hugetlb.c 112.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66 67 68
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
234 235 236 237 238 239 240
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

241 242
/*
 * Add the huge page range represented by [f, t) to the reserve
243 244 245 246 247 248 249 250
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
251 252 253
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
254
 */
255
static long region_add(struct resv_map *resv, long f, long t)
256
{
257
	struct list_head *head = &resv->regions;
258
	struct file_region *rg, *nrg, *trg;
259
	long add = 0;
260

261
	spin_lock(&resv->lock);
262 263 264 265 266
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
307 308 309 310 311
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
312 313 314 315
			list_del(&rg->link);
			kfree(rg);
		}
	}
316 317

	add += (nrg->from - f);		/* Added to beginning of region */
318
	nrg->from = f;
319
	add += t - nrg->to;		/* Added to end of region */
320
	nrg->to = t;
321

322 323
out_locked:
	resv->adds_in_progress--;
324
	spin_unlock(&resv->lock);
325 326
	VM_BUG_ON(add < 0);
	return add;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
342 343 344 345 346 347 348 349
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
350
 */
351
static long region_chg(struct resv_map *resv, long f, long t)
352
{
353
	struct list_head *head = &resv->regions;
354
	struct file_region *rg, *nrg = NULL;
355 356
	long chg = 0;

357 358
retry:
	spin_lock(&resv->lock);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
		if (!trg)
			return -ENOMEM;

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

384 385 386 387 388 389 390 391 392
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
393
		if (!nrg) {
394
			resv->adds_in_progress--;
395 396 397 398 399 400 401 402 403 404
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
405

406 407 408
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
409 410 411 412 413 414 415 416 417 418 419 420
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
421
			goto out;
422

L
Lucas De Marchi 已提交
423
		/* We overlap with this area, if it extends further than
424 425 426 427 428 429 430 431
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
432 433 434 435 436 437 438 439

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
440 441 442
	return chg;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

462
/*
463 464 465 466 467 468 469 470 471 472 473 474
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
475
 */
476
static long region_del(struct resv_map *resv, long f, long t)
477
{
478
	struct list_head *head = &resv->regions;
479
	struct file_region *rg, *trg;
480 481
	struct file_region *nrg = NULL;
	long del = 0;
482

483
retry:
484
	spin_lock(&resv->lock);
485 486 487 488
	list_for_each_entry_safe(rg, trg, head, link) {
		if (rg->to <= f)
			continue;
		if (rg->from >= t)
489 490
			break;

491 492 493 494 495 496 497 498 499 500 501 502 503
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
525
			break;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
542
	}
543 544

	spin_unlock(&resv->lock);
545 546
	kfree(nrg);
	return del;
547 548
}

549 550 551 552
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
553
static long region_count(struct resv_map *resv, long f, long t)
554
{
555
	struct list_head *head = &resv->regions;
556 557 558
	struct file_region *rg;
	long chg = 0;

559
	spin_lock(&resv->lock);
560 561
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
562 563
		long seg_from;
		long seg_to;
564 565 566 567 568 569 570 571 572 573 574

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
575
	spin_unlock(&resv->lock);
576 577 578 579

	return chg;
}

580 581 582 583
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
584 585
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
586
{
587 588
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
589 590
}

591 592 593 594 595 596
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

597 598 599 600 601 602 603 604 605 606 607 608 609
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

610
	return 1UL << huge_page_shift(hstate);
611
}
612
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
613

614 615 616 617 618 619 620 621 622 623 624 625 626
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

627 628 629 630 631 632 633
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
634
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
635

636 637 638 639 640 641 642 643 644
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
645 646 647 648 649 650 651 652 653
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
654
 */
655 656 657 658 659 660 661 662 663 664 665
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

666
struct resv_map *resv_map_alloc(void)
667 668
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
669 670 671 672 673
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
674
		return NULL;
675
	}
676 677

	kref_init(&resv_map->refs);
678
	spin_lock_init(&resv_map->lock);
679 680
	INIT_LIST_HEAD(&resv_map->regions);

681 682 683 684 685 686
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

687 688 689
	return resv_map;
}

690
void resv_map_release(struct kref *ref)
691 692
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
693 694
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
695 696

	/* Clear out any active regions before we release the map. */
697
	region_del(resv_map, 0, LONG_MAX);
698 699 700 701 702 703 704 705 706

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

707 708 709
	kfree(resv_map);
}

710 711 712 713 714
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

715
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
716
{
717
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
718 719 720 721 722 723 724
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
725 726
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
727
	}
728 729
}

730
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
731
{
732 733
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
734

735 736
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
737 738 739 740
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
741 742
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
743 744

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
745 746 747 748
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
749
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750 751

	return (get_vma_private_data(vma) & flag) != 0;
752 753
}

754
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
755 756
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
757
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758
	if (!(vma->vm_flags & VM_MAYSHARE))
759 760 761 762
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
763
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
764
{
765 766 767 768 769 770 771 772 773 774 775
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
776
			return true;
777
		else
778
			return false;
779
	}
780 781

	/* Shared mappings always use reserves */
782
	if (vma->vm_flags & VM_MAYSHARE)
783
		return true;
784 785 786 787 788

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
789
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
790
		return true;
791

792
	return false;
793 794
}

795
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
796 797
{
	int nid = page_to_nid(page);
798
	list_move(&page->lru, &h->hugepage_freelists[nid]);
799 800
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
801 802
}

803 804 805 806
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

807 808 809 810 811 812 813 814
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
815
		return NULL;
816
	list_move(&page->lru, &h->hugepage_activelist);
817
	set_page_refcounted(page);
818 819 820 821 822
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

823 824 825
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
826
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
827 828 829 830 831
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

832 833
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
834 835
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
836
{
837
	struct page *page = NULL;
838
	struct mempolicy *mpol;
839
	nodemask_t *nodemask;
840
	struct zonelist *zonelist;
841 842
	struct zone *zone;
	struct zoneref *z;
843
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
844

845 846 847 848 849
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
850
	if (!vma_has_reserves(vma, chg) &&
851
			h->free_huge_pages - h->resv_huge_pages == 0)
852
		goto err;
853

854
	/* If reserves cannot be used, ensure enough pages are in the pool */
855
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
856
		goto err;
857

858
retry_cpuset:
859
	cpuset_mems_cookie = read_mems_allowed_begin();
860
	zonelist = huge_zonelist(vma, address,
861
					htlb_alloc_mask(h), &mpol, &nodemask);
862

863 864
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
865
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
866 867
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
868 869 870 871 872
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

873
				SetPagePrivate(page);
874
				h->resv_huge_pages--;
875 876
				break;
			}
A
Andrew Morton 已提交
877
		}
L
Linus Torvalds 已提交
878
	}
879

880
	mpol_cond_put(mpol);
881
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
882
		goto retry_cpuset;
L
Linus Torvalds 已提交
883
	return page;
884 885 886

err:
	return NULL;
L
Linus Torvalds 已提交
887 888
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1100
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1101 1102
{
	int i;
1103

1104 1105
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1106

1107 1108 1109
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1110 1111
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1112 1113
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1114
	}
1115
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
1116 1117
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
1118 1119 1120 1121 1122 1123
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1162
void free_huge_page(struct page *page)
1163
{
1164 1165 1166 1167
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1168
	struct hstate *h = page_hstate(page);
1169
	int nid = page_to_nid(page);
1170 1171
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1172
	bool restore_reserve;
1173

1174
	set_page_private(page, 0);
1175
	page->mapping = NULL;
1176
	BUG_ON(page_count(page));
1177
	BUG_ON(page_mapcount(page));
1178
	restore_reserve = PagePrivate(page);
1179
	ClearPagePrivate(page);
1180

1181 1182 1183 1184 1185 1186 1187 1188
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1189
	spin_lock(&hugetlb_lock);
1190
	clear_page_huge_active(page);
1191 1192
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1193 1194 1195
	if (restore_reserve)
		h->resv_huge_pages++;

1196
	if (h->surplus_huge_pages_node[nid]) {
1197 1198
		/* remove the page from active list */
		list_del(&page->lru);
1199 1200 1201
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1202
	} else {
1203
		arch_clear_hugepage_flags(page);
1204
		enqueue_huge_page(h, page);
1205
	}
1206 1207 1208
	spin_unlock(&hugetlb_lock);
}

1209
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1210
{
1211
	INIT_LIST_HEAD(&page->lru);
1212 1213
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
1214
	set_hugetlb_cgroup(page, NULL);
1215 1216
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1217 1218 1219 1220
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1221
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1222 1223 1224 1225 1226 1227 1228 1229
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1230
	__ClearPageReserved(page);
1231
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1245
		set_page_count(p, 0);
1246
		p->first_page = page;
1247 1248 1249
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1250 1251 1252
	}
}

A
Andrew Morton 已提交
1253 1254 1255 1256 1257
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1258 1259 1260 1261 1262 1263
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1264
	return get_compound_page_dtor(page) == free_huge_page;
1265
}
1266 1267
EXPORT_SYMBOL_GPL(PageHuge);

1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1277
	return get_compound_page_dtor(page_head) == free_huge_page;
1278 1279
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1297
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1298 1299
{
	struct page *page;
1300

1301
	page = alloc_pages_exact_node(nid,
1302
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1303
						__GFP_REPEAT|__GFP_NOWARN,
1304
		huge_page_order(h));
L
Linus Torvalds 已提交
1305
	if (page) {
1306
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1307
	}
1308 1309 1310 1311

	return page;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1334 1335 1336 1337 1338 1339
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1340 1341
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1342
{
1343
	int nr_nodes, node;
1344 1345
	int ret = 0;

1346
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1347 1348 1349 1350
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1351 1352
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1353
			struct page *page =
1354
				list_entry(h->hugepage_freelists[node].next,
1355 1356 1357
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1358
			h->free_huge_pages_node[node]--;
1359 1360
			if (acct_surplus) {
				h->surplus_huge_pages--;
1361
				h->surplus_huge_pages_node[node]--;
1362
			}
1363 1364
			update_and_free_page(h, page);
			ret = 1;
1365
			break;
1366
		}
1367
	}
1368 1369 1370 1371

	return ret;
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1399 1400 1401
	if (!hugepages_supported())
		return;

1402 1403
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1404 1405 1406
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1407
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1408 1409
{
	struct page *page;
1410
	unsigned int r_nid;
1411

1412
	if (hstate_is_gigantic(h))
1413 1414
		return NULL;

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1439
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1440 1441 1442
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1443 1444
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1445 1446 1447
	}
	spin_unlock(&hugetlb_lock);

1448
	if (nid == NUMA_NO_NODE)
1449
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1450 1451 1452 1453
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1454
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1455
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1456 1457

	spin_lock(&hugetlb_lock);
1458
	if (page) {
1459
		INIT_LIST_HEAD(&page->lru);
1460
		r_nid = page_to_nid(page);
1461
		set_compound_page_dtor(page, free_huge_page);
1462
		set_hugetlb_cgroup(page, NULL);
1463 1464 1465
		/*
		 * We incremented the global counters already
		 */
1466 1467
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1468
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1469
	} else {
1470 1471
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1472
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1473
	}
1474
	spin_unlock(&hugetlb_lock);
1475 1476 1477 1478

	return page;
}

1479 1480 1481 1482 1483 1484 1485
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1486
	struct page *page = NULL;
1487 1488

	spin_lock(&hugetlb_lock);
1489 1490
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1491 1492
	spin_unlock(&hugetlb_lock);

1493
	if (!page)
1494 1495 1496 1497 1498
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1499
/*
L
Lucas De Marchi 已提交
1500
 * Increase the hugetlb pool such that it can accommodate a reservation
1501 1502
 * of size 'delta'.
 */
1503
static int gather_surplus_pages(struct hstate *h, int delta)
1504 1505 1506 1507 1508
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1509
	bool alloc_ok = true;
1510

1511
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1512
	if (needed <= 0) {
1513
		h->resv_huge_pages += delta;
1514
		return 0;
1515
	}
1516 1517 1518 1519 1520 1521 1522 1523

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1524
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1525 1526 1527 1528
		if (!page) {
			alloc_ok = false;
			break;
		}
1529 1530
		list_add(&page->lru, &surplus_list);
	}
1531
	allocated += i;
1532 1533 1534 1535 1536 1537

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1538 1539
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1550 1551
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1552
	 * needed to accommodate the reservation.  Add the appropriate number
1553
	 * of pages to the hugetlb pool and free the extras back to the buddy
1554 1555 1556
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1557 1558
	 */
	needed += allocated;
1559
	h->resv_huge_pages += delta;
1560
	ret = 0;
1561

1562
	/* Free the needed pages to the hugetlb pool */
1563
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1564 1565
		if ((--needed) < 0)
			break;
1566 1567 1568 1569 1570
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1571
		VM_BUG_ON_PAGE(page_count(page), page);
1572
		enqueue_huge_page(h, page);
1573
	}
1574
free:
1575
	spin_unlock(&hugetlb_lock);
1576 1577

	/* Free unnecessary surplus pages to the buddy allocator */
1578 1579
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1580
	spin_lock(&hugetlb_lock);
1581 1582 1583 1584 1585 1586 1587 1588

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1589
 * Called with hugetlb_lock held.
1590
 */
1591 1592
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1593 1594 1595
{
	unsigned long nr_pages;

1596
	/* Uncommit the reservation */
1597
	h->resv_huge_pages -= unused_resv_pages;
1598

1599
	/* Cannot return gigantic pages currently */
1600
	if (hstate_is_gigantic(h))
1601 1602
		return;

1603
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1604

1605 1606
	/*
	 * We want to release as many surplus pages as possible, spread
1607 1608 1609 1610 1611
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1612 1613
	 */
	while (nr_pages--) {
1614
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1615
			break;
1616
		cond_resched_lock(&hugetlb_lock);
1617 1618 1619
	}
}

1620

1621
/*
1622
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1623
 * are used by the huge page allocation routines to manage reservations.
1624 1625 1626 1627 1628 1629
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1630 1631 1632
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1633 1634 1635 1636 1637 1638
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1639
 */
1640 1641 1642
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1643
	VMA_END_RESV,
1644
};
1645 1646
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1647
				enum vma_resv_mode mode)
1648
{
1649 1650
	struct resv_map *resv;
	pgoff_t idx;
1651
	long ret;
1652

1653 1654
	resv = vma_resv_map(vma);
	if (!resv)
1655
		return 1;
1656

1657
	idx = vma_hugecache_offset(h, vma, addr);
1658 1659
	switch (mode) {
	case VMA_NEEDS_RESV:
1660
		ret = region_chg(resv, idx, idx + 1);
1661 1662 1663 1664
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1665
	case VMA_END_RESV:
1666 1667 1668 1669 1670 1671
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1672

1673
	if (vma->vm_flags & VM_MAYSHARE)
1674
		return ret;
1675
	else
1676
		return ret < 0 ? ret : 0;
1677
}
1678 1679

static long vma_needs_reservation(struct hstate *h,
1680
			struct vm_area_struct *vma, unsigned long addr)
1681
{
1682
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1683
}
1684

1685 1686 1687
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1688 1689 1690
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1691
static void vma_end_reservation(struct hstate *h,
1692 1693
			struct vm_area_struct *vma, unsigned long addr)
{
1694
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1695 1696
}

1697
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1698
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1699
{
1700
	struct hugepage_subpool *spool = subpool_vma(vma);
1701
	struct hstate *h = hstate_vma(vma);
1702
	struct page *page;
1703
	long chg, commit;
1704 1705
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1706

1707
	idx = hstate_index(h);
1708
	/*
1709 1710 1711 1712 1713 1714
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1715
	 */
1716
	chg = vma_needs_reservation(h, vma, addr);
1717
	if (chg < 0)
1718
		return ERR_PTR(-ENOMEM);
1719
	if (chg || avoid_reserve)
1720
		if (hugepage_subpool_get_pages(spool, 1) < 0) {
1721
			vma_end_reservation(h, vma, addr);
1722
			return ERR_PTR(-ENOSPC);
1723
		}
L
Linus Torvalds 已提交
1724

1725
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1726 1727 1728
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1729
	spin_lock(&hugetlb_lock);
1730
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1731
	if (!page) {
1732
		spin_unlock(&hugetlb_lock);
1733
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1734 1735 1736
		if (!page)
			goto out_uncharge_cgroup;

1737 1738
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1739
		/* Fall through */
K
Ken Chen 已提交
1740
	}
1741 1742
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1743

1744
	set_page_private(page, (unsigned long)spool);
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(chg > commit)) {
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1762
	return page;
1763 1764 1765 1766 1767 1768

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
1769
	vma_end_reservation(h, vma, addr);
1770
	return ERR_PTR(-ENOSPC);
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1787
int __weak alloc_bootmem_huge_page(struct hstate *h)
1788 1789
{
	struct huge_bootmem_page *m;
1790
	int nr_nodes, node;
1791

1792
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1793 1794
		void *addr;

1795 1796 1797
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1798 1799 1800 1801 1802 1803 1804
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1805
			goto found;
1806 1807 1808 1809 1810
		}
	}
	return 0;

found:
1811
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1812 1813 1814 1815 1816 1817
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1818
static void __init prep_compound_huge_page(struct page *page, int order)
1819 1820 1821 1822 1823 1824 1825
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1826 1827 1828 1829 1830 1831 1832
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1833 1834 1835 1836
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1837 1838
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1839 1840 1841
#else
		page = virt_to_page(m);
#endif
1842
		WARN_ON(page_count(page) != 1);
1843
		prep_compound_huge_page(page, h->order);
1844
		WARN_ON(PageReserved(page));
1845
		prep_new_huge_page(h, page, page_to_nid(page));
1846 1847 1848 1849 1850 1851
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
1852
		if (hstate_is_gigantic(h))
1853
			adjust_managed_page_count(page, 1 << h->order);
1854 1855 1856
	}
}

1857
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1858 1859
{
	unsigned long i;
1860

1861
	for (i = 0; i < h->max_huge_pages; ++i) {
1862
		if (hstate_is_gigantic(h)) {
1863 1864
			if (!alloc_bootmem_huge_page(h))
				break;
1865
		} else if (!alloc_fresh_huge_page(h,
1866
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1867 1868
			break;
	}
1869
	h->max_huge_pages = i;
1870 1871 1872 1873 1874 1875 1876
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1877 1878 1879
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

1880
		/* oversize hugepages were init'ed in early boot */
1881
		if (!hstate_is_gigantic(h))
1882
			hugetlb_hstate_alloc_pages(h);
1883
	}
1884
	VM_BUG_ON(minimum_order == UINT_MAX);
1885 1886
}

A
Andi Kleen 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1898 1899 1900 1901 1902
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1903
		char buf[32];
1904
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1905 1906
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1907 1908 1909
	}
}

L
Linus Torvalds 已提交
1910
#ifdef CONFIG_HIGHMEM
1911 1912
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1913
{
1914 1915
	int i;

1916
	if (hstate_is_gigantic(h))
1917 1918
		return;

1919
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1920
		struct page *page, *next;
1921 1922 1923
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1924
				return;
L
Linus Torvalds 已提交
1925 1926 1927
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1928
			update_and_free_page(h, page);
1929 1930
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1931 1932 1933 1934
		}
	}
}
#else
1935 1936
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1937 1938 1939 1940
{
}
#endif

1941 1942 1943 1944 1945
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1946 1947
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1948
{
1949
	int nr_nodes, node;
1950 1951 1952

	VM_BUG_ON(delta != -1 && delta != 1);

1953 1954 1955 1956
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1957
		}
1958 1959 1960 1961 1962
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1963
		}
1964 1965
	}
	return 0;
1966

1967 1968 1969 1970
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1971 1972
}

1973
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1974 1975
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1976
{
1977
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1978

1979
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1980 1981
		return h->max_huge_pages;

1982 1983 1984 1985
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1986 1987 1988 1989 1990 1991
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1992
	 */
L
Linus Torvalds 已提交
1993
	spin_lock(&hugetlb_lock);
1994
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1995
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1996 1997 1998
			break;
	}

1999
	while (count > persistent_huge_pages(h)) {
2000 2001 2002 2003 2004 2005
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2006 2007 2008 2009
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2010 2011 2012 2013
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2014 2015 2016
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2017 2018 2019 2020 2021 2022 2023 2024
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2025 2026 2027 2028 2029 2030 2031 2032
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2033
	 */
2034
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2035
	min_count = max(count, min_count);
2036
	try_to_free_low(h, min_count, nodes_allowed);
2037
	while (min_count < persistent_huge_pages(h)) {
2038
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2039
			break;
2040
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2041
	}
2042
	while (count < persistent_huge_pages(h)) {
2043
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2044 2045 2046
			break;
	}
out:
2047
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2048
	spin_unlock(&hugetlb_lock);
2049
	return ret;
L
Linus Torvalds 已提交
2050 2051
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2062 2063 2064
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2065 2066
{
	int i;
2067

2068
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2069 2070 2071
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2072
			return &hstates[i];
2073 2074 2075
		}

	return kobj_to_node_hstate(kobj, nidp);
2076 2077
}

2078
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2079 2080
					struct kobj_attribute *attr, char *buf)
{
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2092
}
2093

2094 2095 2096
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2097 2098
{
	int err;
2099
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2100

2101
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2102 2103 2104 2105
		err = -EINVAL;
		goto out;
	}

2106 2107 2108 2109 2110 2111 2112
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2113
			nodes_allowed = &node_states[N_MEMORY];
2114 2115 2116 2117 2118 2119 2120 2121 2122
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2123
		nodes_allowed = &node_states[N_MEMORY];
2124

2125
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2126

2127
	if (nodes_allowed != &node_states[N_MEMORY])
2128 2129 2130
		NODEMASK_FREE(nodes_allowed);

	return len;
2131 2132 2133
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2134 2135
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2153 2154 2155 2156 2157 2158 2159 2160 2161
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2162
	return nr_hugepages_store_common(false, kobj, buf, len);
2163 2164 2165
}
HSTATE_ATTR(nr_hugepages);

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2181
	return nr_hugepages_store_common(true, kobj, buf, len);
2182 2183 2184 2185 2186
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2187 2188 2189
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2190
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2191 2192
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2193

2194 2195 2196 2197 2198
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2199
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2200

2201
	if (hstate_is_gigantic(h))
2202 2203
		return -EINVAL;

2204
	err = kstrtoul(buf, 10, &input);
2205
	if (err)
2206
		return err;
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2230 2231 2232 2233 2234 2235
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2236
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2237 2238 2239 2240 2241 2242 2243
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2255 2256 2257 2258 2259 2260 2261 2262 2263
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2264 2265 2266
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2267 2268 2269 2270 2271 2272 2273
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2274 2275 2276
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2277 2278
{
	int retval;
2279
	int hi = hstate_index(h);
2280

2281 2282
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2283 2284
		return -ENOMEM;

2285
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2286
	if (retval)
2287
		kobject_put(hstate_kobjs[hi]);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2302 2303
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2304
		if (err)
2305
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2306 2307 2308
	}
}

2309 2310 2311 2312
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2313 2314 2315
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2316 2317 2318 2319 2320 2321 2322 2323 2324
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
2325
 * A subset of global hstate attributes for node devices
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2339
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2362
 * Unregister hstate attributes from a single node device.
2363 2364
 * No-op if no hstate attributes attached.
 */
2365
static void hugetlb_unregister_node(struct node *node)
2366 2367
{
	struct hstate *h;
2368
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2369 2370

	if (!nhs->hugepages_kobj)
2371
		return;		/* no hstate attributes */
2372

2373 2374 2375 2376 2377
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2378
		}
2379
	}
2380 2381 2382 2383 2384 2385

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2386
 * hugetlb module exit:  unregister hstate attributes from node devices
2387 2388 2389 2390 2391 2392 2393
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2394
	 * disable node device registrations.
2395 2396 2397 2398 2399 2400 2401
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2402
		hugetlb_unregister_node(node_devices[nid]);
2403 2404 2405
}

/*
2406
 * Register hstate attributes for a single node device.
2407 2408
 * No-op if attributes already registered.
 */
2409
static void hugetlb_register_node(struct node *node)
2410 2411
{
	struct hstate *h;
2412
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2413 2414 2415 2416 2417 2418
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2419
							&node->dev.kobj);
2420 2421 2422 2423 2424 2425 2426 2427
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2428 2429
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2430 2431 2432 2433 2434 2435 2436
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2437
 * hugetlb init time:  register hstate attributes for all registered node
2438 2439
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2440
 */
2441
static void __init hugetlb_register_all_nodes(void)
2442 2443 2444
{
	int nid;

2445
	for_each_node_state(nid, N_MEMORY) {
2446
		struct node *node = node_devices[nid];
2447
		if (node->dev.id == nid)
2448 2449 2450 2451
			hugetlb_register_node(node);
	}

	/*
2452
	 * Let the node device driver know we're here so it can
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2474 2475 2476 2477
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2478 2479
	hugetlb_unregister_all_nodes();

2480
	for_each_hstate(h) {
2481
		kobject_put(hstate_kobjs[hstate_index(h)]);
2482 2483 2484
	}

	kobject_put(hugepages_kobj);
2485
	kfree(htlb_fault_mutex_table);
2486 2487 2488 2489 2490
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2491 2492
	int i;

2493
	if (!hugepages_supported())
2494
		return 0;
2495

2496 2497 2498 2499
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2500
	}
2501
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2502 2503
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2504 2505

	hugetlb_init_hstates();
2506
	gather_bootmem_prealloc();
2507 2508 2509
	report_hugepages();

	hugetlb_sysfs_init();
2510
	hugetlb_register_all_nodes();
2511
	hugetlb_cgroup_file_init();
2512

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2524 2525 2526 2527 2528 2529 2530 2531
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2532 2533
	unsigned long i;

2534
	if (size_to_hstate(PAGE_SIZE << order)) {
2535
		pr_warning("hugepagesz= specified twice, ignoring\n");
2536 2537
		return;
	}
2538
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2539
	BUG_ON(order == 0);
2540
	h = &hstates[hugetlb_max_hstate++];
2541 2542
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2543 2544 2545 2546
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2547
	INIT_LIST_HEAD(&h->hugepage_activelist);
2548 2549
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2550 2551
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2552

2553 2554 2555
	parsed_hstate = h;
}

2556
static int __init hugetlb_nrpages_setup(char *s)
2557 2558
{
	unsigned long *mhp;
2559
	static unsigned long *last_mhp;
2560 2561

	/*
2562
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2563 2564
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2565
	if (!hugetlb_max_hstate)
2566 2567 2568 2569
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2570
	if (mhp == last_mhp) {
2571 2572
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2573 2574 2575
		return 1;
	}

2576 2577 2578
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2579 2580 2581 2582 2583
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2584
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2585 2586 2587 2588
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2589 2590
	return 1;
}
2591 2592 2593 2594 2595 2596 2597 2598
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2599

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2612 2613 2614
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2615
{
2616
	struct hstate *h = &default_hstate;
2617
	unsigned long tmp = h->max_huge_pages;
2618
	int ret;
2619

2620 2621 2622
	if (!hugepages_supported())
		return -ENOTSUPP;

2623 2624
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2625 2626 2627
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2628

2629 2630 2631
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2632 2633
out:
	return ret;
L
Linus Torvalds 已提交
2634
}
2635

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2653
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2654
			void __user *buffer,
2655 2656
			size_t *length, loff_t *ppos)
{
2657
	struct hstate *h = &default_hstate;
2658
	unsigned long tmp;
2659
	int ret;
2660

2661 2662 2663
	if (!hugepages_supported())
		return -ENOTSUPP;

2664
	tmp = h->nr_overcommit_huge_pages;
2665

2666
	if (write && hstate_is_gigantic(h))
2667 2668
		return -EINVAL;

2669 2670
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2671 2672 2673
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2674 2675 2676 2677 2678 2679

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2680 2681
out:
	return ret;
2682 2683
}

L
Linus Torvalds 已提交
2684 2685
#endif /* CONFIG_SYSCTL */

2686
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2687
{
2688
	struct hstate *h = &default_hstate;
2689 2690
	if (!hugepages_supported())
		return;
2691
	seq_printf(m,
2692 2693 2694 2695 2696
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2697 2698 2699 2700 2701
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2702 2703 2704 2705
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2706
	struct hstate *h = &default_hstate;
2707 2708
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2709 2710
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2711 2712
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2713 2714 2715
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2716 2717
}

2718 2719 2720 2721 2722
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2723 2724 2725
	if (!hugepages_supported())
		return;

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2736 2737 2738
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2739 2740 2741 2742 2743 2744
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2745 2746
}

2747
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2770
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2771 2772
			goto out;

2773 2774
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2775 2776 2777 2778 2779 2780
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2781
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2782 2783 2784 2785 2786 2787

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2788 2789
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2790
	struct resv_map *resv = vma_resv_map(vma);
2791 2792 2793 2794 2795

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2796
	 * has a reference to the reservation map it cannot disappear until
2797 2798 2799
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2800
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2801
		kref_get(&resv->refs);
2802 2803
}

2804 2805
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2806
	struct hstate *h = hstate_vma(vma);
2807
	struct resv_map *resv = vma_resv_map(vma);
2808
	struct hugepage_subpool *spool = subpool_vma(vma);
2809
	unsigned long reserve, start, end;
2810
	long gbl_reserve;
2811

2812 2813
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2814

2815 2816
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2817

2818
	reserve = (end - start) - region_count(resv, start, end);
2819

2820 2821 2822
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2823 2824 2825 2826 2827 2828
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2829
	}
2830 2831
}

L
Linus Torvalds 已提交
2832 2833 2834 2835 2836 2837
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2838
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2839 2840
{
	BUG();
N
Nick Piggin 已提交
2841
	return 0;
L
Linus Torvalds 已提交
2842 2843
}

2844
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2845
	.fault = hugetlb_vm_op_fault,
2846
	.open = hugetlb_vm_op_open,
2847
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2848 2849
};

2850 2851
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2852 2853 2854
{
	pte_t entry;

2855
	if (writable) {
2856 2857
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2858
	} else {
2859 2860
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2861 2862 2863
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2864
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2865 2866 2867 2868

	return entry;
}

2869 2870 2871 2872 2873
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2874
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2875
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2876
		update_mmu_cache(vma, address, ptep);
2877 2878
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
2904

D
David Gibson 已提交
2905 2906 2907 2908 2909
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2910
	unsigned long addr;
2911
	int cow;
2912 2913
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2914 2915 2916
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2917 2918

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2919

2920 2921 2922 2923 2924
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2925
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2926
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2927 2928 2929
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2930
		dst_pte = huge_pte_alloc(dst, addr, sz);
2931 2932 2933 2934
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2935 2936 2937 2938 2939

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2940 2941 2942
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
2961
			if (cow) {
2962
				huge_ptep_set_wrprotect(src, addr, src_pte);
2963 2964 2965
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
2966
			entry = huge_ptep_get(src_pte);
2967 2968
			ptepage = pte_page(entry);
			get_page(ptepage);
2969
			page_dup_rmap(ptepage);
2970 2971
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2972 2973
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2974 2975
	}

2976 2977 2978 2979
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2980 2981
}

2982 2983 2984
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2985
{
2986
	int force_flush = 0;
D
David Gibson 已提交
2987 2988
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2989
	pte_t *ptep;
D
David Gibson 已提交
2990
	pte_t pte;
2991
	spinlock_t *ptl;
D
David Gibson 已提交
2992
	struct page *page;
2993 2994
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2995 2996
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2997

D
David Gibson 已提交
2998
	WARN_ON(!is_vm_hugetlb_page(vma));
2999 3000
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3001

3002
	tlb_start_vma(tlb, vma);
3003
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3004
	address = start;
3005
again:
3006
	for (; address < end; address += sz) {
3007
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3008
		if (!ptep)
3009 3010
			continue;

3011
		ptl = huge_pte_lock(h, mm, ptep);
3012
		if (huge_pmd_unshare(mm, &address, ptep))
3013
			goto unlock;
3014

3015 3016
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3017
			goto unlock;
3018 3019

		/*
3020 3021
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3022
		 */
3023
		if (unlikely(!pte_present(pte))) {
3024
			huge_pte_clear(mm, address, ptep);
3025
			goto unlock;
3026
		}
3027 3028

		page = pte_page(pte);
3029 3030 3031 3032 3033 3034 3035
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3036
				goto unlock;
3037 3038 3039 3040 3041 3042 3043 3044 3045

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3046
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3047
		tlb_remove_tlb_entry(tlb, ptep, address);
3048
		if (huge_pte_dirty(pte))
3049
			set_page_dirty(page);
3050

3051 3052
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
3053
		if (force_flush) {
3054
			address += sz;
3055
			spin_unlock(ptl);
3056
			break;
3057
		}
3058
		/* Bail out after unmapping reference page if supplied */
3059 3060
		if (ref_page) {
			spin_unlock(ptl);
3061
			break;
3062 3063 3064
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3065
	}
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3076
	}
3077
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3078
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3079
}
D
David Gibson 已提交
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3093
	 * is to clear it before releasing the i_mmap_rwsem. This works
3094
	 * because in the context this is called, the VMA is about to be
3095
	 * destroyed and the i_mmap_rwsem is held.
3096 3097 3098 3099
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3100
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3101
			  unsigned long end, struct page *ref_page)
3102
{
3103 3104 3105 3106 3107
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3108
	tlb_gather_mmu(&tlb, mm, start, end);
3109 3110
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3111 3112
}

3113 3114 3115 3116 3117 3118
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3119 3120
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3121
{
3122
	struct hstate *h = hstate_vma(vma);
3123 3124 3125 3126 3127 3128 3129 3130
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3131
	address = address & huge_page_mask(h);
3132 3133
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3134
	mapping = file_inode(vma->vm_file)->i_mapping;
3135

3136 3137 3138 3139 3140
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3141
	i_mmap_lock_write(mapping);
3142
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3155 3156
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3157
	}
3158
	i_mmap_unlock_write(mapping);
3159 3160
}

3161 3162
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3163 3164 3165
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3166
 */
3167
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3168
			unsigned long address, pte_t *ptep, pte_t pte,
3169
			struct page *pagecache_page, spinlock_t *ptl)
3170
{
3171
	struct hstate *h = hstate_vma(vma);
3172
	struct page *old_page, *new_page;
3173
	int ret = 0, outside_reserve = 0;
3174 3175
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3176 3177 3178

	old_page = pte_page(pte);

3179
retry_avoidcopy:
3180 3181
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3182 3183
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3184
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3185
		return 0;
3186 3187
	}

3188 3189 3190 3191 3192 3193 3194 3195 3196
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3197
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3198 3199 3200
			old_page != pagecache_page)
		outside_reserve = 1;

3201
	page_cache_get(old_page);
3202

3203 3204 3205 3206
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3207
	spin_unlock(ptl);
3208
	new_page = alloc_huge_page(vma, address, outside_reserve);
3209

3210
	if (IS_ERR(new_page)) {
3211 3212 3213 3214 3215 3216 3217 3218
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3219
			page_cache_release(old_page);
3220
			BUG_ON(huge_pte_none(pte));
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3233 3234
		}

3235 3236 3237
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3238 3239
	}

3240 3241 3242 3243
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3244
	if (unlikely(anon_vma_prepare(vma))) {
3245 3246
		ret = VM_FAULT_OOM;
		goto out_release_all;
3247
	}
3248

A
Andrea Arcangeli 已提交
3249 3250
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3251
	__SetPageUptodate(new_page);
3252
	set_page_huge_active(new_page);
3253

3254 3255 3256
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3257

3258
	/*
3259
	 * Retake the page table lock to check for racing updates
3260 3261
	 * before the page tables are altered
	 */
3262
	spin_lock(ptl);
3263
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3264
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3265 3266
		ClearPagePrivate(new_page);

3267
		/* Break COW */
3268
		huge_ptep_clear_flush(vma, address, ptep);
3269
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3270 3271
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3272
		page_remove_rmap(old_page);
3273
		hugepage_add_new_anon_rmap(new_page, vma, address);
3274 3275 3276
		/* Make the old page be freed below */
		new_page = old_page;
	}
3277
	spin_unlock(ptl);
3278
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3279
out_release_all:
3280
	page_cache_release(new_page);
3281
out_release_old:
3282
	page_cache_release(old_page);
3283

3284 3285
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3286 3287
}

3288
/* Return the pagecache page at a given address within a VMA */
3289 3290
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3291 3292
{
	struct address_space *mapping;
3293
	pgoff_t idx;
3294 3295

	mapping = vma->vm_file->f_mapping;
3296
	idx = vma_hugecache_offset(h, vma, address);
3297 3298 3299 3300

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3301 3302 3303 3304 3305
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3321
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3322 3323
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3324
{
3325
	struct hstate *h = hstate_vma(vma);
3326
	int ret = VM_FAULT_SIGBUS;
3327
	int anon_rmap = 0;
A
Adam Litke 已提交
3328 3329
	unsigned long size;
	struct page *page;
3330
	pte_t new_pte;
3331
	spinlock_t *ptl;
A
Adam Litke 已提交
3332

3333 3334 3335
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3336
	 * COW. Warn that such a situation has occurred as it may not be obvious
3337 3338
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3339 3340
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3341 3342 3343
		return ret;
	}

A
Adam Litke 已提交
3344 3345 3346 3347
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3348 3349 3350
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3351
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3352 3353
		if (idx >= size)
			goto out;
3354
		page = alloc_huge_page(vma, address, 0);
3355
		if (IS_ERR(page)) {
3356 3357 3358 3359 3360
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3361 3362
			goto out;
		}
A
Andrea Arcangeli 已提交
3363
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3364
		__SetPageUptodate(page);
3365
		set_page_huge_active(page);
3366

3367
		if (vma->vm_flags & VM_MAYSHARE) {
3368
			int err;
K
Ken Chen 已提交
3369
			struct inode *inode = mapping->host;
3370 3371 3372 3373 3374 3375 3376 3377

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3378
			ClearPagePrivate(page);
K
Ken Chen 已提交
3379 3380

			spin_lock(&inode->i_lock);
3381
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
3382
			spin_unlock(&inode->i_lock);
3383
		} else {
3384
			lock_page(page);
3385 3386 3387 3388
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3389
			anon_rmap = 1;
3390
		}
3391
	} else {
3392 3393 3394 3395 3396 3397
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3398
			ret = VM_FAULT_HWPOISON |
3399
				VM_FAULT_SET_HINDEX(hstate_index(h));
3400 3401
			goto backout_unlocked;
		}
3402
	}
3403

3404 3405 3406 3407 3408 3409
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3410
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3411 3412 3413 3414
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3415
		/* Just decrements count, does not deallocate */
3416
		vma_end_reservation(h, vma, address);
3417
	}
3418

3419 3420
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3421
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3422 3423 3424
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3425
	ret = 0;
3426
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3427 3428
		goto backout;

3429 3430
	if (anon_rmap) {
		ClearPagePrivate(page);
3431
		hugepage_add_new_anon_rmap(page, vma, address);
3432
	} else
3433
		page_dup_rmap(page);
3434 3435 3436 3437
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3438
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3439
		/* Optimization, do the COW without a second fault */
3440
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3441 3442
	}

3443
	spin_unlock(ptl);
A
Adam Litke 已提交
3444 3445
	unlock_page(page);
out:
3446
	return ret;
A
Adam Litke 已提交
3447 3448

backout:
3449
	spin_unlock(ptl);
3450
backout_unlocked:
A
Adam Litke 已提交
3451 3452 3453
	unlock_page(page);
	put_page(page);
	goto out;
3454 3455
}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3491
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3492
			unsigned long address, unsigned int flags)
3493
{
3494
	pte_t *ptep, entry;
3495
	spinlock_t *ptl;
3496
	int ret;
3497 3498
	u32 hash;
	pgoff_t idx;
3499
	struct page *page = NULL;
3500
	struct page *pagecache_page = NULL;
3501
	struct hstate *h = hstate_vma(vma);
3502
	struct address_space *mapping;
3503
	int need_wait_lock = 0;
3504

3505 3506
	address &= huge_page_mask(h);

3507 3508 3509
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3510
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3511
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3512 3513
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3514
			return VM_FAULT_HWPOISON_LARGE |
3515
				VM_FAULT_SET_HINDEX(hstate_index(h));
3516 3517
	}

3518
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3519 3520 3521
	if (!ptep)
		return VM_FAULT_OOM;

3522 3523 3524
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3525 3526 3527 3528 3529
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3530 3531 3532
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3533 3534
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3535
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3536
		goto out_mutex;
3537
	}
3538

N
Nick Piggin 已提交
3539
	ret = 0;
3540

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3551 3552 3553 3554 3555 3556 3557 3558
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3559
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3560 3561
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3562
			goto out_mutex;
3563
		}
3564
		/* Just decrements count, does not deallocate */
3565
		vma_end_reservation(h, vma, address);
3566

3567
		if (!(vma->vm_flags & VM_MAYSHARE))
3568 3569 3570 3571
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3572 3573 3574 3575 3576 3577
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3578 3579 3580 3581 3582 3583 3584
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3585 3586 3587 3588
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3589

3590
	get_page(page);
3591

3592
	if (flags & FAULT_FLAG_WRITE) {
3593
		if (!huge_pte_write(entry)) {
3594
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3595
					pagecache_page, ptl);
3596
			goto out_put_page;
3597
		}
3598
		entry = huge_pte_mkdirty(entry);
3599 3600
	}
	entry = pte_mkyoung(entry);
3601 3602
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3603
		update_mmu_cache(vma, address, ptep);
3604 3605 3606 3607
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3608 3609
out_ptl:
	spin_unlock(ptl);
3610 3611 3612 3613 3614

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3615
out_mutex:
3616
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3617 3618 3619 3620 3621 3622 3623 3624 3625
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3626
	return ret;
3627 3628
}

3629 3630 3631 3632
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3633
{
3634 3635
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3636
	unsigned long remainder = *nr_pages;
3637
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3638 3639

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3640
		pte_t *pte;
3641
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3642
		int absent;
A
Adam Litke 已提交
3643
		struct page *page;
D
David Gibson 已提交
3644

3645 3646 3647 3648 3649 3650 3651 3652 3653
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3654 3655
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3656
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3657
		 * first, for the page indexing below to work.
3658 3659
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3660
		 */
3661
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3662 3663
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3664 3665 3666 3667
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3668 3669 3670 3671
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3672
		 */
H
Hugh Dickins 已提交
3673 3674
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3675 3676
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3677 3678 3679
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3680

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3692 3693
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3694
			int ret;
D
David Gibson 已提交
3695

3696 3697
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3698 3699
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3700
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3701
				continue;
D
David Gibson 已提交
3702

A
Adam Litke 已提交
3703 3704 3705 3706
			remainder = 0;
			break;
		}

3707
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3708
		page = pte_page(huge_ptep_get(pte));
3709
same_page:
3710
		if (pages) {
H
Hugh Dickins 已提交
3711
			pages[i] = mem_map_offset(page, pfn_offset);
3712
			get_page_foll(pages[i]);
3713
		}
D
David Gibson 已提交
3714 3715 3716 3717 3718

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3719
		++pfn_offset;
D
David Gibson 已提交
3720 3721
		--remainder;
		++i;
3722
		if (vaddr < vma->vm_end && remainder &&
3723
				pfn_offset < pages_per_huge_page(h)) {
3724 3725 3726 3727 3728 3729
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3730
		spin_unlock(ptl);
D
David Gibson 已提交
3731
	}
3732
	*nr_pages = remainder;
D
David Gibson 已提交
3733 3734
	*position = vaddr;

H
Hugh Dickins 已提交
3735
	return i ? i : -EFAULT;
D
David Gibson 已提交
3736
}
3737

3738
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3739 3740 3741 3742 3743 3744
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3745
	struct hstate *h = hstate_vma(vma);
3746
	unsigned long pages = 0;
3747 3748 3749 3750

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3751
	mmu_notifier_invalidate_range_start(mm, start, end);
3752
	i_mmap_lock_write(vma->vm_file->f_mapping);
3753
	for (; address < end; address += huge_page_size(h)) {
3754
		spinlock_t *ptl;
3755 3756 3757
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3758
		ptl = huge_pte_lock(h, mm, ptep);
3759 3760
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3761
			spin_unlock(ptl);
3762
			continue;
3763
		}
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3784
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3785
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3786
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3787
			set_huge_pte_at(mm, address, ptep, pte);
3788
			pages++;
3789
		}
3790
		spin_unlock(ptl);
3791
	}
3792
	/*
3793
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3794
	 * may have cleared our pud entry and done put_page on the page table:
3795
	 * once we release i_mmap_rwsem, another task can do the final put_page
3796 3797
	 * and that page table be reused and filled with junk.
	 */
3798
	flush_tlb_range(vma, start, end);
3799
	mmu_notifier_invalidate_range(mm, start, end);
3800
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3801
	mmu_notifier_invalidate_range_end(mm, start, end);
3802 3803

	return pages << h->order;
3804 3805
}

3806 3807
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3808
					struct vm_area_struct *vma,
3809
					vm_flags_t vm_flags)
3810
{
3811
	long ret, chg;
3812
	struct hstate *h = hstate_inode(inode);
3813
	struct hugepage_subpool *spool = subpool_inode(inode);
3814
	struct resv_map *resv_map;
3815
	long gbl_reserve;
3816

3817 3818 3819
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3820
	 * without using reserves
3821
	 */
3822
	if (vm_flags & VM_NORESERVE)
3823 3824
		return 0;

3825 3826 3827 3828 3829 3830
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3831
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3832
		resv_map = inode_resv_map(inode);
3833

3834
		chg = region_chg(resv_map, from, to);
3835 3836 3837

	} else {
		resv_map = resv_map_alloc();
3838 3839 3840
		if (!resv_map)
			return -ENOMEM;

3841
		chg = to - from;
3842

3843 3844 3845 3846
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3847 3848 3849 3850
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3851

3852 3853 3854 3855 3856 3857 3858
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
3859 3860 3861
		ret = -ENOSPC;
		goto out_err;
	}
3862 3863

	/*
3864
	 * Check enough hugepages are available for the reservation.
3865
	 * Hand the pages back to the subpool if there are not
3866
	 */
3867
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
3868
	if (ret < 0) {
3869 3870
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
3871
		goto out_err;
K
Ken Chen 已提交
3872
	}
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
3903
	return 0;
3904
out_err:
3905 3906
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
3907 3908
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3909
	return ret;
3910 3911 3912 3913
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3914
	struct hstate *h = hstate_inode(inode);
3915
	struct resv_map *resv_map = inode_resv_map(inode);
3916
	long chg = 0;
3917
	struct hugepage_subpool *spool = subpool_inode(inode);
3918
	long gbl_reserve;
K
Ken Chen 已提交
3919

3920
	if (resv_map)
3921
		chg = region_del(resv_map, offset, LONG_MAX);
K
Ken Chen 已提交
3922
	spin_lock(&inode->i_lock);
3923
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3924 3925
	spin_unlock(&inode->i_lock);

3926 3927 3928 3929 3930 3931
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
3932
}
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

3960
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3961 3962 3963 3964 3965 3966 3967 3968 3969
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
3970 3971
		return true;
	return false;
3972 3973 3974 3975 3976 3977 3978
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
3979
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3993
	spinlock_t *ptl;
3994 3995 3996 3997

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

3998
	i_mmap_lock_write(mapping);
3999 4000 4001 4002 4003 4004 4005 4006
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4007
				mm_inc_nr_pmds(mm);
4008 4009 4010 4011 4012 4013 4014 4015 4016
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4017 4018
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4019
	if (pud_none(*pud)) {
4020 4021
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4022
	} else {
4023
		put_page(virt_to_page(spte));
4024 4025
		mm_inc_nr_pmds(mm);
	}
4026
	spin_unlock(ptl);
4027 4028
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4029
	i_mmap_unlock_write(mapping);
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4040
 * called with page table lock held.
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4056
	mm_dec_nr_pmds(mm);
4057 4058 4059
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4060 4061 4062 4063 4064 4065
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4066 4067 4068 4069 4070

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4071
#define want_pmd_share()	(0)
4072 4073
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4132
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4133
		pmd_t *pmd, int flags)
4134
{
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4147
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4163 4164 4165
	return page;
}

4166
struct page * __weak
4167
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4168
		pud_t *pud, int flags)
4169
{
4170 4171
	if (flags & FOLL_GET)
		return NULL;
4172

4173
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4174 4175
}

4176 4177
#ifdef CONFIG_MEMORY_FAILURE

4178 4179 4180 4181
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4182
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4183 4184 4185
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4186
	int ret = -EBUSY;
4187 4188

	spin_lock(&hugetlb_lock);
4189 4190 4191 4192 4193
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4194 4195 4196 4197 4198 4199 4200
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4201
		set_page_refcounted(hpage);
4202 4203 4204 4205
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4206
	spin_unlock(&hugetlb_lock);
4207
	return ret;
4208
}
4209
#endif
4210 4211 4212

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4213 4214
	bool ret = true;

4215
	VM_BUG_ON_PAGE(!PageHead(page), page);
4216
	spin_lock(&hugetlb_lock);
4217 4218 4219 4220 4221
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4222
	list_move_tail(&page->lru, list);
4223
unlock:
4224
	spin_unlock(&hugetlb_lock);
4225
	return ret;
4226 4227 4228 4229
}

void putback_active_hugepage(struct page *page)
{
4230
	VM_BUG_ON_PAGE(!PageHead(page), page);
4231
	spin_lock(&hugetlb_lock);
4232
	set_page_huge_active(page);
4233 4234 4235 4236
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}