hugetlb.c 63.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
237
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238

239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

252 253 254 255 256 257 258
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
259
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260

261 262 263 264 265 266 267 268 269
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
270 271 272 273 274 275 276 277 278
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
279
 */
280 281 282 283 284 285 286 287 288 289 290
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

291 292 293 294 295
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

296
static struct resv_map *resv_map_alloc(void)
297 298 299 300 301 302 303 304 305 306 307
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

308
static void resv_map_release(struct kref *ref)
309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 319
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
320
	if (!(vma->vm_flags & VM_MAYSHARE))
321 322
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
323
	return NULL;
324 325
}

326
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 328
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
329
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330

331 332
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
333 334 335 336 337
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
338
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339 340

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 342 343 344 345
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
346 347

	return (get_vma_private_data(vma) & flag) != 0;
348 349 350
}

/* Decrement the reserved pages in the hugepage pool by one */
351 352
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
353
{
354 355 356
	if (vma->vm_flags & VM_NORESERVE)
		return;

357
	if (vma->vm_flags & VM_MAYSHARE) {
358
		/* Shared mappings always use reserves */
359
		h->resv_huge_pages--;
360
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361 362 363 364
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
365
		h->resv_huge_pages--;
366 367 368
	}
}

369
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 371 372
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
373
	if (!(vma->vm_flags & VM_MAYSHARE))
374 375 376 377
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
378
static int vma_has_reserves(struct vm_area_struct *vma)
379
{
380
	if (vma->vm_flags & VM_MAYSHARE)
381 382 383 384
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
385 386
}

387 388 389 390 391 392 393 394 395 396 397 398
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
399 400
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
401 402 403
{
	int i;

H
Hannes Eder 已提交
404 405 406 407
	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, sz);
		return;
	}
408

409
	might_sleep();
410
	for (i = 0; i < sz/PAGE_SIZE; i++) {
411
		cond_resched();
412
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413 414 415
	}
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
433
static void copy_huge_page(struct page *dst, struct page *src,
434
			   unsigned long addr, struct vm_area_struct *vma)
435 436
{
	int i;
437
	struct hstate *h = hstate_vma(vma);
438

H
Hannes Eder 已提交
439 440 441 442
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
443

444
	might_sleep();
445
	for (i = 0; i < pages_per_huge_page(h); i++) {
446
		cond_resched();
447
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448 449 450
	}
}

451
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
452 453
{
	int nid = page_to_nid(page);
454 455 456
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
457 458
}

459 460
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
461
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
462
{
463
	int nid;
L
Linus Torvalds 已提交
464
	struct page *page = NULL;
465
	struct mempolicy *mpol;
466
	nodemask_t *nodemask;
467
	struct zonelist *zonelist = huge_zonelist(vma, address,
468
					htlb_alloc_mask, &mpol, &nodemask);
469 470
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
471

472 473 474 475 476
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
477
	if (!vma_has_reserves(vma) &&
478
			h->free_huge_pages - h->resv_huge_pages == 0)
479 480
		return NULL;

481
	/* If reserves cannot be used, ensure enough pages are in the pool */
482
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483 484
		return NULL;

485 486
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
487 488
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489 490
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
491 492
					  struct page, lru);
			list_del(&page->lru);
493 494
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
495 496

			if (!avoid_reserve)
497
				decrement_hugepage_resv_vma(h, vma);
498

K
Ken Chen 已提交
499
			break;
A
Andrew Morton 已提交
500
		}
L
Linus Torvalds 已提交
501
	}
502
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
503 504 505
	return page;
}

506
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
507 508
{
	int i;
509

510 511
	VM_BUG_ON(h->order >= MAX_ORDER);

512 513 514
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
515 516 517 518 519 520
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
521
	arch_release_hugepage(page);
522
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
523 524
}

525 526 527 528 529 530 531 532 533 534 535
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

536 537
static void free_huge_page(struct page *page)
{
538 539 540 541
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
542
	struct hstate *h = page_hstate(page);
543
	int nid = page_to_nid(page);
544
	struct address_space *mapping;
545

546
	mapping = (struct address_space *) page_private(page);
547
	set_page_private(page, 0);
548
	BUG_ON(page_count(page));
549 550 551
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
552
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553 554 555
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
556
	} else {
557
		enqueue_huge_page(h, page);
558
	}
559
	spin_unlock(&hugetlb_lock);
560
	if (mapping)
561
		hugetlb_put_quota(mapping, 1);
562 563
}

564
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
565 566 567
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
568 569
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
570 571 572 573
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

602
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
603 604
{
	struct page *page;
605

606 607 608
	if (h->order >= MAX_ORDER)
		return NULL;

609
	page = alloc_pages_exact_node(nid,
610 611
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
612
		huge_page_order(h));
L
Linus Torvalds 已提交
613
	if (page) {
614
		if (arch_prepare_hugepage(page)) {
615
			__free_pages(page, huge_page_order(h));
616
			return NULL;
617
		}
618
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
619
	}
620 621 622 623

	return page;
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637
/*
 * common helper function for hstate_next_node_to_{alloc|free}.
 * return next node in node_online_map, wrapping at end.
 */
static int next_node_allowed(int nid)
{
	nid = next_node(nid, node_online_map);
	if (nid == MAX_NUMNODES)
		nid = first_node(node_online_map);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

638 639
/*
 * Use a helper variable to find the next node and then
640
 * copy it back to next_nid_to_alloc afterwards:
641
 * otherwise there's a window in which a racer might
642
 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
643 644 645 646 647 648
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
649
static int hstate_next_node_to_alloc(struct hstate *h)
650
{
651 652 653 654
	int nid, next_nid;

	nid = h->next_nid_to_alloc;
	next_nid = next_node_allowed(nid);
655
	h->next_nid_to_alloc = next_nid;
656
	return nid;
657 658
}

659
static int alloc_fresh_huge_page(struct hstate *h)
660 661 662 663 664 665
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

666
	start_nid = hstate_next_node_to_alloc(h);
667
	next_nid = start_nid;
668 669

	do {
670
		page = alloc_fresh_huge_page_node(h, next_nid);
671
		if (page) {
672
			ret = 1;
673 674
			break;
		}
675
		next_nid = hstate_next_node_to_alloc(h);
676
	} while (next_nid != start_nid);
677

678 679 680 681 682
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

683
	return ret;
L
Linus Torvalds 已提交
684 685
}

686
/*
687 688 689 690
 * helper for free_pool_huge_page() - return the next node
 * from which to free a huge page.  Advance the next node id
 * whether or not we find a free huge page to free so that the
 * next attempt to free addresses the next node.
691 692 693
 */
static int hstate_next_node_to_free(struct hstate *h)
{
694 695 696 697
	int nid, next_nid;

	nid = h->next_nid_to_free;
	next_nid = next_node_allowed(nid);
698
	h->next_nid_to_free = next_nid;
699
	return nid;
700 701 702 703 704 705 706 707
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
708
static int free_pool_huge_page(struct hstate *h, bool acct_surplus)
709 710 711 712 713
{
	int start_nid;
	int next_nid;
	int ret = 0;

714
	start_nid = hstate_next_node_to_free(h);
715 716 717
	next_nid = start_nid;

	do {
718 719 720 721 722 723
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
724 725 726 727 728 729
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
730 731 732 733
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
734 735
			update_and_free_page(h, page);
			ret = 1;
736
			break;
737 738
		}
		next_nid = hstate_next_node_to_free(h);
739
	} while (next_nid != start_nid);
740 741 742 743

	return ret;
}

744 745
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
746 747
{
	struct page *page;
748
	unsigned int nid;
749

750 751 752
	if (h->order >= MAX_ORDER)
		return NULL;

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
777
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
778 779 780
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
781 782
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
783 784 785
	}
	spin_unlock(&hugetlb_lock);

786 787
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
788
					huge_page_order(h));
789

790 791 792 793 794
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

795
	spin_lock(&hugetlb_lock);
796
	if (page) {
797 798 799 800 801 802
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
803
		nid = page_to_nid(page);
804
		set_compound_page_dtor(page, free_huge_page);
805 806 807
		/*
		 * We incremented the global counters already
		 */
808 809
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
810
		__count_vm_event(HTLB_BUDDY_PGALLOC);
811
	} else {
812 813
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
814
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
815
	}
816
	spin_unlock(&hugetlb_lock);
817 818 819 820

	return page;
}

821 822 823 824
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
825
static int gather_surplus_pages(struct hstate *h, int delta)
826 827 828 829 830 831
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

832
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
833
	if (needed <= 0) {
834
		h->resv_huge_pages += delta;
835
		return 0;
836
	}
837 838 839 840 841 842 843 844

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
845
		page = alloc_buddy_huge_page(h, NULL, 0);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
866 867
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
868 869 870 871 872 873 874
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
875 876 877
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
878 879
	 */
	needed += allocated;
880
	h->resv_huge_pages += delta;
881 882
	ret = 0;
free:
883
	/* Free the needed pages to the hugetlb pool */
884
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
885 886
		if ((--needed) < 0)
			break;
887
		list_del(&page->lru);
888
		enqueue_huge_page(h, page);
889 890 891 892 893 894 895
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
896
			/*
897 898 899
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
900 901 902
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
903
			free_huge_page(page);
904
		}
905
		spin_lock(&hugetlb_lock);
906 907 908 909 910 911 912 913 914
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
915
 * Called with hugetlb_lock held.
916
 */
917 918
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
919 920 921
{
	unsigned long nr_pages;

922
	/* Uncommit the reservation */
923
	h->resv_huge_pages -= unused_resv_pages;
924

925 926 927 928
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

929
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
930

931 932 933 934 935 936 937 938 939 940 941
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the frees across the
	 * on-line nodes for us and will handle the hstate accounting.
	 */
	while (nr_pages--) {
		if (!free_pool_huge_page(h, 1))
			break;
942 943 944
	}
}

945 946 947 948 949 950 951 952 953
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
954
static long vma_needs_reservation(struct hstate *h,
955
			struct vm_area_struct *vma, unsigned long addr)
956 957 958 959
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

960
	if (vma->vm_flags & VM_MAYSHARE) {
961
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
962 963 964
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

965 966
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
967

968
	} else  {
969
		long err;
970
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
971 972 973 974 975 976 977
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
978
}
979 980
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
981 982 983 984
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

985
	if (vma->vm_flags & VM_MAYSHARE) {
986
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
987
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
988 989

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
990
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 992 993 994
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
995 996 997
	}
}

998
static struct page *alloc_huge_page(struct vm_area_struct *vma,
999
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1000
{
1001
	struct hstate *h = hstate_vma(vma);
1002
	struct page *page;
1003 1004
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1005
	long chg;
1006 1007 1008 1009 1010

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1011 1012
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1013
	 */
1014
	chg = vma_needs_reservation(h, vma, addr);
1015 1016 1017
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1018 1019
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1020 1021

	spin_lock(&hugetlb_lock);
1022
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1023
	spin_unlock(&hugetlb_lock);
1024

K
Ken Chen 已提交
1025
	if (!page) {
1026
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
1027
		if (!page) {
1028
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
1029 1030 1031
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
1032

1033 1034
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1035

1036
	vma_commit_reservation(h, vma, addr);
1037

1038
	return page;
1039 1040
}

1041
int __weak alloc_bootmem_huge_page(struct hstate *h)
1042 1043 1044 1045 1046 1047 1048 1049
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1050
				NODE_DATA(hstate_next_node_to_alloc(h)),
1051 1052 1053 1054 1055 1056 1057 1058 1059
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1060
			goto found;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1074 1075 1076 1077 1078 1079 1080 1081
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1092
		prep_compound_huge_page(page, h->order);
1093 1094 1095 1096
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1097
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1098 1099
{
	unsigned long i;
1100

1101
	for (i = 0; i < h->max_huge_pages; ++i) {
1102 1103 1104 1105
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
1106 1107
			break;
	}
1108
	h->max_huge_pages = i;
1109 1110 1111 1112 1113 1114 1115
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1116 1117 1118
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1119 1120 1121
	}
}

A
Andi Kleen 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1133 1134 1135 1136 1137
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1138 1139 1140 1141 1142
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1143 1144 1145
	}
}

L
Linus Torvalds 已提交
1146
#ifdef CONFIG_HIGHMEM
1147
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1148
{
1149 1150
	int i;

1151 1152 1153
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1154 1155
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1156 1157 1158
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1159
				return;
L
Linus Torvalds 已提交
1160 1161 1162
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1163
			update_and_free_page(h, page);
1164 1165
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1166 1167 1168 1169
		}
	}
}
#else
1170
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1171 1172 1173 1174
{
}
#endif

1175 1176 1177 1178 1179 1180 1181
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(struct hstate *h, int delta)
{
1182
	int start_nid, next_nid;
1183 1184 1185 1186
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1187
	if (delta < 0)
1188
		start_nid = hstate_next_node_to_alloc(h);
1189
	else
1190
		start_nid = hstate_next_node_to_free(h);
1191 1192 1193 1194 1195 1196 1197 1198
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1199 1200
			if (!h->surplus_huge_pages_node[nid]) {
				next_nid = hstate_next_node_to_alloc(h);
1201
				continue;
1202
			}
1203 1204 1205 1206 1207 1208
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1209 1210
						h->nr_huge_pages_node[nid]) {
				next_nid = hstate_next_node_to_free(h);
1211
				continue;
1212
			}
1213
		}
1214 1215 1216 1217 1218

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1219
	} while (next_nid != start_nid);
1220 1221 1222 1223

	return ret;
}

1224
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1225
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1226
{
1227
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1228

1229 1230 1231
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1232 1233 1234 1235
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1236 1237 1238 1239 1240 1241
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1242
	 */
L
Linus Torvalds 已提交
1243
	spin_lock(&hugetlb_lock);
1244 1245
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1246 1247 1248
			break;
	}

1249
	while (count > persistent_huge_pages(h)) {
1250 1251 1252 1253 1254 1255
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1256
		ret = alloc_fresh_huge_page(h);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1269 1270 1271 1272 1273 1274 1275 1276
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1277
	 */
1278
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1279
	min_count = max(count, min_count);
1280 1281
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
1282
		if (!free_pool_huge_page(h, 0))
L
Linus Torvalds 已提交
1283 1284
			break;
	}
1285 1286
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1287 1288 1289
			break;
	}
out:
1290
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1291
	spin_unlock(&hugetlb_lock);
1292
	return ret;
L
Linus Torvalds 已提交
1293 1294
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1448 1449 1450 1451 1452 1453
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1454

1455 1456 1457 1458
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1459
	}
1460 1461 1462
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1463 1464 1465

	hugetlb_init_hstates();

1466 1467
	gather_bootmem_prealloc();

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1480 1481
	unsigned long i;

1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1491 1492 1493 1494
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1495 1496
	h->next_nid_to_alloc = first_node(node_online_map);
	h->next_nid_to_free = first_node(node_online_map);
1497 1498
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1499

1500 1501 1502
	parsed_hstate = h;
}

1503
static int __init hugetlb_nrpages_setup(char *s)
1504 1505
{
	unsigned long *mhp;
1506
	static unsigned long *last_mhp;
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1517 1518 1519 1520 1521 1522
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1523 1524 1525
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1536 1537
	return 1;
}
1538 1539 1540 1541 1542 1543 1544 1545
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1559
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1560
			   void __user *buffer,
L
Linus Torvalds 已提交
1561 1562
			   size_t *length, loff_t *ppos)
{
1563 1564 1565 1566 1567 1568 1569 1570
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1571
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1572 1573 1574 1575

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1576 1577
	return 0;
}
1578 1579

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1580
			void __user *buffer,
1581 1582
			size_t *length, loff_t *ppos)
{
1583
	proc_dointvec(table, write, buffer, length, ppos);
1584 1585 1586 1587 1588 1589 1590
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1591
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1592
			void __user *buffer,
1593 1594
			size_t *length, loff_t *ppos)
{
1595
	struct hstate *h = &default_hstate;
1596 1597 1598 1599 1600 1601 1602
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1603
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1604 1605 1606 1607 1608 1609 1610

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1611 1612 1613
	return 0;
}

L
Linus Torvalds 已提交
1614 1615
#endif /* CONFIG_SYSCTL */

1616
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1617
{
1618
	struct hstate *h = &default_hstate;
1619
	seq_printf(m,
1620 1621 1622 1623 1624
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1625 1626 1627 1628 1629
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1630 1631 1632 1633
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1634
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1635 1636
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1637 1638
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1639 1640 1641
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1647 1648
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1649 1650
}

1651
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1674
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1675 1676
			goto out;

1677 1678
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1679 1680 1681 1682 1683 1684
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1685
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1686 1687 1688 1689 1690 1691

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1708 1709
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1710
	struct hstate *h = hstate_vma(vma);
1711 1712 1713 1714 1715 1716
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1717 1718
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1719 1720 1721 1722 1723 1724

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1725
		if (reserve) {
1726
			hugetlb_acct_memory(h, -reserve);
1727 1728
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1729
	}
1730 1731
}

L
Linus Torvalds 已提交
1732 1733 1734 1735 1736 1737
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1738
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1739 1740
{
	BUG();
N
Nick Piggin 已提交
1741
	return 0;
L
Linus Torvalds 已提交
1742 1743
}

1744
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1745
	.fault = hugetlb_vm_op_fault,
1746
	.open = hugetlb_vm_op_open,
1747
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1748 1749
};

1750 1751
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1752 1753 1754
{
	pte_t entry;

1755
	if (writable) {
D
David Gibson 已提交
1756 1757 1758
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1759
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1760 1761 1762 1763 1764 1765 1766
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1767 1768 1769 1770 1771
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1772 1773
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1774 1775
		update_mmu_cache(vma, address, entry);
	}
1776 1777 1778
}


D
David Gibson 已提交
1779 1780 1781 1782 1783
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1784
	unsigned long addr;
1785
	int cow;
1786 1787
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1788 1789

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1790

1791
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1792 1793 1794
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1795
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1796 1797
		if (!dst_pte)
			goto nomem;
1798 1799 1800 1801 1802

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1803
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1804
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1805
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1806
			if (cow)
1807 1808
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1809 1810 1811 1812 1813
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1814
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1815 1816 1817 1818 1819 1820 1821
	}
	return 0;

nomem:
	return -ENOMEM;
}

1822
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1823
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1824 1825 1826
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1827
	pte_t *ptep;
D
David Gibson 已提交
1828 1829
	pte_t pte;
	struct page *page;
1830
	struct page *tmp;
1831 1832 1833
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1834 1835 1836 1837 1838
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1839
	LIST_HEAD(page_list);
D
David Gibson 已提交
1840 1841

	WARN_ON(!is_vm_hugetlb_page(vma));
1842 1843
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1844

A
Andrea Arcangeli 已提交
1845
	mmu_notifier_invalidate_range_start(mm, start, end);
1846
	spin_lock(&mm->page_table_lock);
1847
	for (address = start; address < end; address += sz) {
1848
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1849
		if (!ptep)
1850 1851
			continue;

1852 1853 1854
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1876
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1877
		if (huge_pte_none(pte))
D
David Gibson 已提交
1878
			continue;
1879

D
David Gibson 已提交
1880
		page = pte_page(pte);
1881 1882
		if (pte_dirty(pte))
			set_page_dirty(page);
1883
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1884
	}
L
Linus Torvalds 已提交
1885
	spin_unlock(&mm->page_table_lock);
1886
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1887
	mmu_notifier_invalidate_range_end(mm, start, end);
1888 1889 1890 1891
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1892
}
D
David Gibson 已提交
1893

1894
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1895
			  unsigned long end, struct page *ref_page)
1896
{
1897 1898 1899
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1900 1901
}

1902 1903 1904 1905 1906 1907
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1908 1909
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1910
{
1911
	struct hstate *h = hstate_vma(vma);
1912 1913 1914 1915 1916 1917 1918 1919 1920
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
1921
	address = address & huge_page_mask(h);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
1940
				address, address + huge_page_size(h),
1941 1942 1943 1944 1945 1946
				page);
	}

	return 1;
}

1947
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1948 1949
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1950
{
1951
	struct hstate *h = hstate_vma(vma);
1952
	struct page *old_page, *new_page;
1953
	int avoidcopy;
1954
	int outside_reserve = 0;
1955 1956 1957

	old_page = pte_page(pte);

1958
retry_avoidcopy:
1959 1960 1961 1962 1963
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1964
		return 0;
1965 1966
	}

1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
1976
	if (!(vma->vm_flags & VM_MAYSHARE) &&
1977 1978 1979 1980
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1981
	page_cache_get(old_page);
1982
	new_page = alloc_huge_page(vma, address, outside_reserve);
1983

1984
	if (IS_ERR(new_page)) {
1985
		page_cache_release(old_page);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2004
		return -PTR_ERR(new_page);
2005 2006 2007
	}

	spin_unlock(&mm->page_table_lock);
2008
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
2009
	__SetPageUptodate(new_page);
2010 2011
	spin_lock(&mm->page_table_lock);

2012
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2013
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2014
		/* Break COW */
2015
		huge_ptep_clear_flush(vma, address, ptep);
2016 2017 2018 2019 2020 2021 2022
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2023
	return 0;
2024 2025
}

2026
/* Return the pagecache page at a given address within a VMA */
2027 2028
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2029 2030
{
	struct address_space *mapping;
2031
	pgoff_t idx;
2032 2033

	mapping = vma->vm_file->f_mapping;
2034
	idx = vma_hugecache_offset(h, vma, address);
2035 2036 2037 2038

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2039 2040 2041 2042 2043
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2059
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2060
			unsigned long address, pte_t *ptep, unsigned int flags)
2061
{
2062
	struct hstate *h = hstate_vma(vma);
2063
	int ret = VM_FAULT_SIGBUS;
2064
	pgoff_t idx;
A
Adam Litke 已提交
2065 2066 2067
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2068
	pte_t new_pte;
A
Adam Litke 已提交
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2082
	mapping = vma->vm_file->f_mapping;
2083
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2084 2085 2086 2087 2088

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2089 2090 2091
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2092
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2093 2094
		if (idx >= size)
			goto out;
2095
		page = alloc_huge_page(vma, address, 0);
2096 2097
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2098 2099
			goto out;
		}
2100
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2101
		__SetPageUptodate(page);
2102

2103
		if (vma->vm_flags & VM_MAYSHARE) {
2104
			int err;
K
Ken Chen 已提交
2105
			struct inode *inode = mapping->host;
2106 2107 2108 2109 2110 2111 2112 2113

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2114 2115

			spin_lock(&inode->i_lock);
2116
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2117
			spin_unlock(&inode->i_lock);
2118 2119 2120
		} else
			lock_page(page);
	}
2121

2122 2123 2124 2125 2126 2127
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2128
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2129 2130 2131 2132
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2133

2134
	spin_lock(&mm->page_table_lock);
2135
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2136 2137 2138
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2139
	ret = 0;
2140
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2141 2142
		goto backout;

2143 2144 2145 2146
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2147
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2148
		/* Optimization, do the COW without a second fault */
2149
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2150 2151
	}

2152
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2153 2154
	unlock_page(page);
out:
2155
	return ret;
A
Adam Litke 已提交
2156 2157 2158

backout:
	spin_unlock(&mm->page_table_lock);
2159
backout_unlocked:
A
Adam Litke 已提交
2160 2161 2162
	unlock_page(page);
	put_page(page);
	goto out;
2163 2164
}

2165
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2166
			unsigned long address, unsigned int flags)
2167 2168 2169
{
	pte_t *ptep;
	pte_t entry;
2170
	int ret;
2171
	struct page *pagecache_page = NULL;
2172
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2173
	struct hstate *h = hstate_vma(vma);
2174

2175
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2176 2177 2178
	if (!ptep)
		return VM_FAULT_OOM;

2179 2180 2181 2182 2183 2184
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2185 2186
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2187
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2188
		goto out_mutex;
2189
	}
2190

N
Nick Piggin 已提交
2191
	ret = 0;
2192

2193 2194 2195 2196 2197 2198 2199 2200
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2201
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2202 2203
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2204
			goto out_mutex;
2205
		}
2206

2207
		if (!(vma->vm_flags & VM_MAYSHARE))
2208 2209 2210 2211
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2212 2213
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2214 2215 2216 2217
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2218
	if (flags & FAULT_FLAG_WRITE) {
2219
		if (!pte_write(entry)) {
2220 2221
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2222 2223 2224 2225 2226
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2227 2228
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2229 2230 2231
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2232
	spin_unlock(&mm->page_table_lock);
2233 2234 2235 2236 2237 2238

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2239
out_mutex:
2240
	mutex_unlock(&hugetlb_instantiation_mutex);
2241 2242

	return ret;
2243 2244
}

A
Andi Kleen 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2254 2255
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2256
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2257
			unsigned int flags)
D
David Gibson 已提交
2258
{
2259 2260
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2261
	int remainder = *length;
2262
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2263

2264
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2265
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2266
		pte_t *pte;
H
Hugh Dickins 已提交
2267
		int absent;
A
Adam Litke 已提交
2268
		struct page *page;
D
David Gibson 已提交
2269

A
Adam Litke 已提交
2270 2271
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2272
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2273 2274
		 * first, for the page indexing below to work.
		 */
2275
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2276 2277 2278 2279
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2280 2281 2282 2283
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2284
		 */
H
Hugh Dickins 已提交
2285 2286
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2287 2288 2289
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2290

H
Hugh Dickins 已提交
2291 2292
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2293
			int ret;
D
David Gibson 已提交
2294

A
Adam Litke 已提交
2295
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2296 2297
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2298
			spin_lock(&mm->page_table_lock);
2299
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2300
				continue;
D
David Gibson 已提交
2301

A
Adam Litke 已提交
2302 2303 2304 2305
			remainder = 0;
			break;
		}

2306
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2307
		page = pte_page(huge_ptep_get(pte));
2308
same_page:
2309
		if (pages) {
H
Hugh Dickins 已提交
2310
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2311
			get_page(pages[i]);
2312
		}
D
David Gibson 已提交
2313 2314 2315 2316 2317

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2318
		++pfn_offset;
D
David Gibson 已提交
2319 2320
		--remainder;
		++i;
2321
		if (vaddr < vma->vm_end && remainder &&
2322
				pfn_offset < pages_per_huge_page(h)) {
2323 2324 2325 2326 2327 2328
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2329
	}
2330
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2331 2332 2333
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2334
	return i ? i : -EFAULT;
D
David Gibson 已提交
2335
}
2336 2337 2338 2339 2340 2341 2342 2343

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2344
	struct hstate *h = hstate_vma(vma);
2345 2346 2347 2348

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2349
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2350
	spin_lock(&mm->page_table_lock);
2351
	for (; address < end; address += huge_page_size(h)) {
2352 2353 2354
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2355 2356
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2357
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2358 2359 2360 2361 2362 2363
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2364
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2365 2366 2367 2368

	flush_tlb_range(vma, start, end);
}

2369 2370
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2371 2372
					struct vm_area_struct *vma,
					int acctflag)
2373
{
2374
	long ret, chg;
2375
	struct hstate *h = hstate_inode(inode);
2376

2377 2378 2379 2380 2381 2382 2383 2384
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2385 2386 2387 2388 2389 2390
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2391
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2392
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2393 2394 2395 2396 2397
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2398
		chg = to - from;
2399

2400 2401 2402 2403
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2404 2405
	if (chg < 0)
		return chg;
2406

2407
	/* There must be enough filesystem quota for the mapping */
2408 2409
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2410 2411

	/*
2412 2413
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2414
	 */
2415
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2416 2417
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2418
		return ret;
K
Ken Chen 已提交
2419
	}
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2432
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2433
		region_add(&inode->i_mapping->private_list, from, to);
2434 2435 2436 2437 2438
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2439
	struct hstate *h = hstate_inode(inode);
2440
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2441 2442

	spin_lock(&inode->i_lock);
2443
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2444 2445
	spin_unlock(&inode->i_lock);

2446
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2447
	hugetlb_acct_memory(h, -(chg - freed));
2448
}