hugetlb.c 73.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22

D
David Gibson 已提交
23 24
#include <asm/page.h>
#include <asm/pgtable.h>
25
#include <asm/io.h>
D
David Gibson 已提交
26 27

#include <linux/hugetlb.h>
28
#include <linux/node.h>
29
#include "internal.h"
L
Linus Torvalds 已提交
30 31

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
32 33
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
34

35 36 37 38
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

39 40
__initdata LIST_HEAD(huge_boot_pages);

41 42 43
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
44
static unsigned long __initdata default_hstate_size;
45 46 47

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48

49 50 51 52
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
53

54 55 56
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
57 58 59 60 61 62 63 64 65 66
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

213 214 215 216
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
217 218
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
219
{
220 221
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
222 223
}

224 225 226 227 228 229
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
245
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
246

247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

260 261 262 263 264 265 266
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
267
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
268

269 270 271 272 273 274 275 276 277
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
278 279 280 281 282 283 284 285 286
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
287
 */
288 289 290 291 292 293 294 295 296 297 298
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

299 300 301 302 303
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

304
static struct resv_map *resv_map_alloc(void)
305 306 307 308 309 310 311 312 313 314 315
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

316
static void resv_map_release(struct kref *ref)
317 318 319 320 321 322 323 324 325
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
326 327
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
328
	if (!(vma->vm_flags & VM_MAYSHARE))
329 330
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
331
	return NULL;
332 333
}

334
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
335 336
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
338

339 340
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
341 342 343 344 345
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
346
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
347 348

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
349 350 351 352 353
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
354 355

	return (get_vma_private_data(vma) & flag) != 0;
356 357 358
}

/* Decrement the reserved pages in the hugepage pool by one */
359 360
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
361
{
362 363 364
	if (vma->vm_flags & VM_NORESERVE)
		return;

365
	if (vma->vm_flags & VM_MAYSHARE) {
366
		/* Shared mappings always use reserves */
367
		h->resv_huge_pages--;
368
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
369 370 371 372
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
373
		h->resv_huge_pages--;
374 375 376
	}
}

377
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
378 379 380
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
381
	if (!(vma->vm_flags & VM_MAYSHARE))
382 383 384 385
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
386
static int vma_has_reserves(struct vm_area_struct *vma)
387
{
388
	if (vma->vm_flags & VM_MAYSHARE)
389 390 391 392
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
407 408
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
409 410 411
{
	int i;

412
	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
H
Hannes Eder 已提交
413 414 415
		clear_gigantic_page(page, addr, sz);
		return;
	}
416

417
	might_sleep();
418
	for (i = 0; i < sz/PAGE_SIZE; i++) {
419
		cond_resched();
420
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
421 422 423
	}
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
441
static void copy_huge_page(struct page *dst, struct page *src,
442
			   unsigned long addr, struct vm_area_struct *vma)
443 444
{
	int i;
445
	struct hstate *h = hstate_vma(vma);
446

H
Hannes Eder 已提交
447 448 449 450
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
451

452
	might_sleep();
453
	for (i = 0; i < pages_per_huge_page(h); i++) {
454
		cond_resched();
455
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
456 457 458
	}
}

459
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
460 461
{
	int nid = page_to_nid(page);
462 463 464
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
465 466
}

467 468
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
469
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
470
{
471
	int nid;
L
Linus Torvalds 已提交
472
	struct page *page = NULL;
473
	struct mempolicy *mpol;
474
	nodemask_t *nodemask;
475
	struct zonelist *zonelist;
476 477
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
478

479 480 481
	get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
482 483 484 485 486
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
487
	if (!vma_has_reserves(vma) &&
488
			h->free_huge_pages - h->resv_huge_pages == 0)
489
		goto err;
490

491
	/* If reserves cannot be used, ensure enough pages are in the pool */
492
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
493
		goto err;;
494

495 496
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
497 498
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
499 500
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
501 502
					  struct page, lru);
			list_del(&page->lru);
503 504
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
505 506

			if (!avoid_reserve)
507
				decrement_hugepage_resv_vma(h, vma);
508

K
Ken Chen 已提交
509
			break;
A
Andrew Morton 已提交
510
		}
L
Linus Torvalds 已提交
511
	}
512
err:
513
	mpol_cond_put(mpol);
514
	put_mems_allowed();
L
Linus Torvalds 已提交
515 516 517
	return page;
}

518
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
519 520
{
	int i;
521

522 523
	VM_BUG_ON(h->order >= MAX_ORDER);

524 525 526
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
527 528 529 530 531 532
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
533
	arch_release_hugepage(page);
534
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
535 536
}

537 538 539 540 541 542 543 544 545 546 547
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

548 549
static void free_huge_page(struct page *page)
{
550 551 552 553
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
554
	struct hstate *h = page_hstate(page);
555
	int nid = page_to_nid(page);
556
	struct address_space *mapping;
557

558
	mapping = (struct address_space *) page_private(page);
559
	set_page_private(page, 0);
560
	page->mapping = NULL;
561
	BUG_ON(page_count(page));
562
	BUG_ON(page_mapcount(page));
563 564 565
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
566
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
567 568 569
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
570
	} else {
571
		enqueue_huge_page(h, page);
572
	}
573
	spin_unlock(&hugetlb_lock);
574
	if (mapping)
575
		hugetlb_put_quota(mapping, 1);
576 577
}

578
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
579 580 581
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
582 583
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
584 585 586 587
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

616
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
617 618
{
	struct page *page;
619

620 621 622
	if (h->order >= MAX_ORDER)
		return NULL;

623
	page = alloc_pages_exact_node(nid,
624 625
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
626
		huge_page_order(h));
L
Linus Torvalds 已提交
627
	if (page) {
628
		if (arch_prepare_hugepage(page)) {
629
			__free_pages(page, huge_page_order(h));
630
			return NULL;
631
		}
632
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
633
	}
634 635 636 637

	return page;
}

638
/*
639 640 641 642 643
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
644
 */
645
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
646
{
647
	nid = next_node(nid, *nodes_allowed);
648
	if (nid == MAX_NUMNODES)
649
		nid = first_node(*nodes_allowed);
650 651 652 653 654
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

655 656 657 658 659 660 661
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

662
/*
663 664 665 666
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
667
 */
668 669
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
670
{
671 672 673 674 675 676
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
677 678

	return nid;
679 680
}

681
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
682 683 684 685 686 687
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

688
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
689
	next_nid = start_nid;
690 691

	do {
692
		page = alloc_fresh_huge_page_node(h, next_nid);
693
		if (page) {
694
			ret = 1;
695 696
			break;
		}
697
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
698
	} while (next_nid != start_nid);
699

700 701 702 703 704
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

705
	return ret;
L
Linus Torvalds 已提交
706 707
}

708
/*
709 710 711 712
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
713
 */
714
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
715
{
716 717 718 719 720 721
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
722 723

	return nid;
724 725 726 727 728 729 730 731
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
732 733
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
734 735 736 737 738
{
	int start_nid;
	int next_nid;
	int ret = 0;

739
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
740 741 742
	next_nid = start_nid;

	do {
743 744 745 746 747 748
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
749 750 751 752 753 754
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
755 756 757 758
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
759 760
			update_and_free_page(h, page);
			ret = 1;
761
			break;
762
		}
763
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
764
	} while (next_nid != start_nid);
765 766 767 768

	return ret;
}

769 770
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
771 772
{
	struct page *page;
773
	unsigned int nid;
774

775 776 777
	if (h->order >= MAX_ORDER)
		return NULL;

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
802
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
803 804 805
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
806 807
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
808 809 810
	}
	spin_unlock(&hugetlb_lock);

811 812
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
813
					huge_page_order(h));
814

815 816 817 818 819
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

820
	spin_lock(&hugetlb_lock);
821
	if (page) {
822 823 824 825 826 827
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
828
		nid = page_to_nid(page);
829
		set_compound_page_dtor(page, free_huge_page);
830 831 832
		/*
		 * We incremented the global counters already
		 */
833 834
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
835
		__count_vm_event(HTLB_BUDDY_PGALLOC);
836
	} else {
837 838
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
839
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
840
	}
841
	spin_unlock(&hugetlb_lock);
842 843 844 845

	return page;
}

846 847 848 849
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
850
static int gather_surplus_pages(struct hstate *h, int delta)
851 852 853 854 855 856
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

857
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
858
	if (needed <= 0) {
859
		h->resv_huge_pages += delta;
860
		return 0;
861
	}
862 863 864 865 866 867 868 869

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
870
		page = alloc_buddy_huge_page(h, NULL, 0);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
891 892
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
893 894 895 896 897 898 899
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
900 901 902
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
903 904
	 */
	needed += allocated;
905
	h->resv_huge_pages += delta;
906 907
	ret = 0;
free:
908
	/* Free the needed pages to the hugetlb pool */
909
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
910 911
		if ((--needed) < 0)
			break;
912
		list_del(&page->lru);
913
		enqueue_huge_page(h, page);
914 915 916 917 918 919 920
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
921
			/*
922 923 924
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
925 926 927
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
928
			free_huge_page(page);
929
		}
930
		spin_lock(&hugetlb_lock);
931 932 933 934 935 936 937 938 939
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
940
 * Called with hugetlb_lock held.
941
 */
942 943
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
944 945 946
{
	unsigned long nr_pages;

947
	/* Uncommit the reservation */
948
	h->resv_huge_pages -= unused_resv_pages;
949

950 951 952 953
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

954
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
955

956 957
	/*
	 * We want to release as many surplus pages as possible, spread
958 959 960 961 962
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
963 964
	 */
	while (nr_pages--) {
965
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
966
			break;
967 968 969
	}
}

970 971 972 973 974 975 976 977 978
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
979
static long vma_needs_reservation(struct hstate *h,
980
			struct vm_area_struct *vma, unsigned long addr)
981 982 983 984
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

985
	if (vma->vm_flags & VM_MAYSHARE) {
986
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
987 988 989
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

990 991
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
992

993
	} else  {
994
		long err;
995
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
996 997 998 999 1000 1001 1002
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1003
}
1004 1005
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1006 1007 1008 1009
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1010
	if (vma->vm_flags & VM_MAYSHARE) {
1011
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1013 1014

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1015
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016 1017 1018 1019
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1020 1021 1022
	}
}

1023
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1024
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1025
{
1026
	struct hstate *h = hstate_vma(vma);
1027
	struct page *page;
1028 1029
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1030
	long chg;
1031 1032 1033 1034 1035

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1036 1037
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1038
	 */
1039
	chg = vma_needs_reservation(h, vma, addr);
1040 1041 1042
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1043 1044
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1045 1046

	spin_lock(&hugetlb_lock);
1047
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1048
	spin_unlock(&hugetlb_lock);
1049

K
Ken Chen 已提交
1050
	if (!page) {
1051
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
1052
		if (!page) {
1053
			hugetlb_put_quota(inode->i_mapping, chg);
1054
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1055 1056
		}
	}
1057

1058 1059
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1060

1061
	vma_commit_reservation(h, vma, addr);
1062

1063
	return page;
1064 1065
}

1066
int __weak alloc_bootmem_huge_page(struct hstate *h)
1067 1068
{
	struct huge_bootmem_page *m;
1069
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1070 1071 1072 1073 1074

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1075
				NODE_DATA(hstate_next_node_to_alloc(h,
1076
						&node_states[N_HIGH_MEMORY])),
1077 1078 1079 1080 1081 1082 1083 1084 1085
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1086
			goto found;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1100 1101 1102 1103 1104 1105 1106 1107
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1118
		prep_compound_huge_page(page, h->order);
1119 1120 1121 1122
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1123
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1124 1125
{
	unsigned long i;
1126

1127
	for (i = 0; i < h->max_huge_pages; ++i) {
1128 1129 1130
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1131 1132
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1133 1134
			break;
	}
1135
	h->max_huge_pages = i;
1136 1137 1138 1139 1140 1141 1142
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1143 1144 1145
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1146 1147 1148
	}
}

A
Andi Kleen 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1160 1161 1162 1163 1164
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1165 1166 1167 1168 1169
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1170 1171 1172
	}
}

L
Linus Torvalds 已提交
1173
#ifdef CONFIG_HIGHMEM
1174 1175
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1176
{
1177 1178
	int i;

1179 1180 1181
	if (h->order >= MAX_ORDER)
		return;

1182
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1183
		struct page *page, *next;
1184 1185 1186
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1187
				return;
L
Linus Torvalds 已提交
1188 1189 1190
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1191
			update_and_free_page(h, page);
1192 1193
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1194 1195 1196 1197
		}
	}
}
#else
1198 1199
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1200 1201 1202 1203
{
}
#endif

1204 1205 1206 1207 1208
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1209 1210
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1211
{
1212
	int start_nid, next_nid;
1213 1214 1215 1216
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1217
	if (delta < 0)
1218
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1219
	else
1220
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1221 1222 1223 1224 1225 1226 1227 1228
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1229
			if (!h->surplus_huge_pages_node[nid]) {
1230 1231
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1232
				continue;
1233
			}
1234 1235 1236 1237 1238 1239
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1240
						h->nr_huge_pages_node[nid]) {
1241 1242
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1243
				continue;
1244
			}
1245
		}
1246 1247 1248 1249 1250

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1251
	} while (next_nid != start_nid);
1252 1253 1254 1255

	return ret;
}

1256
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1257 1258
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1259
{
1260
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1261

1262 1263 1264
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1265 1266 1267 1268
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1269 1270 1271 1272 1273 1274
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1275
	 */
L
Linus Torvalds 已提交
1276
	spin_lock(&hugetlb_lock);
1277
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1278
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1279 1280 1281
			break;
	}

1282
	while (count > persistent_huge_pages(h)) {
1283 1284 1285 1286 1287 1288
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1289
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1290 1291 1292 1293
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1294 1295 1296
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1297 1298 1299 1300 1301 1302 1303 1304
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1305 1306 1307 1308 1309 1310 1311 1312
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1313
	 */
1314
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1315
	min_count = max(count, min_count);
1316
	try_to_free_low(h, min_count, nodes_allowed);
1317
	while (min_count < persistent_huge_pages(h)) {
1318
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1319 1320
			break;
	}
1321
	while (count < persistent_huge_pages(h)) {
1322
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1323 1324 1325
			break;
	}
out:
1326
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1327
	spin_unlock(&hugetlb_lock);
1328
	return ret;
L
Linus Torvalds 已提交
1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1341 1342 1343
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1344 1345
{
	int i;
1346

1347
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1348 1349 1350
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1351
			return &hstates[i];
1352 1353 1354
		}

	return kobj_to_node_hstate(kobj, nidp);
1355 1356
}

1357
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1358 1359
					struct kobj_attribute *attr, char *buf)
{
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1371
}
1372 1373 1374
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1375 1376
{
	int err;
1377
	int nid;
1378
	unsigned long count;
1379
	struct hstate *h;
1380
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1381

1382
	err = strict_strtoul(buf, 10, &count);
1383 1384 1385
	if (err)
		return 0;

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1406
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1407

1408
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		NODEMASK_FREE(nodes_allowed);

	return len;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1424 1425 1426
}
HSTATE_ATTR(nr_hugepages);

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1448 1449 1450
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1451
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1452 1453 1454 1455 1456 1457 1458
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1459
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1487 1488 1489 1490 1491 1492
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1493
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1494 1495 1496 1497 1498 1499 1500
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1512 1513 1514 1515 1516 1517 1518 1519 1520
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1521 1522 1523
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1524 1525 1526 1527 1528 1529 1530
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1531 1532 1533
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1534 1535
{
	int retval;
1536
	int hi = h - hstates;
1537

1538 1539
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1540 1541
		return -ENOMEM;

1542
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1543
	if (retval)
1544
		kobject_put(hstate_kobjs[hi]);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1559 1560
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1561 1562 1563 1564 1565 1566
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node sysdevs in node_devices[] using a parallel array.  The array
 * index of a node sysdev or _hstate == node id.
 * This is here to avoid any static dependency of the node sysdev driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node sysdevs
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node sysdev.
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];

	if (!nhs->hugepages_kobj)
1629
		return;		/* no hstate attributes */
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
 * hugetlb module exit:  unregister hstate attributes from node sysdevs
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
	 * disable node sysdev registrations.
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
 * Register hstate attributes for a single node sysdev.
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->sysdev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
						h->name, node->sysdev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1694 1695 1696
 * hugetlb init time:  register hstate attributes for all registered node
 * sysdevs of nodes that have memory.  All on-line nodes should have
 * registered their associated sysdev by this time.
1697 1698 1699 1700 1701
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1702
	for_each_node_state(nid, N_HIGH_MEMORY) {
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		struct node *node = &node_devices[nid];
		if (node->sysdev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node sysdev driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1731 1732 1733 1734
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1735 1736
	hugetlb_unregister_all_nodes();

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1747 1748 1749 1750 1751 1752
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1753

1754 1755 1756 1757
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1758
	}
1759 1760 1761
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1762 1763 1764

	hugetlb_init_hstates();

1765 1766
	gather_bootmem_prealloc();

1767 1768 1769 1770
	report_hugepages();

	hugetlb_sysfs_init();

1771 1772
	hugetlb_register_all_nodes();

1773 1774 1775 1776 1777 1778 1779 1780
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1781 1782
	unsigned long i;

1783 1784 1785 1786 1787 1788 1789 1790 1791
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1792 1793 1794 1795
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1796 1797
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1798 1799
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1800

1801 1802 1803
	parsed_hstate = h;
}

1804
static int __init hugetlb_nrpages_setup(char *s)
1805 1806
{
	unsigned long *mhp;
1807
	static unsigned long *last_mhp;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1818 1819 1820 1821 1822 1823
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1824 1825 1826
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1837 1838
	return 1;
}
1839 1840 1841 1842 1843 1844 1845 1846
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1860 1861 1862
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1863
{
1864 1865 1866 1867 1868 1869 1870 1871
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1872
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1873

1874
	if (write) {
1875 1876
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1887

L
Linus Torvalds 已提交
1888 1889
	return 0;
}
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1908
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1909
			void __user *buffer,
1910 1911
			size_t *length, loff_t *ppos)
{
1912
	proc_dointvec(table, write, buffer, length, ppos);
1913 1914 1915 1916 1917 1918 1919
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1920
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1921
			void __user *buffer,
1922 1923
			size_t *length, loff_t *ppos)
{
1924
	struct hstate *h = &default_hstate;
1925 1926 1927 1928 1929 1930 1931
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1932
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1933 1934 1935 1936 1937 1938 1939

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1940 1941 1942
	return 0;
}

L
Linus Torvalds 已提交
1943 1944
#endif /* CONFIG_SYSCTL */

1945
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1946
{
1947
	struct hstate *h = &default_hstate;
1948
	seq_printf(m,
1949 1950 1951 1952 1953
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1954 1955 1956 1957 1958
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1959 1960 1961 1962
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1963
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1964 1965
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1966 1967
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1968 1969 1970
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1976 1977
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1978 1979
}

1980
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2003
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2004 2005
			goto out;

2006 2007
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2008 2009 2010 2011 2012 2013
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2014
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2015 2016 2017 2018 2019 2020

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2037 2038
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2039
	struct hstate *h = hstate_vma(vma);
2040 2041 2042 2043 2044 2045
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2046 2047
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2048 2049 2050 2051 2052 2053

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2054
		if (reserve) {
2055
			hugetlb_acct_memory(h, -reserve);
2056 2057
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2058
	}
2059 2060
}

L
Linus Torvalds 已提交
2061 2062 2063 2064 2065 2066
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2067
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2068 2069
{
	BUG();
N
Nick Piggin 已提交
2070
	return 0;
L
Linus Torvalds 已提交
2071 2072
}

2073
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2074
	.fault = hugetlb_vm_op_fault,
2075
	.open = hugetlb_vm_op_open,
2076
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2077 2078
};

2079 2080
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2081 2082 2083
{
	pte_t entry;

2084
	if (writable) {
D
David Gibson 已提交
2085 2086 2087
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2088
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2089 2090 2091 2092 2093 2094 2095
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2096 2097 2098 2099 2100
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2101 2102
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2103
		update_mmu_cache(vma, address, ptep);
2104
	}
2105 2106 2107
}


D
David Gibson 已提交
2108 2109 2110 2111 2112
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2113
	unsigned long addr;
2114
	int cow;
2115 2116
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2117 2118

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2119

2120
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2121 2122 2123
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2124
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2125 2126
		if (!dst_pte)
			goto nomem;
2127 2128 2129 2130 2131

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2132
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2133
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2134
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2135
			if (cow)
2136 2137
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2138 2139
			ptepage = pte_page(entry);
			get_page(ptepage);
2140
			page_dup_rmap(ptepage);
2141 2142 2143
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2144
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2145 2146 2147 2148 2149 2150 2151
	}
	return 0;

nomem:
	return -ENOMEM;
}

2152
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2153
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2154 2155 2156
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2157
	pte_t *ptep;
D
David Gibson 已提交
2158 2159
	pte_t pte;
	struct page *page;
2160
	struct page *tmp;
2161 2162 2163
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2164 2165 2166 2167 2168
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2169
	LIST_HEAD(page_list);
D
David Gibson 已提交
2170 2171

	WARN_ON(!is_vm_hugetlb_page(vma));
2172 2173
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2174

A
Andrea Arcangeli 已提交
2175
	mmu_notifier_invalidate_range_start(mm, start, end);
2176
	spin_lock(&mm->page_table_lock);
2177
	for (address = start; address < end; address += sz) {
2178
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2179
		if (!ptep)
2180 2181
			continue;

2182 2183 2184
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2206
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2207
		if (huge_pte_none(pte))
D
David Gibson 已提交
2208
			continue;
2209

D
David Gibson 已提交
2210
		page = pte_page(pte);
2211 2212
		if (pte_dirty(pte))
			set_page_dirty(page);
2213
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
2214
	}
L
Linus Torvalds 已提交
2215
	spin_unlock(&mm->page_table_lock);
2216
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
2217
	mmu_notifier_invalidate_range_end(mm, start, end);
2218
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2219
		page_remove_rmap(page);
2220 2221 2222
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2223
}
D
David Gibson 已提交
2224

2225
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2226
			  unsigned long end, struct page *ref_page)
2227
{
2228 2229 2230
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2231 2232
}

2233 2234 2235 2236 2237 2238
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2239 2240
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2241
{
2242
	struct hstate *h = hstate_vma(vma);
2243 2244 2245 2246 2247 2248 2249 2250 2251
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2252
	address = address & huge_page_mask(h);
2253 2254 2255 2256
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

2257 2258 2259 2260 2261 2262
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
	spin_lock(&mapping->i_mmap_lock);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2276
			__unmap_hugepage_range(iter_vma,
2277
				address, address + huge_page_size(h),
2278 2279
				page);
	}
2280
	spin_unlock(&mapping->i_mmap_lock);
2281 2282 2283 2284

	return 1;
}

2285 2286 2287
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 */
2288
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2289 2290
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2291
{
2292
	struct hstate *h = hstate_vma(vma);
2293
	struct page *old_page, *new_page;
2294
	int avoidcopy;
2295
	int outside_reserve = 0;
2296 2297 2298

	old_page = pte_page(pte);

2299
retry_avoidcopy:
2300 2301
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2302
	avoidcopy = (page_mapcount(old_page) == 1);
2303
	if (avoidcopy) {
2304 2305 2306
		if (!trylock_page(old_page))
			if (PageAnon(old_page))
				page_move_anon_rmap(old_page, vma, address);
2307
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2308
		return 0;
2309 2310
	}

2311 2312 2313 2314 2315 2316 2317 2318 2319
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2320
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2321 2322 2323 2324
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2325
	page_cache_get(old_page);
2326 2327 2328

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2329
	new_page = alloc_huge_page(vma, address, outside_reserve);
2330

2331
	if (IS_ERR(new_page)) {
2332
		page_cache_release(old_page);
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2346
				spin_lock(&mm->page_table_lock);
2347 2348 2349 2350 2351
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2352 2353
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2354
		return -PTR_ERR(new_page);
2355 2356
	}

2357 2358 2359 2360 2361 2362 2363
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

2364
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
2365
	__SetPageUptodate(new_page);
2366

2367 2368 2369 2370 2371
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2372
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2373
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2374
		/* Break COW */
2375
		huge_ptep_clear_flush(vma, address, ptep);
2376 2377
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2378 2379
		page_remove_rmap(old_page);
		hugepage_add_anon_rmap(new_page, vma, address);
2380 2381 2382 2383 2384
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2385
	return 0;
2386 2387
}

2388
/* Return the pagecache page at a given address within a VMA */
2389 2390
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2391 2392
{
	struct address_space *mapping;
2393
	pgoff_t idx;
2394 2395

	mapping = vma->vm_file->f_mapping;
2396
	idx = vma_hugecache_offset(h, vma, address);
2397 2398 2399 2400

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2401 2402 2403 2404 2405
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2421
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2422
			unsigned long address, pte_t *ptep, unsigned int flags)
2423
{
2424
	struct hstate *h = hstate_vma(vma);
2425
	int ret = VM_FAULT_SIGBUS;
2426
	pgoff_t idx;
A
Adam Litke 已提交
2427 2428 2429
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2430
	pte_t new_pte;
A
Adam Litke 已提交
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2444
	mapping = vma->vm_file->f_mapping;
2445
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2446 2447 2448 2449 2450

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2451 2452 2453
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2454
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2455 2456
		if (idx >= size)
			goto out;
2457
		page = alloc_huge_page(vma, address, 0);
2458 2459
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2460 2461
			goto out;
		}
2462
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2463
		__SetPageUptodate(page);
2464

2465
		if (vma->vm_flags & VM_MAYSHARE) {
2466
			int err;
K
Ken Chen 已提交
2467
			struct inode *inode = mapping->host;
2468 2469 2470 2471 2472 2473 2474 2475

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2476 2477

			spin_lock(&inode->i_lock);
2478
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2479
			spin_unlock(&inode->i_lock);
2480
			page_dup_rmap(page);
2481
		} else {
2482
			lock_page(page);
2483 2484 2485 2486 2487
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
			hugepage_add_new_anon_rmap(page, vma, address);
2488
		}
2489 2490
	} else {
		page_dup_rmap(page);
2491
	}
2492

2493 2494 2495 2496 2497 2498
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2499
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2500 2501 2502 2503
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2504

2505
	spin_lock(&mm->page_table_lock);
2506
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2507 2508 2509
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2510
	ret = 0;
2511
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2512 2513
		goto backout;

2514 2515 2516 2517
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2518
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2519
		/* Optimization, do the COW without a second fault */
2520
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2521 2522
	}

2523
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2524 2525
	unlock_page(page);
out:
2526
	return ret;
A
Adam Litke 已提交
2527 2528 2529

backout:
	spin_unlock(&mm->page_table_lock);
2530
backout_unlocked:
A
Adam Litke 已提交
2531 2532 2533
	unlock_page(page);
	put_page(page);
	goto out;
2534 2535
}

2536
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2537
			unsigned long address, unsigned int flags)
2538 2539 2540
{
	pte_t *ptep;
	pte_t entry;
2541
	int ret;
2542
	struct page *page = NULL;
2543
	struct page *pagecache_page = NULL;
2544
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2545
	struct hstate *h = hstate_vma(vma);
2546

2547
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2548 2549 2550
	if (!ptep)
		return VM_FAULT_OOM;

2551 2552 2553 2554 2555 2556
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2557 2558
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2559
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2560
		goto out_mutex;
2561
	}
2562

N
Nick Piggin 已提交
2563
	ret = 0;
2564

2565 2566 2567 2568 2569 2570 2571 2572
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2573
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2574 2575
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2576
			goto out_mutex;
2577
		}
2578

2579
		if (!(vma->vm_flags & VM_MAYSHARE))
2580 2581 2582 2583
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2584 2585 2586 2587 2588
	if (!pagecache_page) {
		page = pte_page(entry);
		lock_page(page);
	}

2589 2590
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2591 2592 2593 2594
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2595
	if (flags & FAULT_FLAG_WRITE) {
2596
		if (!pte_write(entry)) {
2597 2598
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2599 2600 2601 2602 2603
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2604 2605
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2606
		update_mmu_cache(vma, address, ptep);
2607 2608

out_page_table_lock:
2609
	spin_unlock(&mm->page_table_lock);
2610 2611 2612 2613

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
2614 2615
	} else {
		unlock_page(page);
2616 2617
	}

2618
out_mutex:
2619
	mutex_unlock(&hugetlb_instantiation_mutex);
2620 2621

	return ret;
2622 2623
}

A
Andi Kleen 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2633 2634
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2635
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2636
			unsigned int flags)
D
David Gibson 已提交
2637
{
2638 2639
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2640
	int remainder = *length;
2641
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2642

2643
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2644
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2645
		pte_t *pte;
H
Hugh Dickins 已提交
2646
		int absent;
A
Adam Litke 已提交
2647
		struct page *page;
D
David Gibson 已提交
2648

A
Adam Litke 已提交
2649 2650
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2651
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2652 2653
		 * first, for the page indexing below to work.
		 */
2654
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2655 2656 2657 2658
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2659 2660 2661 2662
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2663
		 */
H
Hugh Dickins 已提交
2664 2665
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2666 2667 2668
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2669

H
Hugh Dickins 已提交
2670 2671
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2672
			int ret;
D
David Gibson 已提交
2673

A
Adam Litke 已提交
2674
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2675 2676
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2677
			spin_lock(&mm->page_table_lock);
2678
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2679
				continue;
D
David Gibson 已提交
2680

A
Adam Litke 已提交
2681 2682 2683 2684
			remainder = 0;
			break;
		}

2685
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2686
		page = pte_page(huge_ptep_get(pte));
2687
same_page:
2688
		if (pages) {
H
Hugh Dickins 已提交
2689
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2690
			get_page(pages[i]);
2691
		}
D
David Gibson 已提交
2692 2693 2694 2695 2696

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2697
		++pfn_offset;
D
David Gibson 已提交
2698 2699
		--remainder;
		++i;
2700
		if (vaddr < vma->vm_end && remainder &&
2701
				pfn_offset < pages_per_huge_page(h)) {
2702 2703 2704 2705 2706 2707
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2708
	}
2709
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2710 2711 2712
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2713
	return i ? i : -EFAULT;
D
David Gibson 已提交
2714
}
2715 2716 2717 2718 2719 2720 2721 2722

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2723
	struct hstate *h = hstate_vma(vma);
2724 2725 2726 2727

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2728
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2729
	spin_lock(&mm->page_table_lock);
2730
	for (; address < end; address += huge_page_size(h)) {
2731 2732 2733
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2734 2735
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2736
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2737 2738 2739 2740 2741 2742
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2743
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2744 2745 2746 2747

	flush_tlb_range(vma, start, end);
}

2748 2749
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2750 2751
					struct vm_area_struct *vma,
					int acctflag)
2752
{
2753
	long ret, chg;
2754
	struct hstate *h = hstate_inode(inode);
2755

2756 2757 2758 2759 2760 2761 2762 2763
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2764 2765 2766 2767 2768 2769
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2770
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2771
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2772 2773 2774 2775 2776
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2777
		chg = to - from;
2778

2779 2780 2781 2782
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2783 2784
	if (chg < 0)
		return chg;
2785

2786
	/* There must be enough filesystem quota for the mapping */
2787 2788
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2789 2790

	/*
2791 2792
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2793
	 */
2794
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2795 2796
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2797
		return ret;
K
Ken Chen 已提交
2798
	}
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2811
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2812
		region_add(&inode->i_mapping->private_list, from, to);
2813 2814 2815 2816 2817
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2818
	struct hstate *h = hstate_inode(inode);
2819
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2820 2821

	spin_lock(&inode->i_lock);
2822
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2823 2824
	spin_unlock(&inode->i_lock);

2825
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2826
	hugetlb_acct_memory(h, -(chg - freed));
2827
}
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843

/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
void __isolate_hwpoisoned_huge_page(struct page *hpage)
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	spin_lock(&hugetlb_lock);
	list_del(&hpage->lru);
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	spin_unlock(&hugetlb_lock);
}