hugetlb.c 56.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17
#include <linux/bootmem.h>
18
#include <linux/sysfs.h>
19

D
David Gibson 已提交
20 21 22 23
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
24
#include "internal.h"
L
Linus Torvalds 已提交
25 26

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27 28
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
29

30 31 32 33
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

34 35
__initdata LIST_HEAD(huge_boot_pages);

36 37 38
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
39
static unsigned long __initdata default_hstate_size;
40 41 42

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
43

44 45 46 47
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
48

49 50 51
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
52 53 54 55 56 57 58 59 60 61
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

208 209 210 211
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
212 213
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
214
{
215 216
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
217 218
}

219 220 221 222 223 224 225
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
226
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
227

228 229 230 231 232 233 234 235 236
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
237 238 239 240 241 242 243 244 245
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
246
 */
247 248 249 250 251 252 253 254 255 256 257
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

struct resv_map *resv_map_alloc(void)
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

void resv_map_release(struct kref *ref)
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
285 286 287
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
288 289
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
290 291 292
	return 0;
}

293
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
294 295 296 297
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

298 299
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
300 301 302 303 304
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
305 306 307
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
308 309 310 311 312
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
313 314

	return (get_vma_private_data(vma) & flag) != 0;
315 316 317
}

/* Decrement the reserved pages in the hugepage pool by one */
318 319
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
320
{
321 322 323
	if (vma->vm_flags & VM_NORESERVE)
		return;

324 325
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
326
		h->resv_huge_pages--;
327
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
328 329 330 331
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
332
		h->resv_huge_pages--;
333 334 335
	}
}

336
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
337 338 339 340 341 342 343 344 345 346 347 348
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static int vma_has_private_reserves(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED)
		return 0;
349
	if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
350 351 352 353
		return 0;
	return 1;
}

354 355
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
356 357 358 359
{
	int i;

	might_sleep();
360
	for (i = 0; i < sz/PAGE_SIZE; i++) {
361
		cond_resched();
362
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
363 364 365 366
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
367
			   unsigned long addr, struct vm_area_struct *vma)
368 369
{
	int i;
370
	struct hstate *h = hstate_vma(vma);
371 372

	might_sleep();
373
	for (i = 0; i < pages_per_huge_page(h); i++) {
374
		cond_resched();
375
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
376 377 378
	}
}

379
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
380 381
{
	int nid = page_to_nid(page);
382 383 384
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
385 386
}

387
static struct page *dequeue_huge_page(struct hstate *h)
388 389 390 391 392
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
393 394
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
395 396
					  struct page, lru);
			list_del(&page->lru);
397 398
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
399 400 401 402 403 404
			break;
		}
	}
	return page;
}

405 406
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
407
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
408
{
409
	int nid;
L
Linus Torvalds 已提交
410
	struct page *page = NULL;
411
	struct mempolicy *mpol;
412
	nodemask_t *nodemask;
413
	struct zonelist *zonelist = huge_zonelist(vma, address,
414
					htlb_alloc_mask, &mpol, &nodemask);
415 416
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
417

418 419 420 421 422 423
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_private_reserves(vma) &&
424
			h->free_huge_pages - h->resv_huge_pages == 0)
425 426
		return NULL;

427
	/* If reserves cannot be used, ensure enough pages are in the pool */
428
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
429 430
		return NULL;

431 432
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
433 434
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
435 436
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
437 438
					  struct page, lru);
			list_del(&page->lru);
439 440
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
441 442

			if (!avoid_reserve)
443
				decrement_hugepage_resv_vma(h, vma);
444

K
Ken Chen 已提交
445
			break;
A
Andrew Morton 已提交
446
		}
L
Linus Torvalds 已提交
447
	}
448
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
449 450 451
	return page;
}

452
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
453 454
{
	int i;
455 456 457 458

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
459 460 461 462 463 464
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
465
	arch_release_hugepage(page);
466
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
467 468
}

469 470 471 472 473 474 475 476 477 478 479
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

480 481
static void free_huge_page(struct page *page)
{
482 483 484 485
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
486
	struct hstate *h = page_hstate(page);
487
	int nid = page_to_nid(page);
488
	struct address_space *mapping;
489

490
	mapping = (struct address_space *) page_private(page);
491
	set_page_private(page, 0);
492
	BUG_ON(page_count(page));
493 494 495
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
496
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
497 498 499
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
500
	} else {
501
		enqueue_huge_page(h, page);
502
	}
503
	spin_unlock(&hugetlb_lock);
504
	if (mapping)
505
		hugetlb_put_quota(mapping, 1);
506 507
}

508 509 510 511 512
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
513
static int adjust_pool_surplus(struct hstate *h, int delta)
514 515 516 517 518 519 520 521 522 523 524 525
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
526
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
527 528
			continue;
		/* Surplus cannot exceed the total number of pages */
529 530
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
531 532
			continue;

533 534
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
535 536 537 538 539 540 541 542
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

543
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
544 545 546
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
547 548
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
549 550 551 552
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

553
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
554 555
{
	struct page *page;
556

557 558 559
	if (h->order >= MAX_ORDER)
		return NULL;

560
	page = alloc_pages_node(nid,
561 562
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
563
		huge_page_order(h));
L
Linus Torvalds 已提交
564
	if (page) {
565 566
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
567
			return NULL;
568
		}
569
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
570
	}
571 572 573 574

	return page;
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

596
static int alloc_fresh_huge_page(struct hstate *h)
597 598 599 600 601 602
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

603
	start_nid = h->hugetlb_next_nid;
604 605

	do {
606
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
607 608
		if (page)
			ret = 1;
609
		next_nid = hstate_next_node(h);
610
	} while (!page && h->hugetlb_next_nid != start_nid);
611

612 613 614 615 616
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

617
	return ret;
L
Linus Torvalds 已提交
618 619
}

620 621
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
622 623
{
	struct page *page;
624
	unsigned int nid;
625

626 627 628
	if (h->order >= MAX_ORDER)
		return NULL;

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
653
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
654 655 656
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
657 658
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
659 660 661
	}
	spin_unlock(&hugetlb_lock);

662 663
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
664
					huge_page_order(h));
665 666

	spin_lock(&hugetlb_lock);
667
	if (page) {
668 669 670 671 672 673
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
674
		nid = page_to_nid(page);
675
		set_compound_page_dtor(page, free_huge_page);
676 677 678
		/*
		 * We incremented the global counters already
		 */
679 680
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
681
		__count_vm_event(HTLB_BUDDY_PGALLOC);
682
	} else {
683 684
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
685
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686
	}
687
	spin_unlock(&hugetlb_lock);
688 689 690 691

	return page;
}

692 693 694 695
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
696
static int gather_surplus_pages(struct hstate *h, int delta)
697 698 699 700 701 702
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

703
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
704
	if (needed <= 0) {
705
		h->resv_huge_pages += delta;
706
		return 0;
707
	}
708 709 710 711 712 713 714 715

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
716
		page = alloc_buddy_huge_page(h, NULL, 0);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
737 738
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
739 740 741 742 743 744 745
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
746 747 748
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
749 750
	 */
	needed += allocated;
751
	h->resv_huge_pages += delta;
752 753
	ret = 0;
free:
754
	/* Free the needed pages to the hugetlb pool */
755
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
756 757
		if ((--needed) < 0)
			break;
758
		list_del(&page->lru);
759
		enqueue_huge_page(h, page);
760 761 762 763 764 765 766
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
767
			/*
768 769 770
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
771 772 773
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
774
			free_huge_page(page);
775
		}
776
		spin_lock(&hugetlb_lock);
777 778 779 780 781 782 783 784 785 786
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
787 788
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
789 790 791 792 793
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

794 795 796 797 798 799 800 801
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

802
	/* Uncommit the reservation */
803
	h->resv_huge_pages -= unused_resv_pages;
804

805 806 807 808
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

809
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
810

811
	while (remaining_iterations-- && nr_pages) {
812 813 814 815
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

816
		if (!h->surplus_huge_pages_node[nid])
817 818
			continue;

819 820
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
821 822
					  struct page, lru);
			list_del(&page->lru);
823 824 825 826 827
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
828
			nr_pages--;
829
			remaining_iterations = num_online_nodes();
830 831 832 833
		}
	}
}

834 835 836 837 838 839 840 841 842
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
843 844
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
845 846 847 848 849
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
850
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
851 852 853
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

854 855
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
856

857 858
	} else  {
		int err;
859
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
860 861 862 863 864 865 866
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
867
}
868 869
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
870 871 872 873 874
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
875
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
876
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
877 878

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
879
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
880 881 882 883
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
884 885 886
	}
}

887
static struct page *alloc_huge_page(struct vm_area_struct *vma,
888
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
889
{
890
	struct hstate *h = hstate_vma(vma);
891
	struct page *page;
892 893
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
894
	unsigned int chg;
895 896 897 898 899

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
900 901
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
902
	 */
903
	chg = vma_needs_reservation(h, vma, addr);
904 905 906
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
907 908
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
909 910

	spin_lock(&hugetlb_lock);
911
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
912
	spin_unlock(&hugetlb_lock);
913

K
Ken Chen 已提交
914
	if (!page) {
915
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
916
		if (!page) {
917
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
918 919 920
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
921

922 923
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
924

925
	vma_commit_reservation(h, vma, addr);
926

927
	return page;
928 929
}

930
__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
		prep_compound_page(page, h->order);
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

980
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
981 982
{
	unsigned long i;
983

984
	for (i = 0; i < h->max_huge_pages; ++i) {
985 986 987 988
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
989 990
			break;
	}
991
	h->max_huge_pages = i;
992 993 994 995 996 997 998
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
999 1000 1001
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1002 1003 1004
	}
}

A
Andi Kleen 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1016 1017 1018 1019 1020
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1021 1022 1023 1024 1025
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1026 1027 1028
	}
}

L
Linus Torvalds 已提交
1029 1030
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
1031
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1032
{
1033 1034
	int i;

1035 1036 1037
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1038 1039
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1040 1041 1042
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1043
				return;
L
Linus Torvalds 已提交
1044 1045 1046
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1047
			update_and_free_page(h, page);
1048 1049
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1050 1051 1052 1053
		}
	}
}
#else
1054
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1055 1056 1057 1058
{
}
#endif

1059
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1060
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1061
{
1062
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1063

1064 1065 1066
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1067 1068 1069 1070
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1071 1072 1073 1074 1075 1076
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1077
	 */
L
Linus Torvalds 已提交
1078
	spin_lock(&hugetlb_lock);
1079 1080
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1081 1082 1083
			break;
	}

1084
	while (count > persistent_huge_pages(h)) {
1085 1086 1087 1088 1089 1090
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1091
		ret = alloc_fresh_huge_page(h);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1104 1105 1106 1107 1108 1109 1110 1111
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1112
	 */
1113
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1114
	min_count = max(count, min_count);
1115 1116 1117
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1118 1119
		if (!page)
			break;
1120
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1121
	}
1122 1123
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1124 1125 1126
			break;
	}
out:
1127
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1128
	spin_unlock(&hugetlb_lock);
1129
	return ret;
L
Linus Torvalds 已提交
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
	BUILD_BUG_ON(HPAGE_SHIFT == 0);

1287 1288 1289 1290
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1291
	}
1292 1293 1294
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1295 1296 1297

	hugetlb_init_hstates();

1298 1299
	gather_bootmem_prealloc();

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1312 1313
	unsigned long i;

1314 1315 1316 1317 1318 1319 1320 1321 1322
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1323 1324 1325 1326 1327
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1328 1329
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1330

1331 1332 1333
	parsed_hstate = h;
}

1334
static int __init hugetlb_nrpages_setup(char *s)
1335 1336
{
	unsigned long *mhp;
1337
	static unsigned long *last_mhp;
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1348 1349 1350 1351 1352 1353
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1354 1355 1356
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1367 1368
	return 1;
}
1369 1370 1371 1372 1373 1374 1375 1376
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
1389 1390 1391 1392
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1393 1394 1395 1396 1397 1398 1399 1400
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1401
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1402 1403 1404 1405

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1406 1407
	return 0;
}
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1421 1422 1423 1424
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1425
	struct hstate *h = &default_hstate;
1426 1427 1428 1429 1430 1431 1432
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1433
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1434 1435 1436 1437 1438 1439 1440

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1441 1442 1443
	return 0;
}

L
Linus Torvalds 已提交
1444 1445 1446 1447
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
1448
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1449 1450 1451
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
1452
			"HugePages_Rsvd:  %5lu\n"
1453
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
1454
			"Hugepagesize:    %5lu kB\n",
1455 1456 1457 1458 1459
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1460 1461 1462 1463
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1464
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1465 1466
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1467 1468
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1469 1470 1471
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1472 1473 1474 1475 1476
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1477 1478
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1479 1480
}

1481
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1504
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1505 1506
			goto out;

1507 1508
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1509 1510 1511 1512 1513 1514
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1515
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1516 1517 1518 1519 1520 1521

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1538 1539
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1540
	struct hstate *h = hstate_vma(vma);
1541 1542 1543 1544 1545 1546
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1547 1548
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1549 1550 1551 1552 1553 1554 1555

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

		if (reserve)
1556
			hugetlb_acct_memory(h, -reserve);
1557
	}
1558 1559
}

L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1566
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1567 1568
{
	BUG();
N
Nick Piggin 已提交
1569
	return 0;
L
Linus Torvalds 已提交
1570 1571 1572
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1573
	.fault = hugetlb_vm_op_fault,
1574
	.open = hugetlb_vm_op_open,
1575
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1576 1577
};

1578 1579
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1580 1581 1582
{
	pte_t entry;

1583
	if (writable) {
D
David Gibson 已提交
1584 1585 1586
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1587
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1588 1589 1590 1591 1592 1593 1594
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1595 1596 1597 1598 1599
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1600 1601
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1602 1603
		update_mmu_cache(vma, address, entry);
	}
1604 1605 1606
}


D
David Gibson 已提交
1607 1608 1609 1610 1611
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1612
	unsigned long addr;
1613
	int cow;
1614 1615
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1616 1617

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1618

1619
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1620 1621 1622
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1623
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1624 1625
		if (!dst_pte)
			goto nomem;
1626 1627 1628 1629 1630

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1631
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1632
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1633
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1634
			if (cow)
1635 1636
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1637 1638 1639 1640 1641
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1642
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1643 1644 1645 1646 1647 1648 1649
	}
	return 0;

nomem:
	return -ENOMEM;
}

1650
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1651
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1652 1653 1654
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1655
	pte_t *ptep;
D
David Gibson 已提交
1656 1657
	pte_t pte;
	struct page *page;
1658
	struct page *tmp;
1659 1660 1661
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1662 1663 1664 1665 1666
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1667
	LIST_HEAD(page_list);
D
David Gibson 已提交
1668 1669

	WARN_ON(!is_vm_hugetlb_page(vma));
1670 1671
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1672

1673
	spin_lock(&mm->page_table_lock);
1674
	for (address = start; address < end; address += sz) {
1675
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1676
		if (!ptep)
1677 1678
			continue;

1679 1680 1681
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1703
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1704
		if (huge_pte_none(pte))
D
David Gibson 已提交
1705
			continue;
1706

D
David Gibson 已提交
1707
		page = pte_page(pte);
1708 1709
		if (pte_dirty(pte))
			set_page_dirty(page);
1710
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1711
	}
L
Linus Torvalds 已提交
1712
	spin_unlock(&mm->page_table_lock);
1713
	flush_tlb_range(vma, start, end);
1714 1715 1716 1717
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1718
}
D
David Gibson 已提交
1719

1720
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1721
			  unsigned long end, struct page *ref_page)
1722
{
1723 1724 1725
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1726 1727
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
int unmap_ref_private(struct mm_struct *mm,
					struct vm_area_struct *vma,
					struct page *page,
					unsigned long address)
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1774
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1775 1776
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1777
{
1778
	struct hstate *h = hstate_vma(vma);
1779
	struct page *old_page, *new_page;
1780
	int avoidcopy;
1781
	int outside_reserve = 0;
1782 1783 1784

	old_page = pte_page(pte);

1785
retry_avoidcopy:
1786 1787 1788 1789 1790
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1791
		return 0;
1792 1793
	}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1808
	page_cache_get(old_page);
1809
	new_page = alloc_huge_page(vma, address, outside_reserve);
1810

1811
	if (IS_ERR(new_page)) {
1812
		page_cache_release(old_page);
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1831
		return -PTR_ERR(new_page);
1832 1833 1834
	}

	spin_unlock(&mm->page_table_lock);
1835
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1836
	__SetPageUptodate(new_page);
1837 1838
	spin_lock(&mm->page_table_lock);

1839
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1840
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1841
		/* Break COW */
1842
		huge_ptep_clear_flush(vma, address, ptep);
1843 1844 1845 1846 1847 1848 1849
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1850
	return 0;
1851 1852
}

1853
/* Return the pagecache page at a given address within a VMA */
1854 1855
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1856 1857
{
	struct address_space *mapping;
1858
	pgoff_t idx;
1859 1860

	mapping = vma->vm_file->f_mapping;
1861
	idx = vma_hugecache_offset(h, vma, address);
1862 1863 1864 1865

	return find_lock_page(mapping, idx);
}

1866
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1867
			unsigned long address, pte_t *ptep, int write_access)
1868
{
1869
	struct hstate *h = hstate_vma(vma);
1870
	int ret = VM_FAULT_SIGBUS;
1871
	pgoff_t idx;
A
Adam Litke 已提交
1872 1873 1874
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1875
	pte_t new_pte;
A
Adam Litke 已提交
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1889
	mapping = vma->vm_file->f_mapping;
1890
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1891 1892 1893 1894 1895

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1896 1897 1898
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1899
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1900 1901
		if (idx >= size)
			goto out;
1902
		page = alloc_huge_page(vma, address, 0);
1903 1904
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1905 1906
			goto out;
		}
1907
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
1908
		__SetPageUptodate(page);
1909

1910 1911
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1912
			struct inode *inode = mapping->host;
1913 1914 1915 1916 1917 1918 1919 1920

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1921 1922

			spin_lock(&inode->i_lock);
1923
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
1924
			spin_unlock(&inode->i_lock);
1925 1926 1927
		} else
			lock_page(page);
	}
1928

1929
	spin_lock(&mm->page_table_lock);
1930
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
1931 1932 1933
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1934
	ret = 0;
1935
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1936 1937
		goto backout;

1938 1939 1940 1941 1942 1943
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
1944
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1945 1946
	}

1947
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
1948 1949
	unlock_page(page);
out:
1950
	return ret;
A
Adam Litke 已提交
1951 1952 1953 1954 1955 1956

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
1957 1958
}

1959 1960 1961 1962 1963
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
1964
	int ret;
1965
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1966
	struct hstate *h = hstate_vma(vma);
1967

1968
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1969 1970 1971
	if (!ptep)
		return VM_FAULT_OOM;

1972 1973 1974 1975 1976 1977
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1978 1979
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
1980 1981 1982 1983
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1984

N
Nick Piggin 已提交
1985
	ret = 0;
1986 1987 1988

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
1989
	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1990 1991
		if (write_access && !pte_write(entry)) {
			struct page *page;
1992
			page = hugetlbfs_pagecache_page(h, vma, address);
1993 1994 1995 1996 1997 1998
			ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
			if (page) {
				unlock_page(page);
				put_page(page);
			}
		}
1999
	spin_unlock(&mm->page_table_lock);
2000
	mutex_unlock(&hugetlb_instantiation_mutex);
2001 2002

	return ret;
2003 2004
}

A
Andi Kleen 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2014 2015
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2016 2017
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2018
{
2019 2020
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2021
	int remainder = *length;
2022
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2023

2024
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2025
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2026 2027
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2028

A
Adam Litke 已提交
2029 2030 2031 2032 2033
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2034
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
D
David Gibson 已提交
2035

2036 2037
		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2038
			int ret;
D
David Gibson 已提交
2039

A
Adam Litke 已提交
2040
			spin_unlock(&mm->page_table_lock);
2041
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2042
			spin_lock(&mm->page_table_lock);
2043
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2044
				continue;
D
David Gibson 已提交
2045

A
Adam Litke 已提交
2046 2047 2048 2049 2050 2051
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2052
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2053
		page = pte_page(huge_ptep_get(pte));
2054
same_page:
2055 2056
		if (pages) {
			get_page(page);
2057
			pages[i] = page + pfn_offset;
2058
		}
D
David Gibson 已提交
2059 2060 2061 2062 2063

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2064
		++pfn_offset;
D
David Gibson 已提交
2065 2066
		--remainder;
		++i;
2067
		if (vaddr < vma->vm_end && remainder &&
2068
				pfn_offset < pages_per_huge_page(h)) {
2069 2070 2071 2072 2073 2074
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2075
	}
2076
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2077 2078 2079 2080 2081
	*length = remainder;
	*position = vaddr;

	return i;
}
2082 2083 2084 2085 2086 2087 2088 2089

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2090
	struct hstate *h = hstate_vma(vma);
2091 2092 2093 2094

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2095
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2096
	spin_lock(&mm->page_table_lock);
2097
	for (; address < end; address += huge_page_size(h)) {
2098 2099 2100
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2101 2102
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2103
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2104 2105 2106 2107 2108 2109
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2110
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2111 2112 2113 2114

	flush_tlb_range(vma, start, end);
}

2115 2116 2117
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
2118 2119
{
	long ret, chg;
2120
	struct hstate *h = hstate_inode(inode);
2121

2122 2123 2124
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

2125 2126 2127 2128 2129 2130 2131 2132 2133
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
2134 2135 2136 2137
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2138
		chg = to - from;
2139 2140

		set_vma_resv_map(vma, resv_map);
2141
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2142 2143
	}

2144 2145
	if (chg < 0)
		return chg;
2146

2147 2148
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2149
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2150 2151
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2152
		return ret;
K
Ken Chen 已提交
2153
	}
2154 2155
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
2156 2157 2158 2159 2160
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2161
	struct hstate *h = hstate_inode(inode);
2162
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2163 2164

	spin_lock(&inode->i_lock);
2165
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2166 2167
	spin_unlock(&inode->i_lock);

2168
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2169
	hugetlb_acct_memory(h, -(chg - freed));
2170
}