1268 1269 1270 1271 1272

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1273
  GType *input_x_;
N
nhzlx 已提交
1274 1275
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1276
  GType *out_;
E
eclipsess 已提交
1277 1278 1279
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1280 1281 1282
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1283
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1284 1285

 public:
Z
zhangyang 已提交
1286 1287
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1288
#endif
E
eclipsess 已提交
1289
};
1290 1291

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1292 1293
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1294
#endif
E
eclipsess 已提交
1295

N
nhzlx 已提交
1296
template <typename Dtype>
L
liuruilong 已提交
1297
class FusionConvAddParam : public OpParam {
N
nhzlx 已提交
1298 1299 1300
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1301
 public:
L
liuruilong 已提交
1302
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1303 1304
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1305
    bias_ = InputYFrom<GType>(inputs, scope);
W
wangliu 已提交
1306
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1307 1308 1309
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1310 1311 1312 1313 1314
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
N
nhzlx 已提交
1315
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1316 1317 1318

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1319
  const RType *Input() const { return input_; }
W
wangliu 已提交
1320

N
nhzlx 已提交
1321
  const RType *Filter() const { return filter_; }
W
wangliu 已提交
1322

N
nhzlx 已提交
1323
  RType *Output() const { return output_; }
W
wangliu 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1333
 protected:
N
nhzlx 已提交
1334
  RType *bias_;
W
wangliu 已提交
1335
  int axis_;
N
nhzlx 已提交
1336 1337 1338
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
1339 1340 1341 1342
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1343 1344 1345
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1346
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1347 1348

 public:
Z
zhangyang 已提交
1349 1350
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1351
#endif
W
wangliu 已提交
1352 1353
};

N
nhzlx 已提交
1354 1355
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1356

Z
zhangyang 已提交
1357
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1358 1359
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1360
 public:
L
liuruilong 已提交
1361
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1362 1363
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1364
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1365 1366 1367
};
#endif

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
#ifdef FUSION_CONVADDPRELU_OP
template <typename DeviceType>
class FusionConvAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1426
  fpga::WrapperConvArgs fpga_conv_args;
1427 1428

 public:
Z
zhangyang 已提交
1429 1430
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
template <typename DeviceType>
class FusionConvAddAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
                             const AttributeMap &attrs, const Scope &scope) {
    bias1_ = InputYFrom1<GType>(inputs, scope);
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    keyOutput_ = getkey("addOut", inputs, 0);
    keyX1_ = getkey("addX", inputs, 1);
    keyY1_ = getkey("Y", inputs, 1);
    if (keyX1_ == keyOutput_) {
      bias1_ = InputYFrom1<GType>(inputs, scope);
    } else if (keyY1_ == keyOutput_) {
      bias1_ = InputXFrom1<GType>(inputs, scope);
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1508
  fpga::WrapperConvArgs fpga_conv_args;
1509 1510

 public:
Z
zhangyang 已提交
1511 1512
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1513 1514 1515 1516
#endif
};
#endif

E
eclipsess 已提交
1517
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1518
template <typename Dtype>
E
eclipsess 已提交
1519
class FusionConvAddBNReluParam : public OpParam {
N
nhzlx 已提交
1520 1521 1522
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1523 1524 1525 1526
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1527
    bias_ = InputYFrom<GType>(inputs, scope);
E
eclipsess 已提交
1528
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1529 1530 1531
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1532 1533 1534 1535
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1536 1537 1538 1539
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1540 1541
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1542
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1543
  }
N
nhzlx 已提交
1544
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1545 1546 1547

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1548
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1549

N
nhzlx 已提交
1550
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1551

N
nhzlx 已提交
1552
  RType *Output() const { return output_; }
E
eclipsess 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1562
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1563

N
nhzlx 已提交
1564
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1565

N
nhzlx 已提交
1566
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1567

N
nhzlx 已提交
1568
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1569 1570 1571 1572 1573 1574 1575

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1576
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1577

N
nhzlx 已提交
1578
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1579

N
nhzlx 已提交
1580
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1581

N
nhzlx 已提交
1582
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1583 1584

 protected:
N
nhzlx 已提交
1585
  RType *bias_;
E
eclipsess 已提交
1586
  int axis_;
N
nhzlx 已提交
1587 1588 1589
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1590 1591 1592 1593
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1594 1595 1596 1597
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1598 1599 1600
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1601 1602
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1603 1604 1605
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1606
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1607 1608

 public:
Z
zhangyang 已提交
1609 1610
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
class FusionConvBNAddReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    keyBNY_ = getkey("BNY", inputs, 0);
    keyX_ = getkey("X", inputs, 0);
    keyY_ = getkey("Y", inputs, 0);
    if (keyX_ == keyBNY_) {
      bias_ = InputYFrom<GType>(inputs, scope);
    } else if (keyY_ == keyBNY_) {
      bias_ = InputXFrom<GType>(inputs, scope);
    }
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

  const RType *Filter() const { return filter_; }

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1715
  fpga::WrapperConvArgs fpga_conv_args;
1716 1717

 public:
Z
zhangyang 已提交
1718 1719
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1720
#endif
E
eclipsess 已提交
1721
};
1722
#endif
E
eclipsess 已提交
1723

Z
zhangyang 已提交
1724
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1725
template <typename Dtype>
Z
zhangyang 已提交
1726
class FusionConvBNParam : public OpParam {
N
nhzlx 已提交
1727 1728 1729
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1730 1731 1732 1733
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
N
nhzlx 已提交
1734 1735 1736
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
Z
zhangyang 已提交
1737 1738 1739 1740
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1741 1742 1743 1744
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
Z
zhangyang 已提交
1745 1746 1747 1748 1749
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1750
  const RType *Input() const { return input_; }
Z
zhangyang 已提交
1751

N
nhzlx 已提交
1752
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1753

N
nhzlx 已提交
1754
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1764
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1765

N
nhzlx 已提交
1766
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1767

N
nhzlx 已提交
1768
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1769

N
nhzlx 已提交
1770
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1771 1772 1773 1774 1775 1776 1777

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1778
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1779

N
nhzlx 已提交
1780
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1781

N
nhzlx 已提交
1782
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1783

N
nhzlx 已提交
1784
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1785 1786

 protected:
N
nhzlx 已提交
1787 1788 1789
  RType *input_;
  RType *output_y_;
  RType *filter_;
Z
zhangyang 已提交
1790 1791 1792 1793
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1794 1795 1796 1797
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1798 1799 1800
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1801 1802
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1803 1804 1805
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1806
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1807 1808

 public:
Z
zhangyang 已提交
1809 1810
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1811 1812 1813 1814
#endif
};
#endif

1815
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1816
template <typename Dtype>
1817
class FusionConvAddBNParam : public OpParam {
N
nhzlx 已提交
1818 1819 1820
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1821 1822 1823 1824
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1825
    bias_ = InputYFrom<GType>(inputs, scope);
1826
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1827 1828 1829
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
1830 1831 1832 1833
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1834 1835 1836 1837
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1838 1839 1840 1841
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
N
nhzlx 已提交
1842
  RType *Bias() const { return bias_; }
1843 1844 1845

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1846
  const RType *Input() const { return input_; }
1847

N
nhzlx 已提交
1848
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1849

N
nhzlx 已提交
1850
  RType *Output() const { return output_y_; }
1851 1852 1853 1854 1855 1856 1857 1858 1859

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1860
  const RType *InputBias() const { return input_bias_; }
1861

N
nhzlx 已提交
1862
  const RType *InputMean() const { return input_mean_; }
1863

N
nhzlx 已提交
1864
  const RType *InputScale() const { return input_scale_; }
1865

N
nhzlx 已提交
1866
  const RType *InputVariance() const { return input_variance_; }
1867 1868 1869 1870 1871 1872 1873

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1874
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1875

N
nhzlx 已提交
1876
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1877

N
nhzlx 已提交
1878
  const RType *NewScale() const { return new_scale_; }
1879

N
nhzlx 已提交
1880
  const RType *NewBias() const { return new_bias_; }
1881 1882

 protected:
N
nhzlx 已提交
1883
  RType *bias_;
1884
  int axis_;
N
nhzlx 已提交
1885 1886 1887
  RType *input_;
  RType *output_y_;
  RType *filter_;
1888 1889 1890 1891
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1892 1893 1894 1895
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1896 1897 1898
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1899 1900
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1901 1902 1903
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1904
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1905 1906

 public:
Z
zhangyang 已提交
1907 1908
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1909
#endif
1910
};
E
eclipsess 已提交
1911
#endif
Y
Yao,kun 已提交
1912

E
eclipsess 已提交
1913
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1914
template <typename Dtype>
E
eclipsess 已提交
1915
class FusionDWConvBNReluParam : public OpParam {
N
nhzlx 已提交
1916 1917 1918
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1919 1920 1921 1922
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1923 1924 1925
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1926 1927 1928 1929
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1930 1931 1932 1933
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1934 1935
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1936
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1937 1938
  }

N
nhzlx 已提交
1939
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1940

N
nhzlx 已提交
1941
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1942

N
nhzlx 已提交
1943
  RType *Output() const { return output_; }
E
eclipsess 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1953
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1954

N
nhzlx 已提交
1955
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1956

N
nhzlx 已提交
1957
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1958

N
nhzlx 已提交
1959
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1960 1961 1962 1963 1964 1965 1966

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1967
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1968

N
nhzlx 已提交
1969
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1970

N
nhzlx 已提交
1971
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1972

N
nhzlx 已提交
1973
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1974 1975

 protected:
N
nhzlx 已提交
1976 1977 1978
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1979 1980 1981 1982
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1983 1984 1985 1986
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1987 1988 1989
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1990 1991
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1992 1993 1994 1995
};

#endif

1996
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1997
template <typename Dtype>
1998
class FusionConvBNReluParam : public OpParam {
N
nhzlx 已提交
1999 2000 2001
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2002 2003 2004 2005
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2006 2007 2008
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
2009 2010 2011 2012 2013

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
2014 2015 2016 2017
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
2018 2019 2020 2021 2022
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
2023
  const RType *Input() const { return input_; }
2024

N
nhzlx 已提交
2025
  const RType *Filter() const { return filter_; }
2026

N
nhzlx 已提交
2027
  RType *Output() const { return output_; }
2028 2029 2030 2031 2032 2033 2034 2035 2036

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
2037
  const RType *InputBias() const { return input_bias_; }
2038

N
nhzlx 已提交
2039
  const RType *InputMean() const { return input_mean_; }
2040

N
nhzlx 已提交
2041
  const RType *InputScale() const { return input_scale_; }
2042

N
nhzlx 已提交
2043
  const RType *InputVariance() const { return input_variance_; }
2044 2045 2046 2047 2048 2049 2050

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2051
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2052

N
nhzlx 已提交
2053
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2054

N
nhzlx 已提交
2055
  const RType *NewScale() const { return new_scale_; }
2056

N
nhzlx 已提交
2057
  const RType *NewBias() const { return new_bias_; }
2058 2059

 protected:
N
nhzlx 已提交
2060 2061 2062
  RType *input_;
  RType *output_;
  RType *filter_;
2063 2064 2065 2066
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
2067 2068 2069 2070
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2071 2072 2073
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2074 2075
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2076 2077 2078
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2079
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
2080 2081

 public:
Z
zhangyang 已提交
2082 2083
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2084
#endif
2085 2086 2087
};
#endif

Y
Yao,kun 已提交
2088
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2089
template <typename Dtype>
Y
Yao,kun 已提交
2090
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2091 2092 2093
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2094 2095 2096 2097
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2098 2099
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2100 2101 2102 2103 2104
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2105
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2106

N
nhzlx 已提交
2107
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2108 2109 2110 2111 2112 2113 2114 2115

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2116 2117
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2118 2119 2120 2121
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2122
#endif
Y
Yao,kun 已提交
2123

2124
#ifdef DROPOUT_OP
N
nhzlx 已提交
2125
template <typename Dtype>
Y
Yao,kun 已提交
2126
class DropoutParam : public OpParam {
N
nhzlx 已提交
2127 2128 2129
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2130 2131 2132
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2133 2134
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2135 2136

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2137 2138
  }

N
nhzlx 已提交
2139
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2140

N
nhzlx 已提交
2141
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2142

Y
yangfei 已提交
2143 2144
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2145
 private:
N
nhzlx 已提交
2146 2147
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2148
  float dropout_prob_;
Y
Yao,kun 已提交
2149
};
2150
#endif
Y
Yao,kun 已提交
2151

L
liuruilong 已提交
2152
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
2153
template <typename Dtype>
L
liuruilong 已提交
2154
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2155 2156 2157
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2158 2159 2160 2161
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2162 2163 2164
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2165 2166 2167 2168 2169 2170
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2171
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2172

N
nhzlx 已提交
2173
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2174

N
nhzlx 已提交
2175
  RType *Output() const { return output_; }
L
liuruilong 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2186 2187 2188
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2189 2190 2191 2192 2193 2194 2195
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2267
    axis = GetAttr<int>("axis", attrs);
2268 2269 2270
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2271
  const int &Axis() const { return axis; }
2272 2273 2274 2275

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2276
  int axis;
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2290
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2291
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2292 2293 2294 2295 2296 2297
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2298 2299
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2300 2301 2302 2303 2304
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2305 2306 2307

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2308
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2309
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2310 2311 2312
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2329 2330
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2331 2332
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2333
  const RType *InputOutPutSize() const { return input_outsize_; }
2334
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2335 2336
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2337 2338 2339 2340 2341

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2342 2343
  int out_h_;
  int out_w_;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2359
  const RType *Input() const { return input_; }
2360 2361 2362 2363 2364 2365 2366 2367
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2368 2369
}  // namespace operators
}  // namespace paddle_mobile