hugetlb.c 81.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 38
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

44 45
__initdata LIST_HEAD(huge_boot_pages);

46 47 48
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
49
static unsigned long __initdata default_hstate_size;
50

51 52 53
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(vma->vm_file->f_dentry->d_inode);
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138 139 140 141 142
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437 438
}

/* Decrement the reserved pages in the hugepage pool by one */
439 440
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
441
{
442 443 444
	if (vma->vm_flags & VM_NORESERVE)
		return;

445
	if (vma->vm_flags & VM_MAYSHARE) {
446
		/* Shared mappings always use reserves */
447
		h->resv_huge_pages--;
448
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 450 451 452
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
453
		h->resv_huge_pages--;
454 455 456
	}
}

457
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 459 460
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
461
	if (!(vma->vm_flags & VM_MAYSHARE))
462 463 464 465
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
466
static int vma_has_reserves(struct vm_area_struct *vma)
467
{
468
	if (vma->vm_flags & VM_MAYSHARE)
469 470 471 472
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

509
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
510 511
{
	int nid = page_to_nid(page);
512
	list_move(&page->lru, &h->hugepage_freelists[nid]);
513 514
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
515 516
}

517 518 519 520 521 522 523
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524
	list_move(&page->lru, &h->hugepage_activelist);
525
	set_page_refcounted(page);
526 527 528 529 530
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

531 532
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
533
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
534
{
535
	struct page *page = NULL;
536
	struct mempolicy *mpol;
537
	nodemask_t *nodemask;
538
	struct zonelist *zonelist;
539 540
	struct zone *zone;
	struct zoneref *z;
541
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
542

543 544
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
545 546
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
547 548 549 550 551
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
552
	if (!vma_has_reserves(vma) &&
553
			h->free_huge_pages - h->resv_huge_pages == 0)
554
		goto err;
555

556
	/* If reserves cannot be used, ensure enough pages are in the pool */
557
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558
		goto err;
559

560 561
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
562 563 564 565 566 567 568
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
569
		}
L
Linus Torvalds 已提交
570
	}
571

572
	mpol_cond_put(mpol);
573 574
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
575
	return page;
576 577 578 579

err:
	mpol_cond_put(mpol);
	return NULL;
L
Linus Torvalds 已提交
580 581
}

582
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
583 584
{
	int i;
585

586 587
	VM_BUG_ON(h->order >= MAX_ORDER);

588 589 590
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
591 592 593 594
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
595
	}
596
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
597 598
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
599
	arch_release_hugepage(page);
600
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
601 602
}

603 604 605 606 607 608 609 610 611 612 613
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

614 615
static void free_huge_page(struct page *page)
{
616 617 618 619
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
620
	struct hstate *h = page_hstate(page);
621
	int nid = page_to_nid(page);
622 623
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
624

625
	set_page_private(page, 0);
626
	page->mapping = NULL;
627
	BUG_ON(page_count(page));
628
	BUG_ON(page_mapcount(page));
629 630

	spin_lock(&hugetlb_lock);
631 632
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
633
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634 635
		/* remove the page from active list */
		list_del(&page->lru);
636 637 638
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
639
	} else {
640
		enqueue_huge_page(h, page);
641
	}
642
	spin_unlock(&hugetlb_lock);
643
	hugepage_subpool_put_pages(spool, 1);
644 645
}

646
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647
{
648
	INIT_LIST_HEAD(&page->lru);
649 650
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
651
	set_hugetlb_cgroup(page, NULL);
652 653
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
654 655 656 657
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

658 659 660 661 662 663 664 665 666 667 668
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
669
		set_page_count(p, 0);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
686 687
EXPORT_SYMBOL_GPL(PageHuge);

688
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
689 690
{
	struct page *page;
691

692 693 694
	if (h->order >= MAX_ORDER)
		return NULL;

695
	page = alloc_pages_exact_node(nid,
696 697
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
698
		huge_page_order(h));
L
Linus Torvalds 已提交
699
	if (page) {
700
		if (arch_prepare_hugepage(page)) {
701
			__free_pages(page, huge_page_order(h));
702
			return NULL;
703
		}
704
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
705
	}
706 707 708 709

	return page;
}

710
/*
711 712 713 714 715
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
716
 */
717
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
718
{
719
	nid = next_node(nid, *nodes_allowed);
720
	if (nid == MAX_NUMNODES)
721
		nid = first_node(*nodes_allowed);
722 723 724 725 726
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

727 728 729 730 731 732 733
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

734
/*
735 736 737 738
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
739
 */
740 741
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
742
{
743 744 745 746 747 748
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
749 750

	return nid;
751 752
}

753
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
754 755 756 757 758 759
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

760
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761
	next_nid = start_nid;
762 763

	do {
764
		page = alloc_fresh_huge_page_node(h, next_nid);
765
		if (page) {
766
			ret = 1;
767 768
			break;
		}
769
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770
	} while (next_nid != start_nid);
771

772 773 774 775 776
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

777
	return ret;
L
Linus Torvalds 已提交
778 779
}

780
/*
781 782 783 784
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
785
 */
786
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
787
{
788 789 790 791 792 793
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
794 795

	return nid;
796 797 798 799 800 801 802 803
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
804 805
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
806 807 808 809 810
{
	int start_nid;
	int next_nid;
	int ret = 0;

811
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
812 813 814
	next_nid = start_nid;

	do {
815 816 817 818 819 820
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
821 822 823 824 825 826
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
827 828 829 830
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
831 832
			update_and_free_page(h, page);
			ret = 1;
833
			break;
834
		}
835
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
836
	} while (next_nid != start_nid);
837 838 839 840

	return ret;
}

841
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
842 843
{
	struct page *page;
844
	unsigned int r_nid;
845

846 847 848
	if (h->order >= MAX_ORDER)
		return NULL;

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
873
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874 875 876
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
877 878
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
879 880 881
	}
	spin_unlock(&hugetlb_lock);

882 883 884 885 886 887 888 889
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
890

891 892
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
893
		page = NULL;
894 895
	}

896
	spin_lock(&hugetlb_lock);
897
	if (page) {
898
		INIT_LIST_HEAD(&page->lru);
899
		r_nid = page_to_nid(page);
900
		set_compound_page_dtor(page, free_huge_page);
901
		set_hugetlb_cgroup(page, NULL);
902 903 904
		/*
		 * We incremented the global counters already
		 */
905 906
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
907
		__count_vm_event(HTLB_BUDDY_PGALLOC);
908
	} else {
909 910
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
911
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
912
	}
913
	spin_unlock(&hugetlb_lock);
914 915 916 917

	return page;
}

918 919 920 921 922 923 924 925 926 927 928 929 930
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

931
	if (!page)
932 933 934 935 936
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

937
/*
L
Lucas De Marchi 已提交
938
 * Increase the hugetlb pool such that it can accommodate a reservation
939 940
 * of size 'delta'.
 */
941
static int gather_surplus_pages(struct hstate *h, int delta)
942 943 944 945 946
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
947
	bool alloc_ok = true;
948

949
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
950
	if (needed <= 0) {
951
		h->resv_huge_pages += delta;
952
		return 0;
953
	}
954 955 956 957 958 959 960 961

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
962
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
963 964 965 966
		if (!page) {
			alloc_ok = false;
			break;
		}
967 968
		list_add(&page->lru, &surplus_list);
	}
969
	allocated += i;
970 971 972 973 974 975

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
976 977
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
978 979 980 981 982 983 984 985 986 987
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
988 989
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
990
	 * needed to accommodate the reservation.  Add the appropriate number
991
	 * of pages to the hugetlb pool and free the extras back to the buddy
992 993 994
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
995 996
	 */
	needed += allocated;
997
	h->resv_huge_pages += delta;
998
	ret = 0;
999

1000
	/* Free the needed pages to the hugetlb pool */
1001
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1002 1003
		if ((--needed) < 0)
			break;
1004 1005 1006 1007 1008 1009
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1010
		enqueue_huge_page(h, page);
1011
	}
1012
free:
1013
	spin_unlock(&hugetlb_lock);
1014 1015 1016 1017

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1018
			put_page(page);
1019
		}
1020
	}
1021
	spin_lock(&hugetlb_lock);
1022 1023 1024 1025 1026 1027 1028 1029

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1030
 * Called with hugetlb_lock held.
1031
 */
1032 1033
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1034 1035 1036
{
	unsigned long nr_pages;

1037
	/* Uncommit the reservation */
1038
	h->resv_huge_pages -= unused_resv_pages;
1039

1040 1041 1042 1043
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1044
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1045

1046 1047
	/*
	 * We want to release as many surplus pages as possible, spread
1048 1049 1050 1051 1052
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1053 1054
	 */
	while (nr_pages--) {
1055
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1056
			break;
1057 1058 1059
	}
}

1060 1061 1062
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1063 1064 1065 1066 1067 1068
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1069
 */
1070
static long vma_needs_reservation(struct hstate *h,
1071
			struct vm_area_struct *vma, unsigned long addr)
1072 1073 1074 1075
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1076
	if (vma->vm_flags & VM_MAYSHARE) {
1077
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1078 1079 1080
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1081 1082
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1083

1084
	} else  {
1085
		long err;
1086
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1087 1088 1089 1090 1091 1092 1093
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1094
}
1095 1096
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1097 1098 1099 1100
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1101
	if (vma->vm_flags & VM_MAYSHARE) {
1102
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1104 1105

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107 1108 1109 1110
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1111 1112 1113
	}
}

1114
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1115
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1116
{
1117
	struct hugepage_subpool *spool = subpool_vma(vma);
1118
	struct hstate *h = hstate_vma(vma);
1119
	struct page *page;
1120
	long chg;
1121 1122
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1123

1124
	idx = hstate_index(h);
1125
	/*
1126 1127 1128 1129 1130 1131
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1132
	 */
1133
	chg = vma_needs_reservation(h, vma, addr);
1134
	if (chg < 0)
1135
		return ERR_PTR(-ENOMEM);
1136
	if (chg)
1137
		if (hugepage_subpool_get_pages(spool, chg))
1138
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1139

1140 1141 1142 1143 1144
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1145
	spin_lock(&hugetlb_lock);
1146
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1147 1148 1149 1150 1151 1152 1153
	if (page) {
		/* update page cgroup details */
		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
					     h_cg, page);
		spin_unlock(&hugetlb_lock);
	} else {
		spin_unlock(&hugetlb_lock);
1154
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1155
		if (!page) {
1156 1157 1158
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1159
			hugepage_subpool_put_pages(spool, chg);
1160
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1161
		}
1162
		spin_lock(&hugetlb_lock);
1163 1164
		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
					     h_cg, page);
1165 1166
		list_move(&page->lru, &h->hugepage_activelist);
		spin_unlock(&hugetlb_lock);
K
Ken Chen 已提交
1167
	}
1168

1169
	set_page_private(page, (unsigned long)spool);
1170

1171
	vma_commit_reservation(h, vma, addr);
1172
	return page;
1173 1174
}

1175
int __weak alloc_bootmem_huge_page(struct hstate *h)
1176 1177
{
	struct huge_bootmem_page *m;
1178
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1179 1180 1181 1182 1183

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1184
				NODE_DATA(hstate_next_node_to_alloc(h,
1185
						&node_states[N_HIGH_MEMORY])),
1186 1187 1188 1189 1190 1191 1192 1193 1194
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1195
			goto found;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1209 1210 1211 1212 1213 1214 1215 1216
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1217 1218 1219 1220 1221 1222 1223
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1224 1225 1226 1227 1228 1229 1230 1231 1232
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1233 1234
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1235
		prep_compound_huge_page(page, h->order);
1236
		prep_new_huge_page(h, page, page_to_nid(page));
1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1245 1246 1247
	}
}

1248
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1249 1250
{
	unsigned long i;
1251

1252
	for (i = 0; i < h->max_huge_pages; ++i) {
1253 1254 1255
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1256 1257
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1258 1259
			break;
	}
1260
	h->max_huge_pages = i;
1261 1262 1263 1264 1265 1266 1267
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1268 1269 1270
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1271 1272 1273
	}
}

A
Andi Kleen 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1285 1286 1287 1288 1289
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1290 1291 1292 1293 1294
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1295 1296 1297
	}
}

L
Linus Torvalds 已提交
1298
#ifdef CONFIG_HIGHMEM
1299 1300
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1301
{
1302 1303
	int i;

1304 1305 1306
	if (h->order >= MAX_ORDER)
		return;

1307
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1308
		struct page *page, *next;
1309 1310 1311
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1312
				return;
L
Linus Torvalds 已提交
1313 1314 1315
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1316
			update_and_free_page(h, page);
1317 1318
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1319 1320 1321 1322
		}
	}
}
#else
1323 1324
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1325 1326 1327 1328
{
}
#endif

1329 1330 1331 1332 1333
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1334 1335
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1336
{
1337
	int start_nid, next_nid;
1338 1339 1340 1341
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1342
	if (delta < 0)
1343
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1344
	else
1345
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1346 1347 1348 1349 1350 1351 1352 1353
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1354
			if (!h->surplus_huge_pages_node[nid]) {
1355 1356
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1357
				continue;
1358
			}
1359 1360 1361 1362 1363 1364
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1365
						h->nr_huge_pages_node[nid]) {
1366 1367
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1368
				continue;
1369
			}
1370
		}
1371 1372 1373 1374 1375

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1376
	} while (next_nid != start_nid);
1377 1378 1379 1380

	return ret;
}

1381
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1382 1383
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1384
{
1385
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1386

1387 1388 1389
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1390 1391 1392 1393
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1394 1395 1396 1397 1398 1399
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1400
	 */
L
Linus Torvalds 已提交
1401
	spin_lock(&hugetlb_lock);
1402
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1403
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1404 1405 1406
			break;
	}

1407
	while (count > persistent_huge_pages(h)) {
1408 1409 1410 1411 1412 1413
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1414
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1415 1416 1417 1418
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1419 1420 1421
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1422 1423 1424 1425 1426 1427 1428 1429
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1430 1431 1432 1433 1434 1435 1436 1437
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1438
	 */
1439
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1440
	min_count = max(count, min_count);
1441
	try_to_free_low(h, min_count, nodes_allowed);
1442
	while (min_count < persistent_huge_pages(h)) {
1443
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1444 1445
			break;
	}
1446
	while (count < persistent_huge_pages(h)) {
1447
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1448 1449 1450
			break;
	}
out:
1451
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1452
	spin_unlock(&hugetlb_lock);
1453
	return ret;
L
Linus Torvalds 已提交
1454 1455
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1466 1467 1468
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1469 1470
{
	int i;
1471

1472
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1473 1474 1475
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1476
			return &hstates[i];
1477 1478 1479
		}

	return kobj_to_node_hstate(kobj, nidp);
1480 1481
}

1482
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1483 1484
					struct kobj_attribute *attr, char *buf)
{
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1496
}
1497

1498 1499 1500
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1501 1502
{
	int err;
1503
	int nid;
1504
	unsigned long count;
1505
	struct hstate *h;
1506
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1507

1508
	err = strict_strtoul(buf, 10, &count);
1509
	if (err)
1510
		goto out;
1511

1512
	h = kobj_to_hstate(kobj, &nid);
1513 1514 1515 1516 1517
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1537
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1538

1539
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1540 1541 1542
		NODEMASK_FREE(nodes_allowed);

	return len;
1543 1544 1545
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1558 1559 1560
}
HSTATE_ATTR(nr_hugepages);

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1582 1583 1584
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1585
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1586 1587
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1588

1589 1590 1591 1592 1593
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1594
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1595

1596 1597 1598
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1599 1600
	err = strict_strtoul(buf, 10, &input);
	if (err)
1601
		return err;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1625 1626 1627 1628 1629 1630
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1631
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1632 1633 1634 1635 1636 1637 1638
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1650 1651 1652 1653 1654 1655 1656 1657 1658
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1659 1660 1661
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1662 1663 1664 1665 1666 1667 1668
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1669 1670 1671
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1672 1673
{
	int retval;
1674
	int hi = hstate_index(h);
1675

1676 1677
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1678 1679
		return -ENOMEM;

1680
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1681
	if (retval)
1682
		kobject_put(hstate_kobjs[hi]);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1697 1698
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1699 1700 1701 1702 1703 1704
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1705 1706 1707 1708
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1709 1710 1711
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1712 1713 1714 1715 1716 1717 1718 1719 1720
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1721
 * A subset of global hstate attributes for node devices
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1735
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1758
 * Unregister hstate attributes from a single node device.
1759 1760 1761 1762 1763
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1764
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1765 1766

	if (!nhs->hugepages_kobj)
1767
		return;		/* no hstate attributes */
1768

1769 1770 1771 1772 1773
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1774
		}
1775
	}
1776 1777 1778 1779 1780 1781

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1782
 * hugetlb module exit:  unregister hstate attributes from node devices
1783 1784 1785 1786 1787 1788 1789
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1790
	 * disable node device registrations.
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
1802
 * Register hstate attributes for a single node device.
1803 1804 1805 1806 1807
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1808
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1809 1810 1811 1812 1813 1814
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1815
							&node->dev.kobj);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1826
						h->name, node->dev.id);
1827 1828 1829 1830 1831 1832 1833
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1834
 * hugetlb init time:  register hstate attributes for all registered node
1835 1836
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1837 1838 1839 1840 1841
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1842
	for_each_node_state(nid, N_HIGH_MEMORY) {
1843
		struct node *node = &node_devices[nid];
1844
		if (node->dev.id == nid)
1845 1846 1847 1848
			hugetlb_register_node(node);
	}

	/*
1849
	 * Let the node device driver know we're here so it can
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1871 1872 1873 1874
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1875 1876
	hugetlb_unregister_all_nodes();

1877
	for_each_hstate(h) {
1878
		kobject_put(hstate_kobjs[hstate_index(h)]);
1879 1880 1881 1882 1883 1884 1885 1886
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1887 1888 1889 1890 1891 1892
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1893

1894 1895 1896 1897
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1898
	}
1899
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1900 1901
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1902 1903 1904

	hugetlb_init_hstates();

1905 1906
	gather_bootmem_prealloc();

1907 1908 1909 1910
	report_hugepages();

	hugetlb_sysfs_init();

1911 1912
	hugetlb_register_all_nodes();

1913 1914 1915 1916 1917 1918 1919 1920
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1921 1922
	unsigned long i;

1923 1924 1925 1926
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
1927
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1928
	BUG_ON(order == 0);
1929
	h = &hstates[hugetlb_max_hstate++];
1930 1931
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1932 1933 1934 1935
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1936
	INIT_LIST_HEAD(&h->hugepage_activelist);
1937 1938
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1939 1940
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1941 1942 1943 1944 1945 1946 1947
	/*
	 * Add cgroup control files only if the huge page consists
	 * of more than two normal pages. This is because we use
	 * page[2].lru.next for storing cgoup details.
	 */
	if (order >= HUGETLB_CGROUP_MIN_ORDER)
		hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1948

1949 1950 1951
	parsed_hstate = h;
}

1952
static int __init hugetlb_nrpages_setup(char *s)
1953 1954
{
	unsigned long *mhp;
1955
	static unsigned long *last_mhp;
1956 1957

	/*
1958
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1959 1960
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1961
	if (!hugetlb_max_hstate)
1962 1963 1964 1965
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1966 1967 1968 1969 1970 1971
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1972 1973 1974
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1975 1976 1977 1978 1979
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1980
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1981 1982 1983 1984
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1985 1986
	return 1;
}
1987 1988 1989 1990 1991 1992 1993 1994
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2008 2009 2010
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2011
{
2012 2013
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2014
	int ret;
2015

2016
	tmp = h->max_huge_pages;
2017

2018 2019 2020
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2021 2022
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2023 2024 2025
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2026

2027
	if (write) {
2028 2029
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
2040 2041
out:
	return ret;
L
Linus Torvalds 已提交
2042
}
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2061
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2062
			void __user *buffer,
2063 2064
			size_t *length, loff_t *ppos)
{
2065
	proc_dointvec(table, write, buffer, length, ppos);
2066 2067 2068 2069 2070 2071 2072
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2073
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2074
			void __user *buffer,
2075 2076
			size_t *length, loff_t *ppos)
{
2077
	struct hstate *h = &default_hstate;
2078
	unsigned long tmp;
2079
	int ret;
2080

2081
	tmp = h->nr_overcommit_huge_pages;
2082

2083 2084 2085
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2086 2087
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2088 2089 2090
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2091 2092 2093 2094 2095 2096

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2097 2098
out:
	return ret;
2099 2100
}

L
Linus Torvalds 已提交
2101 2102
#endif /* CONFIG_SYSCTL */

2103
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2104
{
2105
	struct hstate *h = &default_hstate;
2106
	seq_printf(m,
2107 2108 2109 2110 2111
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2112 2113 2114 2115 2116
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2117 2118 2119 2120
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2121
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2122 2123
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2124 2125
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2126 2127 2128
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2134 2135
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2136 2137
}

2138
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2161
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2162 2163
			goto out;

2164 2165
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2166 2167 2168 2169 2170 2171
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2172
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2173 2174 2175 2176 2177 2178

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2179 2180 2181 2182 2183 2184 2185 2186
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2187
	 * has a reference to the reservation map it cannot disappear until
2188 2189 2190 2191 2192 2193 2194
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2195 2196 2197 2198 2199 2200 2201 2202 2203
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2204 2205
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2206
	struct hstate *h = hstate_vma(vma);
2207
	struct resv_map *reservations = vma_resv_map(vma);
2208
	struct hugepage_subpool *spool = subpool_vma(vma);
2209 2210 2211 2212 2213
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2214 2215
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2216 2217 2218 2219

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2220
		resv_map_put(vma);
2221

2222
		if (reserve) {
2223
			hugetlb_acct_memory(h, -reserve);
2224
			hugepage_subpool_put_pages(spool, reserve);
2225
		}
2226
	}
2227 2228
}

L
Linus Torvalds 已提交
2229 2230 2231 2232 2233 2234
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2235
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2236 2237
{
	BUG();
N
Nick Piggin 已提交
2238
	return 0;
L
Linus Torvalds 已提交
2239 2240
}

2241
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2242
	.fault = hugetlb_vm_op_fault,
2243
	.open = hugetlb_vm_op_open,
2244
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2245 2246
};

2247 2248
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2249 2250 2251
{
	pte_t entry;

2252
	if (writable) {
D
David Gibson 已提交
2253 2254 2255
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2256
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2257 2258 2259
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2260
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2261 2262 2263 2264

	return entry;
}

2265 2266 2267 2268 2269
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2270
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2271
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2272
		update_mmu_cache(vma, address, ptep);
2273 2274 2275
}


D
David Gibson 已提交
2276 2277 2278 2279 2280
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2281
	unsigned long addr;
2282
	int cow;
2283 2284
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2285 2286

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2287

2288
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2289 2290 2291
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2292
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2293 2294
		if (!dst_pte)
			goto nomem;
2295 2296 2297 2298 2299

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2300
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2301
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2302
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2303
			if (cow)
2304 2305
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2306 2307
			ptepage = pte_page(entry);
			get_page(ptepage);
2308
			page_dup_rmap(ptepage);
2309 2310 2311
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2312
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2313 2314 2315 2316 2317 2318 2319
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2320 2321 2322 2323 2324 2325 2326
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2327
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2328
		return 1;
2329
	else
N
Naoya Horiguchi 已提交
2330 2331 2332
		return 0;
}

2333 2334 2335 2336 2337 2338 2339
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2340
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2341
		return 1;
2342
	else
2343 2344 2345
		return 0;
}

2346 2347 2348
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2349
{
2350
	int force_flush = 0;
D
David Gibson 已提交
2351 2352
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2353
	pte_t *ptep;
D
David Gibson 已提交
2354 2355
	pte_t pte;
	struct page *page;
2356 2357 2358
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

D
David Gibson 已提交
2359
	WARN_ON(!is_vm_hugetlb_page(vma));
2360 2361
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2362

2363
	tlb_start_vma(tlb, vma);
A
Andrea Arcangeli 已提交
2364
	mmu_notifier_invalidate_range_start(mm, start, end);
2365
again:
2366
	spin_lock(&mm->page_table_lock);
2367
	for (address = start; address < end; address += sz) {
2368
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2369
		if (!ptep)
2370 2371
			continue;

2372 2373 2374
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

		page = pte_page(pte);
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2403
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2404
		tlb_remove_tlb_entry(tlb, ptep, address);
2405 2406
		if (pte_dirty(pte))
			set_page_dirty(page);
2407

2408 2409 2410 2411
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2412 2413 2414
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2415
	}
2416
	spin_unlock(&mm->page_table_lock);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2427
	}
2428 2429
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2430
}
D
David Gibson 已提交
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2451
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2452
			  unsigned long end, struct page *ref_page)
2453
{
2454 2455 2456 2457 2458 2459 2460 2461
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

	tlb_gather_mmu(&tlb, mm, 0);
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2462 2463
}

2464 2465 2466 2467 2468 2469
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2470 2471
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2472
{
2473
	struct hstate *h = hstate_vma(vma);
2474 2475 2476 2477 2478 2479 2480 2481 2482
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2483
	address = address & huge_page_mask(h);
2484
	pgoff = vma_hugecache_offset(h, vma, address);
2485
	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2486

2487 2488 2489 2490 2491
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2492
	mutex_lock(&mapping->i_mmap_mutex);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2506 2507
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2508
	}
2509
	mutex_unlock(&mapping->i_mmap_mutex);
2510 2511 2512 2513

	return 1;
}

2514 2515
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2516 2517 2518
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2519
 */
2520
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2521 2522
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2523
{
2524
	struct hstate *h = hstate_vma(vma);
2525
	struct page *old_page, *new_page;
2526
	int avoidcopy;
2527
	int outside_reserve = 0;
2528 2529 2530

	old_page = pte_page(pte);

2531
retry_avoidcopy:
2532 2533
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2534
	avoidcopy = (page_mapcount(old_page) == 1);
2535
	if (avoidcopy) {
2536 2537
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2538
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2539
		return 0;
2540 2541
	}

2542 2543 2544 2545 2546 2547 2548 2549 2550
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2551
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2552 2553 2554 2555
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2556
	page_cache_get(old_page);
2557 2558 2559

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2560
	new_page = alloc_huge_page(vma, address, outside_reserve);
2561

2562
	if (IS_ERR(new_page)) {
2563
		long err = PTR_ERR(new_page);
2564
		page_cache_release(old_page);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2577
				spin_lock(&mm->page_table_lock);
2578 2579 2580 2581 2582 2583 2584 2585
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2586 2587 2588 2589
			}
			WARN_ON_ONCE(1);
		}

2590 2591
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2592 2593 2594 2595
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2596 2597
	}

2598 2599 2600 2601
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2602
	if (unlikely(anon_vma_prepare(vma))) {
2603 2604
		page_cache_release(new_page);
		page_cache_release(old_page);
2605 2606
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2607
		return VM_FAULT_OOM;
2608
	}
2609

A
Andrea Arcangeli 已提交
2610 2611
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2612
	__SetPageUptodate(new_page);
2613

2614 2615 2616 2617 2618
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2619
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2620
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2621
		/* Break COW */
2622 2623 2624
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2625
		huge_ptep_clear_flush(vma, address, ptep);
2626 2627
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2628
		page_remove_rmap(old_page);
2629
		hugepage_add_new_anon_rmap(new_page, vma, address);
2630 2631
		/* Make the old page be freed below */
		new_page = old_page;
2632 2633 2634
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2635 2636 2637
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2638
	return 0;
2639 2640
}

2641
/* Return the pagecache page at a given address within a VMA */
2642 2643
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2644 2645
{
	struct address_space *mapping;
2646
	pgoff_t idx;
2647 2648

	mapping = vma->vm_file->f_mapping;
2649
	idx = vma_hugecache_offset(h, vma, address);
2650 2651 2652 2653

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2654 2655 2656 2657 2658
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2674
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2675
			unsigned long address, pte_t *ptep, unsigned int flags)
2676
{
2677
	struct hstate *h = hstate_vma(vma);
2678
	int ret = VM_FAULT_SIGBUS;
2679
	int anon_rmap = 0;
2680
	pgoff_t idx;
A
Adam Litke 已提交
2681 2682 2683
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2684
	pte_t new_pte;
A
Adam Litke 已提交
2685

2686 2687 2688
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2689
	 * COW. Warn that such a situation has occurred as it may not be obvious
2690 2691 2692 2693 2694 2695 2696 2697
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2698
	mapping = vma->vm_file->f_mapping;
2699
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2700 2701 2702 2703 2704

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2705 2706 2707
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2708
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2709 2710
		if (idx >= size)
			goto out;
2711
		page = alloc_huge_page(vma, address, 0);
2712
		if (IS_ERR(page)) {
2713 2714 2715 2716 2717
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2718 2719
			goto out;
		}
A
Andrea Arcangeli 已提交
2720
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2721
		__SetPageUptodate(page);
2722

2723
		if (vma->vm_flags & VM_MAYSHARE) {
2724
			int err;
K
Ken Chen 已提交
2725
			struct inode *inode = mapping->host;
2726 2727 2728 2729 2730 2731 2732 2733

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2734 2735

			spin_lock(&inode->i_lock);
2736
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2737
			spin_unlock(&inode->i_lock);
2738
		} else {
2739
			lock_page(page);
2740 2741 2742 2743
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2744
			anon_rmap = 1;
2745
		}
2746
	} else {
2747 2748 2749 2750 2751 2752
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2753
			ret = VM_FAULT_HWPOISON |
2754
				VM_FAULT_SET_HINDEX(hstate_index(h));
2755 2756
			goto backout_unlocked;
		}
2757
	}
2758

2759 2760 2761 2762 2763 2764
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2765
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2766 2767 2768 2769
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2770

2771
	spin_lock(&mm->page_table_lock);
2772
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2773 2774 2775
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2776
	ret = 0;
2777
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2778 2779
		goto backout;

2780 2781 2782 2783
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2784 2785 2786 2787
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2788
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2789
		/* Optimization, do the COW without a second fault */
2790
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2791 2792
	}

2793
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2794 2795
	unlock_page(page);
out:
2796
	return ret;
A
Adam Litke 已提交
2797 2798 2799

backout:
	spin_unlock(&mm->page_table_lock);
2800
backout_unlocked:
A
Adam Litke 已提交
2801 2802 2803
	unlock_page(page);
	put_page(page);
	goto out;
2804 2805
}

2806
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2807
			unsigned long address, unsigned int flags)
2808 2809 2810
{
	pte_t *ptep;
	pte_t entry;
2811
	int ret;
2812
	struct page *page = NULL;
2813
	struct page *pagecache_page = NULL;
2814
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2815
	struct hstate *h = hstate_vma(vma);
2816

2817 2818
	address &= huge_page_mask(h);

2819 2820 2821
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2822 2823 2824 2825
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2826
			return VM_FAULT_HWPOISON_LARGE |
2827
				VM_FAULT_SET_HINDEX(hstate_index(h));
2828 2829
	}

2830
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2831 2832 2833
	if (!ptep)
		return VM_FAULT_OOM;

2834 2835 2836 2837 2838 2839
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2840 2841
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2842
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2843
		goto out_mutex;
2844
	}
2845

N
Nick Piggin 已提交
2846
	ret = 0;
2847

2848 2849 2850 2851 2852 2853 2854 2855
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2856
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2857 2858
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2859
			goto out_mutex;
2860
		}
2861

2862
		if (!(vma->vm_flags & VM_MAYSHARE))
2863 2864 2865 2866
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2867 2868 2869 2870 2871 2872 2873 2874
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2875
	get_page(page);
2876
	if (page != pagecache_page)
2877 2878
		lock_page(page);

2879 2880
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2881 2882 2883 2884
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2885
	if (flags & FAULT_FLAG_WRITE) {
2886
		if (!pte_write(entry)) {
2887 2888
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2889 2890 2891 2892 2893
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2894 2895
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2896
		update_mmu_cache(vma, address, ptep);
2897 2898

out_page_table_lock:
2899
	spin_unlock(&mm->page_table_lock);
2900 2901 2902 2903 2904

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2905 2906
	if (page != pagecache_page)
		unlock_page(page);
2907
	put_page(page);
2908

2909
out_mutex:
2910
	mutex_unlock(&hugetlb_instantiation_mutex);
2911 2912

	return ret;
2913 2914
}

A
Andi Kleen 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2924 2925
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2926
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2927
			unsigned int flags)
D
David Gibson 已提交
2928
{
2929 2930
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2931
	int remainder = *length;
2932
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2933

2934
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2935
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2936
		pte_t *pte;
H
Hugh Dickins 已提交
2937
		int absent;
A
Adam Litke 已提交
2938
		struct page *page;
D
David Gibson 已提交
2939

A
Adam Litke 已提交
2940 2941
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2942
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2943 2944
		 * first, for the page indexing below to work.
		 */
2945
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2946 2947 2948 2949
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2950 2951 2952 2953
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2954
		 */
H
Hugh Dickins 已提交
2955 2956
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2957 2958 2959
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2960

H
Hugh Dickins 已提交
2961 2962
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2963
			int ret;
D
David Gibson 已提交
2964

A
Adam Litke 已提交
2965
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2966 2967
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2968
			spin_lock(&mm->page_table_lock);
2969
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2970
				continue;
D
David Gibson 已提交
2971

A
Adam Litke 已提交
2972 2973 2974 2975
			remainder = 0;
			break;
		}

2976
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2977
		page = pte_page(huge_ptep_get(pte));
2978
same_page:
2979
		if (pages) {
H
Hugh Dickins 已提交
2980
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2981
			get_page(pages[i]);
2982
		}
D
David Gibson 已提交
2983 2984 2985 2986 2987

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2988
		++pfn_offset;
D
David Gibson 已提交
2989 2990
		--remainder;
		++i;
2991
		if (vaddr < vma->vm_end && remainder &&
2992
				pfn_offset < pages_per_huge_page(h)) {
2993 2994 2995 2996 2997 2998
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2999
	}
3000
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
3001 3002 3003
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
3004
	return i ? i : -EFAULT;
D
David Gibson 已提交
3005
}
3006 3007 3008 3009 3010 3011 3012 3013

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3014
	struct hstate *h = hstate_vma(vma);
3015 3016 3017 3018

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3019
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3020
	spin_lock(&mm->page_table_lock);
3021
	for (; address < end; address += huge_page_size(h)) {
3022 3023 3024
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3025 3026
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
3027
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3028 3029 3030 3031 3032 3033
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
3034 3035 3036 3037 3038 3039
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3040
	flush_tlb_range(vma, start, end);
3041
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3042 3043
}

3044 3045
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3046
					struct vm_area_struct *vma,
3047
					vm_flags_t vm_flags)
3048
{
3049
	long ret, chg;
3050
	struct hstate *h = hstate_inode(inode);
3051
	struct hugepage_subpool *spool = subpool_inode(inode);
3052

3053 3054 3055
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3056
	 * without using reserves
3057
	 */
3058
	if (vm_flags & VM_NORESERVE)
3059 3060
		return 0;

3061 3062 3063 3064 3065 3066
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3067
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3068
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3069 3070 3071 3072 3073
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3074
		chg = to - from;
3075

3076 3077 3078 3079
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3080 3081 3082 3083
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3084

3085
	/* There must be enough pages in the subpool for the mapping */
3086 3087 3088 3089
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3090 3091

	/*
3092
	 * Check enough hugepages are available for the reservation.
3093
	 * Hand the pages back to the subpool if there are not
3094
	 */
3095
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3096
	if (ret < 0) {
3097
		hugepage_subpool_put_pages(spool, chg);
3098
		goto out_err;
K
Ken Chen 已提交
3099
	}
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3112
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3113
		region_add(&inode->i_mapping->private_list, from, to);
3114
	return 0;
3115
out_err:
3116 3117
	if (vma)
		resv_map_put(vma);
3118
	return ret;
3119 3120 3121 3122
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3123
	struct hstate *h = hstate_inode(inode);
3124
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3125
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3126 3127

	spin_lock(&inode->i_lock);
3128
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3129 3130
	spin_unlock(&inode->i_lock);

3131
	hugepage_subpool_put_pages(spool, (chg - freed));
3132
	hugetlb_acct_memory(h, -(chg - freed));
3133
}
3134

3135 3136
#ifdef CONFIG_MEMORY_FAILURE

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3151 3152 3153 3154
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3155
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3156 3157 3158
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3159
	int ret = -EBUSY;
3160 3161

	spin_lock(&hugetlb_lock);
3162 3163
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
3164
		set_page_refcounted(hpage);
3165 3166 3167 3168
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3169
	spin_unlock(&hugetlb_lock);
3170
	return ret;
3171
}
3172
#endif