hugetlb.c 102.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

44 45
__initdata LIST_HEAD(huge_boot_pages);

46 47 48
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
49
static unsigned long __initdata default_hstate_size;
50

51
/*
52 53
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
54
 */
55
DEFINE_SPINLOCK(hugetlb_lock);
56

57 58 59 60 61 62 63
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

64 65 66
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

67 68 69 70 71 72 73
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
74 75 76 77 78 79
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
80
		kfree(spool);
81
	}
82 83
}

84 85
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
86 87 88
{
	struct hugepage_subpool *spool;

89
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90 91 92 93 94
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
95 96 97 98 99 100 101 102 103
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
104 105 106 107 108 109 110 111 112 113 114 115

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

116 117 118 119 120 121 122 123 124
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
125 126
				      long delta)
{
127
	long ret = delta;
128 129

	if (!spool)
130
		return ret;
131 132

	spin_lock(&spool->lock);
133 134 135 136 137 138 139 140

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
141 142
	}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
159 160 161
	return ret;
}

162 163 164 165 166 167 168
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
169 170
				       long delta)
{
171 172
	long ret = delta;

173
	if (!spool)
174
		return delta;
175 176

	spin_lock(&spool->lock);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
196
	unlock_or_release_subpool(spool);
197 198

	return ret;
199 200 201 202 203 204 205 206 207
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
208
	return subpool_inode(file_inode(vma->vm_file));
209 210
}

211 212 213
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
214
 *
215 216
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
217 218 219 220 221 222 223
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

224
static long region_add(struct resv_map *resv, long f, long t)
225
{
226
	struct list_head *head = &resv->regions;
227 228
	struct file_region *rg, *nrg, *trg;

229
	spin_lock(&resv->lock);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
259
	spin_unlock(&resv->lock);
260 261 262
	return 0;
}

263
static long region_chg(struct resv_map *resv, long f, long t)
264
{
265
	struct list_head *head = &resv->regions;
266
	struct file_region *rg, *nrg = NULL;
267 268
	long chg = 0;

269 270
retry:
	spin_lock(&resv->lock);
271 272 273 274 275 276 277 278 279
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
280 281 282 283 284 285 286 287 288 289 290
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
291

292 293 294
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
295 296 297 298 299 300 301 302 303 304 305 306
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
307
			goto out;
308

L
Lucas De Marchi 已提交
309
		/* We overlap with this area, if it extends further than
310 311 312 313 314 315 316 317
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
318 319 320 321 322 323 324 325

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
326 327 328
	return chg;
}

329
static long region_truncate(struct resv_map *resv, long end)
330
{
331
	struct list_head *head = &resv->regions;
332 333 334
	struct file_region *rg, *trg;
	long chg = 0;

335
	spin_lock(&resv->lock);
336 337 338 339 340
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
341
		goto out;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
358 359 360

out:
	spin_unlock(&resv->lock);
361 362 363
	return chg;
}

364
static long region_count(struct resv_map *resv, long f, long t)
365
{
366
	struct list_head *head = &resv->regions;
367 368 369
	struct file_region *rg;
	long chg = 0;

370
	spin_lock(&resv->lock);
371 372
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
373 374
		long seg_from;
		long seg_to;
375 376 377 378 379 380 381 382 383 384 385

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
386
	spin_unlock(&resv->lock);
387 388 389 390

	return chg;
}

391 392 393 394
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
395 396
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
397
{
398 399
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
400 401
}

402 403 404 405 406 407
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

408 409 410 411 412 413 414 415 416 417 418 419 420
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

421
	return 1UL << huge_page_shift(hstate);
422
}
423
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
424

425 426 427 428 429 430 431 432 433 434 435 436 437
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

438 439 440 441 442 443 444
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
445
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
446

447 448 449 450 451 452 453 454 455
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
456 457 458 459 460 461 462 463 464
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
465
 */
466 467 468 469 470 471 472 473 474 475 476
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

477
struct resv_map *resv_map_alloc(void)
478 479 480 481 482 483
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
484
	spin_lock_init(&resv_map->lock);
485 486 487 488 489
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

490
void resv_map_release(struct kref *ref)
491 492 493 494
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
495
	region_truncate(resv_map, 0);
496 497 498
	kfree(resv_map);
}

499 500 501 502 503
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

504
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
505
{
506
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
507 508 509 510 511 512 513
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
514 515
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
516
	}
517 518
}

519
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
520
{
521 522
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
523

524 525
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
526 527 528 529
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
530 531
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
532 533

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
534 535 536 537
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
538
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
539 540

	return (get_vma_private_data(vma) & flag) != 0;
541 542
}

543
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
544 545
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
546
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
547
	if (!(vma->vm_flags & VM_MAYSHARE))
548 549 550 551
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
552
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
553
{
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
569 570

	/* Shared mappings always use reserves */
571
	if (vma->vm_flags & VM_MAYSHARE)
572
		return 1;
573 574 575 576 577

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
578 579
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
580

581
	return 0;
582 583
}

584
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
585 586
{
	int nid = page_to_nid(page);
587
	list_move(&page->lru, &h->hugepage_freelists[nid]);
588 589
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
590 591
}

592 593 594 595
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

596 597 598 599 600 601 602 603
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
604
		return NULL;
605
	list_move(&page->lru, &h->hugepage_activelist);
606
	set_page_refcounted(page);
607 608 609 610 611
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

612 613 614
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
615
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
616 617 618 619 620
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

621 622
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
623 624
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
625
{
626
	struct page *page = NULL;
627
	struct mempolicy *mpol;
628
	nodemask_t *nodemask;
629
	struct zonelist *zonelist;
630 631
	struct zone *zone;
	struct zoneref *z;
632
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
633

634 635 636 637 638
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
639
	if (!vma_has_reserves(vma, chg) &&
640
			h->free_huge_pages - h->resv_huge_pages == 0)
641
		goto err;
642

643
	/* If reserves cannot be used, ensure enough pages are in the pool */
644
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
645
		goto err;
646

647
retry_cpuset:
648
	cpuset_mems_cookie = read_mems_allowed_begin();
649
	zonelist = huge_zonelist(vma, address,
650
					htlb_alloc_mask(h), &mpol, &nodemask);
651

652 653
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
654
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
655 656
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
657 658 659 660 661
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

662
				SetPagePrivate(page);
663
				h->resv_huge_pages--;
664 665
				break;
			}
A
Andrew Morton 已提交
666
		}
L
Linus Torvalds 已提交
667
	}
668

669
	mpol_cond_put(mpol);
670
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
671
		goto retry_cpuset;
L
Linus Torvalds 已提交
672
	return page;
673 674 675

err:
	return NULL;
L
Linus Torvalds 已提交
676 677
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

889
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
890 891
{
	int i;
892

893 894
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
895

896 897 898
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
899 900
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
901 902
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
903
	}
904
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
905 906
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
907 908 909 910 911 912 913
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		arch_release_hugepage(page);
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
914 915
}

916 917 918 919 920 921 922 923 924 925 926
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

927
void free_huge_page(struct page *page)
928
{
929 930 931 932
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
933
	struct hstate *h = page_hstate(page);
934
	int nid = page_to_nid(page);
935 936
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
937
	bool restore_reserve;
938

939
	set_page_private(page, 0);
940
	page->mapping = NULL;
941
	BUG_ON(page_count(page));
942
	BUG_ON(page_mapcount(page));
943
	restore_reserve = PagePrivate(page);
944
	ClearPagePrivate(page);
945

946 947 948 949 950 951 952 953
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

954
	spin_lock(&hugetlb_lock);
955 956
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
957 958 959
	if (restore_reserve)
		h->resv_huge_pages++;

960
	if (h->surplus_huge_pages_node[nid]) {
961 962
		/* remove the page from active list */
		list_del(&page->lru);
963 964 965
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
966
	} else {
967
		arch_clear_hugepage_flags(page);
968
		enqueue_huge_page(h, page);
969
	}
970 971 972
	spin_unlock(&hugetlb_lock);
}

973
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
974
{
975
	INIT_LIST_HEAD(&page->lru);
976 977
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
978
	set_hugetlb_cgroup(page, NULL);
979 980
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
981 982 983 984
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

985
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
986 987 988 989 990 991 992 993
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
994
	__ClearPageReserved(page);
995
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1009
		set_page_count(p, 0);
1010
		p->first_page = page;
1011 1012 1013
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1014 1015 1016
	}
}

A
Andrew Morton 已提交
1017 1018 1019 1020 1021
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1022 1023 1024 1025 1026 1027
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1028
	return get_compound_page_dtor(page) == free_huge_page;
1029
}
1030 1031
EXPORT_SYMBOL_GPL(PageHuge);

1032 1033 1034 1035 1036 1037 1038 1039 1040
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1041
	return get_compound_page_dtor(page_head) == free_huge_page;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1061
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1062 1063
{
	struct page *page;
1064

1065
	page = alloc_pages_exact_node(nid,
1066
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1067
						__GFP_REPEAT|__GFP_NOWARN,
1068
		huge_page_order(h));
L
Linus Torvalds 已提交
1069
	if (page) {
1070
		if (arch_prepare_hugepage(page)) {
1071
			__free_pages(page, huge_page_order(h));
1072
			return NULL;
1073
		}
1074
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1075
	}
1076 1077 1078 1079

	return page;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1102 1103 1104 1105 1106 1107
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1108 1109
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1110
{
1111
	int nr_nodes, node;
1112 1113
	int ret = 0;

1114
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1115 1116 1117 1118
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1119 1120
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1121
			struct page *page =
1122
				list_entry(h->hugepage_freelists[node].next,
1123 1124 1125
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1126
			h->free_huge_pages_node[node]--;
1127 1128
			if (acct_surplus) {
				h->surplus_huge_pages--;
1129
				h->surplus_huge_pages_node[node]--;
1130
			}
1131 1132
			update_and_free_page(h, page);
			ret = 1;
1133
			break;
1134
		}
1135
	}
1136 1137 1138 1139

	return ret;
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

1169 1170 1171
	if (!hugepages_supported())
		return;

1172 1173 1174 1175 1176 1177 1178 1179 1180
	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1181
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1182 1183
{
	struct page *page;
1184
	unsigned int r_nid;
1185

1186
	if (hstate_is_gigantic(h))
1187 1188
		return NULL;

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1213
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1214 1215 1216
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1217 1218
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1219 1220 1221
	}
	spin_unlock(&hugetlb_lock);

1222
	if (nid == NUMA_NO_NODE)
1223
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1224 1225 1226 1227
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1228
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1229
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1230

1231 1232
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1233
		page = NULL;
1234 1235
	}

1236
	spin_lock(&hugetlb_lock);
1237
	if (page) {
1238
		INIT_LIST_HEAD(&page->lru);
1239
		r_nid = page_to_nid(page);
1240
		set_compound_page_dtor(page, free_huge_page);
1241
		set_hugetlb_cgroup(page, NULL);
1242 1243 1244
		/*
		 * We incremented the global counters already
		 */
1245 1246
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1247
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1248
	} else {
1249 1250
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1251
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1252
	}
1253
	spin_unlock(&hugetlb_lock);
1254 1255 1256 1257

	return page;
}

1258 1259 1260 1261 1262 1263 1264
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1265
	struct page *page = NULL;
1266 1267

	spin_lock(&hugetlb_lock);
1268 1269
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1270 1271
	spin_unlock(&hugetlb_lock);

1272
	if (!page)
1273 1274 1275 1276 1277
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1278
/*
L
Lucas De Marchi 已提交
1279
 * Increase the hugetlb pool such that it can accommodate a reservation
1280 1281
 * of size 'delta'.
 */
1282
static int gather_surplus_pages(struct hstate *h, int delta)
1283 1284 1285 1286 1287
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1288
	bool alloc_ok = true;
1289

1290
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1291
	if (needed <= 0) {
1292
		h->resv_huge_pages += delta;
1293
		return 0;
1294
	}
1295 1296 1297 1298 1299 1300 1301 1302

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1303
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1304 1305 1306 1307
		if (!page) {
			alloc_ok = false;
			break;
		}
1308 1309
		list_add(&page->lru, &surplus_list);
	}
1310
	allocated += i;
1311 1312 1313 1314 1315 1316

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1317 1318
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1329 1330
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1331
	 * needed to accommodate the reservation.  Add the appropriate number
1332
	 * of pages to the hugetlb pool and free the extras back to the buddy
1333 1334 1335
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1336 1337
	 */
	needed += allocated;
1338
	h->resv_huge_pages += delta;
1339
	ret = 0;
1340

1341
	/* Free the needed pages to the hugetlb pool */
1342
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1343 1344
		if ((--needed) < 0)
			break;
1345 1346 1347 1348 1349
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1350
		VM_BUG_ON_PAGE(page_count(page), page);
1351
		enqueue_huge_page(h, page);
1352
	}
1353
free:
1354
	spin_unlock(&hugetlb_lock);
1355 1356

	/* Free unnecessary surplus pages to the buddy allocator */
1357 1358
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1359
	spin_lock(&hugetlb_lock);
1360 1361 1362 1363 1364 1365 1366 1367

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1368
 * Called with hugetlb_lock held.
1369
 */
1370 1371
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1372 1373 1374
{
	unsigned long nr_pages;

1375
	/* Uncommit the reservation */
1376
	h->resv_huge_pages -= unused_resv_pages;
1377

1378
	/* Cannot return gigantic pages currently */
1379
	if (hstate_is_gigantic(h))
1380 1381
		return;

1382
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1383

1384 1385
	/*
	 * We want to release as many surplus pages as possible, spread
1386 1387 1388 1389 1390
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1391 1392
	 */
	while (nr_pages--) {
1393
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1394
			break;
1395
		cond_resched_lock(&hugetlb_lock);
1396 1397 1398
	}
}

1399 1400 1401
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1402 1403 1404 1405 1406 1407
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1408
 */
1409
static long vma_needs_reservation(struct hstate *h,
1410
			struct vm_area_struct *vma, unsigned long addr)
1411
{
1412 1413 1414
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1415

1416 1417
	resv = vma_resv_map(vma);
	if (!resv)
1418
		return 1;
1419

1420 1421
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1422

1423 1424 1425 1426
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1427
}
1428 1429
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1430
{
1431 1432
	struct resv_map *resv;
	pgoff_t idx;
1433

1434 1435 1436
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1437

1438 1439
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1440 1441
}

1442
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1443
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1444
{
1445
	struct hugepage_subpool *spool = subpool_vma(vma);
1446
	struct hstate *h = hstate_vma(vma);
1447
	struct page *page;
1448
	long chg;
1449 1450
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1451

1452
	idx = hstate_index(h);
1453
	/*
1454 1455 1456 1457 1458 1459
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1460
	 */
1461
	chg = vma_needs_reservation(h, vma, addr);
1462
	if (chg < 0)
1463
		return ERR_PTR(-ENOMEM);
1464
	if (chg || avoid_reserve)
1465
		if (hugepage_subpool_get_pages(spool, 1) < 0)
1466
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1467

1468
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1469 1470 1471
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1472
	spin_lock(&hugetlb_lock);
1473
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1474
	if (!page) {
1475
		spin_unlock(&hugetlb_lock);
1476
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1477 1478 1479
		if (!page)
			goto out_uncharge_cgroup;

1480 1481
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1482
		/* Fall through */
K
Ken Chen 已提交
1483
	}
1484 1485
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1486

1487
	set_page_private(page, (unsigned long)spool);
1488

1489
	vma_commit_reservation(h, vma, addr);
1490
	return page;
1491 1492 1493 1494 1495 1496 1497

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
	return ERR_PTR(-ENOSPC);
1498 1499
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1514
int __weak alloc_bootmem_huge_page(struct hstate *h)
1515 1516
{
	struct huge_bootmem_page *m;
1517
	int nr_nodes, node;
1518

1519
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1520 1521
		void *addr;

1522 1523 1524
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1525 1526 1527 1528 1529 1530 1531
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1532
			goto found;
1533 1534 1535 1536 1537
		}
	}
	return 0;

found:
1538
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1539 1540 1541 1542 1543 1544
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1545
static void __init prep_compound_huge_page(struct page *page, int order)
1546 1547 1548 1549 1550 1551 1552
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1553 1554 1555 1556 1557 1558 1559
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1560 1561 1562 1563
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1564 1565
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1566 1567 1568
#else
		page = virt_to_page(m);
#endif
1569
		WARN_ON(page_count(page) != 1);
1570
		prep_compound_huge_page(page, h->order);
1571
		WARN_ON(PageReserved(page));
1572
		prep_new_huge_page(h, page, page_to_nid(page));
1573 1574 1575 1576 1577 1578
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
1579
		if (hstate_is_gigantic(h))
1580
			adjust_managed_page_count(page, 1 << h->order);
1581 1582 1583
	}
}

1584
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1585 1586
{
	unsigned long i;
1587

1588
	for (i = 0; i < h->max_huge_pages; ++i) {
1589
		if (hstate_is_gigantic(h)) {
1590 1591
			if (!alloc_bootmem_huge_page(h))
				break;
1592
		} else if (!alloc_fresh_huge_page(h,
1593
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1594 1595
			break;
	}
1596
	h->max_huge_pages = i;
1597 1598 1599 1600 1601 1602 1603
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1604
		/* oversize hugepages were init'ed in early boot */
1605
		if (!hstate_is_gigantic(h))
1606
			hugetlb_hstate_alloc_pages(h);
1607 1608 1609
	}
}

A
Andi Kleen 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1621 1622 1623 1624 1625
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1626
		char buf[32];
1627
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1628 1629
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1630 1631 1632
	}
}

L
Linus Torvalds 已提交
1633
#ifdef CONFIG_HIGHMEM
1634 1635
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1636
{
1637 1638
	int i;

1639
	if (hstate_is_gigantic(h))
1640 1641
		return;

1642
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1643
		struct page *page, *next;
1644 1645 1646
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1647
				return;
L
Linus Torvalds 已提交
1648 1649 1650
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1651
			update_and_free_page(h, page);
1652 1653
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1654 1655 1656 1657
		}
	}
}
#else
1658 1659
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1660 1661 1662 1663
{
}
#endif

1664 1665 1666 1667 1668
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1669 1670
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1671
{
1672
	int nr_nodes, node;
1673 1674 1675

	VM_BUG_ON(delta != -1 && delta != 1);

1676 1677 1678 1679
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1680
		}
1681 1682 1683 1684 1685
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1686
		}
1687 1688
	}
	return 0;
1689

1690 1691 1692 1693
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1694 1695
}

1696
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1697 1698
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1699
{
1700
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1701

1702
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1703 1704
		return h->max_huge_pages;

1705 1706 1707 1708
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1709 1710 1711 1712 1713 1714
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1715
	 */
L
Linus Torvalds 已提交
1716
	spin_lock(&hugetlb_lock);
1717
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1718
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1719 1720 1721
			break;
	}

1722
	while (count > persistent_huge_pages(h)) {
1723 1724 1725 1726 1727 1728
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1729 1730 1731 1732
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
1733 1734 1735 1736
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1737 1738 1739
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1740 1741 1742 1743 1744 1745 1746 1747
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1748 1749 1750 1751 1752 1753 1754 1755
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1756
	 */
1757
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1758
	min_count = max(count, min_count);
1759
	try_to_free_low(h, min_count, nodes_allowed);
1760
	while (min_count < persistent_huge_pages(h)) {
1761
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1762
			break;
1763
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
1764
	}
1765
	while (count < persistent_huge_pages(h)) {
1766
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1767 1768 1769
			break;
	}
out:
1770
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1771
	spin_unlock(&hugetlb_lock);
1772
	return ret;
L
Linus Torvalds 已提交
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1785 1786 1787
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1788 1789
{
	int i;
1790

1791
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1792 1793 1794
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1795
			return &hstates[i];
1796 1797 1798
		}

	return kobj_to_node_hstate(kobj, nidp);
1799 1800
}

1801
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1802 1803
					struct kobj_attribute *attr, char *buf)
{
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1815
}
1816

1817 1818 1819
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
1820 1821
{
	int err;
1822
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1823

1824
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1825 1826 1827 1828
		err = -EINVAL;
		goto out;
	}

1829 1830 1831 1832 1833 1834 1835
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1836
			nodes_allowed = &node_states[N_MEMORY];
1837 1838 1839 1840 1841 1842 1843 1844 1845
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1846
		nodes_allowed = &node_states[N_MEMORY];
1847

1848
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1849

1850
	if (nodes_allowed != &node_states[N_MEMORY])
1851 1852 1853
		NODEMASK_FREE(nodes_allowed);

	return len;
1854 1855 1856
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1857 1858
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

1876 1877 1878 1879 1880 1881 1882 1883 1884
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1885
	return nr_hugepages_store_common(false, kobj, buf, len);
1886 1887 1888
}
HSTATE_ATTR(nr_hugepages);

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1904
	return nr_hugepages_store_common(true, kobj, buf, len);
1905 1906 1907 1908 1909
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1910 1911 1912
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1913
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1914 1915
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1916

1917 1918 1919 1920 1921
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1922
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1923

1924
	if (hstate_is_gigantic(h))
1925 1926
		return -EINVAL;

1927
	err = kstrtoul(buf, 10, &input);
1928
	if (err)
1929
		return err;
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1953 1954 1955 1956 1957 1958
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1959
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1960 1961 1962 1963 1964 1965 1966
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1978 1979 1980 1981 1982 1983 1984 1985 1986
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1987 1988 1989
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1990 1991 1992 1993 1994 1995 1996
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1997 1998 1999
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2000 2001
{
	int retval;
2002
	int hi = hstate_index(h);
2003

2004 2005
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2006 2007
		return -ENOMEM;

2008
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2009
	if (retval)
2010
		kobject_put(hstate_kobjs[hi]);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2025 2026
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2027
		if (err)
2028
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2029 2030 2031
	}
}

2032 2033 2034 2035
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2036 2037 2038
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2039 2040 2041 2042 2043 2044 2045 2046 2047
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
2048
 * A subset of global hstate attributes for node devices
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2062
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2085
 * Unregister hstate attributes from a single node device.
2086 2087
 * No-op if no hstate attributes attached.
 */
2088
static void hugetlb_unregister_node(struct node *node)
2089 2090
{
	struct hstate *h;
2091
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2092 2093

	if (!nhs->hugepages_kobj)
2094
		return;		/* no hstate attributes */
2095

2096 2097 2098 2099 2100
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2101
		}
2102
	}
2103 2104 2105 2106 2107 2108

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2109
 * hugetlb module exit:  unregister hstate attributes from node devices
2110 2111 2112 2113 2114 2115 2116
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2117
	 * disable node device registrations.
2118 2119 2120 2121 2122 2123 2124
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2125
		hugetlb_unregister_node(node_devices[nid]);
2126 2127 2128
}

/*
2129
 * Register hstate attributes for a single node device.
2130 2131
 * No-op if attributes already registered.
 */
2132
static void hugetlb_register_node(struct node *node)
2133 2134
{
	struct hstate *h;
2135
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2136 2137 2138 2139 2140 2141
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2142
							&node->dev.kobj);
2143 2144 2145 2146 2147 2148 2149 2150
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2151 2152
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2153 2154 2155 2156 2157 2158 2159
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2160
 * hugetlb init time:  register hstate attributes for all registered node
2161 2162
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2163
 */
2164
static void __init hugetlb_register_all_nodes(void)
2165 2166 2167
{
	int nid;

2168
	for_each_node_state(nid, N_MEMORY) {
2169
		struct node *node = node_devices[nid];
2170
		if (node->dev.id == nid)
2171 2172 2173 2174
			hugetlb_register_node(node);
	}

	/*
2175
	 * Let the node device driver know we're here so it can
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2197 2198 2199 2200
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2201 2202
	hugetlb_unregister_all_nodes();

2203
	for_each_hstate(h) {
2204
		kobject_put(hstate_kobjs[hstate_index(h)]);
2205 2206 2207
	}

	kobject_put(hugepages_kobj);
2208
	kfree(htlb_fault_mutex_table);
2209 2210 2211 2212 2213
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2214 2215
	int i;

2216
	if (!hugepages_supported())
2217
		return 0;
2218

2219 2220 2221 2222
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2223
	}
2224
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2225 2226
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2227 2228

	hugetlb_init_hstates();
2229
	gather_bootmem_prealloc();
2230 2231 2232
	report_hugepages();

	hugetlb_sysfs_init();
2233
	hugetlb_register_all_nodes();
2234
	hugetlb_cgroup_file_init();
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2247 2248 2249 2250 2251 2252 2253 2254
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2255 2256
	unsigned long i;

2257
	if (size_to_hstate(PAGE_SIZE << order)) {
2258
		pr_warning("hugepagesz= specified twice, ignoring\n");
2259 2260
		return;
	}
2261
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2262
	BUG_ON(order == 0);
2263
	h = &hstates[hugetlb_max_hstate++];
2264 2265
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2266 2267 2268 2269
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2270
	INIT_LIST_HEAD(&h->hugepage_activelist);
2271 2272
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2273 2274
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2275

2276 2277 2278
	parsed_hstate = h;
}

2279
static int __init hugetlb_nrpages_setup(char *s)
2280 2281
{
	unsigned long *mhp;
2282
	static unsigned long *last_mhp;
2283 2284

	/*
2285
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2286 2287
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2288
	if (!hugetlb_max_hstate)
2289 2290 2291 2292
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2293
	if (mhp == last_mhp) {
2294 2295
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2296 2297 2298
		return 1;
	}

2299 2300 2301
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2302 2303 2304 2305 2306
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2307
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2308 2309 2310 2311
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2312 2313
	return 1;
}
2314 2315 2316 2317 2318 2319 2320 2321
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2335 2336 2337
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2338
{
2339
	struct hstate *h = &default_hstate;
2340
	unsigned long tmp = h->max_huge_pages;
2341
	int ret;
2342

2343 2344 2345
	if (!hugepages_supported())
		return -ENOTSUPP;

2346 2347
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2348 2349 2350
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2351

2352 2353 2354
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2355 2356
out:
	return ret;
L
Linus Torvalds 已提交
2357
}
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2376
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2377
			void __user *buffer,
2378 2379
			size_t *length, loff_t *ppos)
{
2380
	struct hstate *h = &default_hstate;
2381
	unsigned long tmp;
2382
	int ret;
2383

2384 2385 2386
	if (!hugepages_supported())
		return -ENOTSUPP;

2387
	tmp = h->nr_overcommit_huge_pages;
2388

2389
	if (write && hstate_is_gigantic(h))
2390 2391
		return -EINVAL;

2392 2393
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2394 2395 2396
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2397 2398 2399 2400 2401 2402

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2403 2404
out:
	return ret;
2405 2406
}

L
Linus Torvalds 已提交
2407 2408
#endif /* CONFIG_SYSCTL */

2409
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2410
{
2411
	struct hstate *h = &default_hstate;
2412 2413
	if (!hugepages_supported())
		return;
2414
	seq_printf(m,
2415 2416 2417 2418 2419
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2420 2421 2422 2423 2424
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2425 2426 2427 2428
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2429
	struct hstate *h = &default_hstate;
2430 2431
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2432 2433
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2434 2435
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2436 2437 2438
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2439 2440
}

2441 2442 2443 2444 2445
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2446 2447 2448
	if (!hugepages_supported())
		return;

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2459 2460 2461
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2462 2463 2464 2465 2466 2467
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2468 2469
}

2470
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2493
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2494 2495
			goto out;

2496 2497
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2498 2499 2500 2501 2502 2503
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2504
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2505 2506 2507 2508 2509 2510

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2511 2512
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2513
	struct resv_map *resv = vma_resv_map(vma);
2514 2515 2516 2517 2518

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2519
	 * has a reference to the reservation map it cannot disappear until
2520 2521 2522
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2523
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2524
		kref_get(&resv->refs);
2525 2526
}

2527 2528
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2529
	struct hstate *h = hstate_vma(vma);
2530
	struct resv_map *resv = vma_resv_map(vma);
2531
	struct hugepage_subpool *spool = subpool_vma(vma);
2532
	unsigned long reserve, start, end;
2533
	long gbl_reserve;
2534

2535 2536
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2537

2538 2539
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2540

2541
	reserve = (end - start) - region_count(resv, start, end);
2542

2543 2544 2545
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2546 2547 2548 2549 2550 2551
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2552
	}
2553 2554
}

L
Linus Torvalds 已提交
2555 2556 2557 2558 2559 2560
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2561
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2562 2563
{
	BUG();
N
Nick Piggin 已提交
2564
	return 0;
L
Linus Torvalds 已提交
2565 2566
}

2567
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2568
	.fault = hugetlb_vm_op_fault,
2569
	.open = hugetlb_vm_op_open,
2570
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2571 2572
};

2573 2574
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2575 2576 2577
{
	pte_t entry;

2578
	if (writable) {
2579 2580
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2581
	} else {
2582 2583
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2584 2585 2586
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2587
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2588 2589 2590 2591

	return entry;
}

2592 2593 2594 2595 2596
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2597
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2598
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2599
		update_mmu_cache(vma, address, ptep);
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
2627

D
David Gibson 已提交
2628 2629 2630 2631 2632
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2633
	unsigned long addr;
2634
	int cow;
2635 2636
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2637 2638 2639
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2640 2641

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2642

2643 2644 2645 2646 2647
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2648
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2649
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2650 2651 2652
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2653
		dst_pte = huge_pte_alloc(dst, addr, sz);
2654 2655 2656 2657
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2658 2659 2660 2661 2662

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2663 2664 2665
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
2684
			if (cow) {
2685
				huge_ptep_set_wrprotect(src, addr, src_pte);
2686 2687 2688
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
2689
			entry = huge_ptep_get(src_pte);
2690 2691
			ptepage = pte_page(entry);
			get_page(ptepage);
2692
			page_dup_rmap(ptepage);
2693 2694
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2695 2696
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2697 2698
	}

2699 2700 2701 2702
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2703 2704
}

2705 2706 2707
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2708
{
2709
	int force_flush = 0;
D
David Gibson 已提交
2710 2711
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2712
	pte_t *ptep;
D
David Gibson 已提交
2713
	pte_t pte;
2714
	spinlock_t *ptl;
D
David Gibson 已提交
2715
	struct page *page;
2716 2717
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2718 2719
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2720

D
David Gibson 已提交
2721
	WARN_ON(!is_vm_hugetlb_page(vma));
2722 2723
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2724

2725
	tlb_start_vma(tlb, vma);
2726
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2727
	address = start;
2728
again:
2729
	for (; address < end; address += sz) {
2730
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2731
		if (!ptep)
2732 2733
			continue;

2734
		ptl = huge_pte_lock(h, mm, ptep);
2735
		if (huge_pmd_unshare(mm, &address, ptep))
2736
			goto unlock;
2737

2738 2739
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2740
			goto unlock;
2741 2742

		/*
2743 2744
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
2745
		 */
2746
		if (unlikely(!pte_present(pte))) {
2747
			huge_pte_clear(mm, address, ptep);
2748
			goto unlock;
2749
		}
2750 2751

		page = pte_page(pte);
2752 2753 2754 2755 2756 2757 2758
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2759
				goto unlock;
2760 2761 2762 2763 2764 2765 2766 2767 2768

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2769
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2770
		tlb_remove_tlb_entry(tlb, ptep, address);
2771
		if (huge_pte_dirty(pte))
2772
			set_page_dirty(page);
2773

2774 2775
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2776
		if (force_flush) {
2777
			address += sz;
2778
			spin_unlock(ptl);
2779
			break;
2780
		}
2781
		/* Bail out after unmapping reference page if supplied */
2782 2783
		if (ref_page) {
			spin_unlock(ptl);
2784
			break;
2785 2786 2787
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2788
	}
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2799
	}
2800
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2801
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2802
}
D
David Gibson 已提交
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
2816
	 * is to clear it before releasing the i_mmap_rwsem. This works
2817
	 * because in the context this is called, the VMA is about to be
2818
	 * destroyed and the i_mmap_rwsem is held.
2819 2820 2821 2822
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2823
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2824
			  unsigned long end, struct page *ref_page)
2825
{
2826 2827 2828 2829 2830
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2831
	tlb_gather_mmu(&tlb, mm, start, end);
2832 2833
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2834 2835
}

2836 2837 2838 2839 2840 2841
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2842 2843
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
2844
{
2845
	struct hstate *h = hstate_vma(vma);
2846 2847 2848 2849 2850 2851 2852 2853
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2854
	address = address & huge_page_mask(h);
2855 2856
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2857
	mapping = file_inode(vma->vm_file)->i_mapping;
2858

2859 2860 2861 2862 2863
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2864
	i_mmap_lock_write(mapping);
2865
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2878 2879
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2880
	}
2881
	i_mmap_unlock_write(mapping);
2882 2883
}

2884 2885
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2886 2887 2888
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2889
 */
2890
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2891
			unsigned long address, pte_t *ptep, pte_t pte,
2892
			struct page *pagecache_page, spinlock_t *ptl)
2893
{
2894
	struct hstate *h = hstate_vma(vma);
2895
	struct page *old_page, *new_page;
2896
	int ret = 0, outside_reserve = 0;
2897 2898
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2899 2900 2901

	old_page = pte_page(pte);

2902
retry_avoidcopy:
2903 2904
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2905 2906
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2907
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2908
		return 0;
2909 2910
	}

2911 2912 2913 2914 2915 2916 2917 2918 2919
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2920
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2921 2922 2923
			old_page != pagecache_page)
		outside_reserve = 1;

2924
	page_cache_get(old_page);
2925

2926 2927 2928 2929
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
2930
	spin_unlock(ptl);
2931
	new_page = alloc_huge_page(vma, address, outside_reserve);
2932

2933
	if (IS_ERR(new_page)) {
2934 2935 2936 2937 2938 2939 2940 2941
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
2942
			page_cache_release(old_page);
2943
			BUG_ON(huge_pte_none(pte));
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
2956 2957
		}

2958 2959 2960
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
2961 2962
	}

2963 2964 2965 2966
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2967
	if (unlikely(anon_vma_prepare(vma))) {
2968 2969
		ret = VM_FAULT_OOM;
		goto out_release_all;
2970
	}
2971

A
Andrea Arcangeli 已提交
2972 2973
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2974
	__SetPageUptodate(new_page);
2975

2976 2977 2978
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2979

2980
	/*
2981
	 * Retake the page table lock to check for racing updates
2982 2983
	 * before the page tables are altered
	 */
2984
	spin_lock(ptl);
2985
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2986
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2987 2988
		ClearPagePrivate(new_page);

2989
		/* Break COW */
2990
		huge_ptep_clear_flush(vma, address, ptep);
2991
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2992 2993
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2994
		page_remove_rmap(old_page);
2995
		hugepage_add_new_anon_rmap(new_page, vma, address);
2996 2997 2998
		/* Make the old page be freed below */
		new_page = old_page;
	}
2999
	spin_unlock(ptl);
3000
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3001
out_release_all:
3002
	page_cache_release(new_page);
3003
out_release_old:
3004
	page_cache_release(old_page);
3005

3006 3007
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3008 3009
}

3010
/* Return the pagecache page at a given address within a VMA */
3011 3012
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3013 3014
{
	struct address_space *mapping;
3015
	pgoff_t idx;
3016 3017

	mapping = vma->vm_file->f_mapping;
3018
	idx = vma_hugecache_offset(h, vma, address);
3019 3020 3021 3022

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3023 3024 3025 3026 3027
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3043
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3044 3045
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3046
{
3047
	struct hstate *h = hstate_vma(vma);
3048
	int ret = VM_FAULT_SIGBUS;
3049
	int anon_rmap = 0;
A
Adam Litke 已提交
3050 3051
	unsigned long size;
	struct page *page;
3052
	pte_t new_pte;
3053
	spinlock_t *ptl;
A
Adam Litke 已提交
3054

3055 3056 3057
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3058
	 * COW. Warn that such a situation has occurred as it may not be obvious
3059 3060
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3061 3062
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3063 3064 3065
		return ret;
	}

A
Adam Litke 已提交
3066 3067 3068 3069
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3070 3071 3072
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3073
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3074 3075
		if (idx >= size)
			goto out;
3076
		page = alloc_huge_page(vma, address, 0);
3077
		if (IS_ERR(page)) {
3078 3079 3080 3081 3082
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3083 3084
			goto out;
		}
A
Andrea Arcangeli 已提交
3085
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3086
		__SetPageUptodate(page);
3087

3088
		if (vma->vm_flags & VM_MAYSHARE) {
3089
			int err;
K
Ken Chen 已提交
3090
			struct inode *inode = mapping->host;
3091 3092 3093 3094 3095 3096 3097 3098

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3099
			ClearPagePrivate(page);
K
Ken Chen 已提交
3100 3101

			spin_lock(&inode->i_lock);
3102
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
3103
			spin_unlock(&inode->i_lock);
3104
		} else {
3105
			lock_page(page);
3106 3107 3108 3109
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3110
			anon_rmap = 1;
3111
		}
3112
	} else {
3113 3114 3115 3116 3117 3118
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3119
			ret = VM_FAULT_HWPOISON |
3120
				VM_FAULT_SET_HINDEX(hstate_index(h));
3121 3122
			goto backout_unlocked;
		}
3123
	}
3124

3125 3126 3127 3128 3129 3130
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3131
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3132 3133 3134 3135
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3136

3137 3138
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3139
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3140 3141 3142
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3143
	ret = 0;
3144
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3145 3146
		goto backout;

3147 3148
	if (anon_rmap) {
		ClearPagePrivate(page);
3149
		hugepage_add_new_anon_rmap(page, vma, address);
3150
	} else
3151
		page_dup_rmap(page);
3152 3153 3154 3155
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3156
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3157
		/* Optimization, do the COW without a second fault */
3158
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3159 3160
	}

3161
	spin_unlock(ptl);
A
Adam Litke 已提交
3162 3163
	unlock_page(page);
out:
3164
	return ret;
A
Adam Litke 已提交
3165 3166

backout:
3167
	spin_unlock(ptl);
3168
backout_unlocked:
A
Adam Litke 已提交
3169 3170 3171
	unlock_page(page);
	put_page(page);
	goto out;
3172 3173
}

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3209
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3210
			unsigned long address, unsigned int flags)
3211
{
3212
	pte_t *ptep, entry;
3213
	spinlock_t *ptl;
3214
	int ret;
3215 3216
	u32 hash;
	pgoff_t idx;
3217
	struct page *page = NULL;
3218
	struct page *pagecache_page = NULL;
3219
	struct hstate *h = hstate_vma(vma);
3220
	struct address_space *mapping;
3221
	int need_wait_lock = 0;
3222

3223 3224
	address &= huge_page_mask(h);

3225 3226 3227
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3228
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3229
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3230 3231
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3232
			return VM_FAULT_HWPOISON_LARGE |
3233
				VM_FAULT_SET_HINDEX(hstate_index(h));
3234 3235
	}

3236
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3237 3238 3239
	if (!ptep)
		return VM_FAULT_OOM;

3240 3241 3242
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3243 3244 3245 3246 3247
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3248 3249 3250
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3251 3252
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3253
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3254
		goto out_mutex;
3255
	}
3256

N
Nick Piggin 已提交
3257
	ret = 0;
3258

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3269 3270 3271 3272 3273 3274 3275 3276
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3277
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3278 3279
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3280
			goto out_mutex;
3281
		}
3282

3283
		if (!(vma->vm_flags & VM_MAYSHARE))
3284 3285 3286 3287
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3288 3289 3290 3291 3292 3293
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3294 3295 3296 3297 3298 3299 3300
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3301 3302 3303 3304
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3305

3306
	get_page(page);
3307

3308
	if (flags & FAULT_FLAG_WRITE) {
3309
		if (!huge_pte_write(entry)) {
3310
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3311
					pagecache_page, ptl);
3312
			goto out_put_page;
3313
		}
3314
		entry = huge_pte_mkdirty(entry);
3315 3316
	}
	entry = pte_mkyoung(entry);
3317 3318
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3319
		update_mmu_cache(vma, address, ptep);
3320 3321 3322 3323
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3324 3325
out_ptl:
	spin_unlock(ptl);
3326 3327 3328 3329 3330

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3331
out_mutex:
3332
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3333 3334 3335 3336 3337 3338 3339 3340 3341
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3342
	return ret;
3343 3344
}

3345 3346 3347 3348
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3349
{
3350 3351
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3352
	unsigned long remainder = *nr_pages;
3353
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3354 3355

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3356
		pte_t *pte;
3357
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3358
		int absent;
A
Adam Litke 已提交
3359
		struct page *page;
D
David Gibson 已提交
3360

3361 3362 3363 3364 3365 3366 3367 3368 3369
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3370 3371
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3372
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3373
		 * first, for the page indexing below to work.
3374 3375
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3376
		 */
3377
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3378 3379
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3380 3381 3382 3383
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3384 3385 3386 3387
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3388
		 */
H
Hugh Dickins 已提交
3389 3390
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3391 3392
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3393 3394 3395
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3396

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3408 3409
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3410
			int ret;
D
David Gibson 已提交
3411

3412 3413
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3414 3415
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3416
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3417
				continue;
D
David Gibson 已提交
3418

A
Adam Litke 已提交
3419 3420 3421 3422
			remainder = 0;
			break;
		}

3423
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3424
		page = pte_page(huge_ptep_get(pte));
3425
same_page:
3426
		if (pages) {
H
Hugh Dickins 已提交
3427
			pages[i] = mem_map_offset(page, pfn_offset);
3428
			get_page_foll(pages[i]);
3429
		}
D
David Gibson 已提交
3430 3431 3432 3433 3434

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3435
		++pfn_offset;
D
David Gibson 已提交
3436 3437
		--remainder;
		++i;
3438
		if (vaddr < vma->vm_end && remainder &&
3439
				pfn_offset < pages_per_huge_page(h)) {
3440 3441 3442 3443 3444 3445
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3446
		spin_unlock(ptl);
D
David Gibson 已提交
3447
	}
3448
	*nr_pages = remainder;
D
David Gibson 已提交
3449 3450
	*position = vaddr;

H
Hugh Dickins 已提交
3451
	return i ? i : -EFAULT;
D
David Gibson 已提交
3452
}
3453

3454
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3455 3456 3457 3458 3459 3460
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3461
	struct hstate *h = hstate_vma(vma);
3462
	unsigned long pages = 0;
3463 3464 3465 3466

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3467
	mmu_notifier_invalidate_range_start(mm, start, end);
3468
	i_mmap_lock_write(vma->vm_file->f_mapping);
3469
	for (; address < end; address += huge_page_size(h)) {
3470
		spinlock_t *ptl;
3471 3472 3473
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3474
		ptl = huge_pte_lock(h, mm, ptep);
3475 3476
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3477
			spin_unlock(ptl);
3478
			continue;
3479
		}
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3500
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3501
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3502
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3503
			set_huge_pte_at(mm, address, ptep, pte);
3504
			pages++;
3505
		}
3506
		spin_unlock(ptl);
3507
	}
3508
	/*
3509
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3510
	 * may have cleared our pud entry and done put_page on the page table:
3511
	 * once we release i_mmap_rwsem, another task can do the final put_page
3512 3513
	 * and that page table be reused and filled with junk.
	 */
3514
	flush_tlb_range(vma, start, end);
3515
	mmu_notifier_invalidate_range(mm, start, end);
3516
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3517
	mmu_notifier_invalidate_range_end(mm, start, end);
3518 3519

	return pages << h->order;
3520 3521
}

3522 3523
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3524
					struct vm_area_struct *vma,
3525
					vm_flags_t vm_flags)
3526
{
3527
	long ret, chg;
3528
	struct hstate *h = hstate_inode(inode);
3529
	struct hugepage_subpool *spool = subpool_inode(inode);
3530
	struct resv_map *resv_map;
3531
	long gbl_reserve;
3532

3533 3534 3535
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3536
	 * without using reserves
3537
	 */
3538
	if (vm_flags & VM_NORESERVE)
3539 3540
		return 0;

3541 3542 3543 3544 3545 3546
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3547
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3548
		resv_map = inode_resv_map(inode);
3549

3550
		chg = region_chg(resv_map, from, to);
3551 3552 3553

	} else {
		resv_map = resv_map_alloc();
3554 3555 3556
		if (!resv_map)
			return -ENOMEM;

3557
		chg = to - from;
3558

3559 3560 3561 3562
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3563 3564 3565 3566
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3567

3568 3569 3570 3571 3572 3573 3574
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
3575 3576 3577
		ret = -ENOSPC;
		goto out_err;
	}
3578 3579

	/*
3580
	 * Check enough hugepages are available for the reservation.
3581
	 * Hand the pages back to the subpool if there are not
3582
	 */
3583
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
3584
	if (ret < 0) {
3585 3586
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
3587
		goto out_err;
K
Ken Chen 已提交
3588
	}
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3601
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3602
		region_add(resv_map, from, to);
3603
	return 0;
3604
out_err:
J
Joonsoo Kim 已提交
3605 3606
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3607
	return ret;
3608 3609 3610 3611
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3612
	struct hstate *h = hstate_inode(inode);
3613
	struct resv_map *resv_map = inode_resv_map(inode);
3614
	long chg = 0;
3615
	struct hugepage_subpool *spool = subpool_inode(inode);
3616
	long gbl_reserve;
K
Ken Chen 已提交
3617

3618
	if (resv_map)
3619
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3620
	spin_lock(&inode->i_lock);
3621
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3622 3623
	spin_unlock(&inode->i_lock);

3624 3625 3626 3627 3628 3629
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
3630
}
3631

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
3677
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3691
	spinlock_t *ptl;
3692 3693 3694 3695

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

3696
	i_mmap_lock_write(mapping);
3697 3698 3699 3700 3701 3702 3703 3704
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
3705
				mm_inc_nr_pmds(mm);
3706 3707 3708 3709 3710 3711 3712 3713 3714
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3715 3716
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3717
	if (pud_none(*pud)) {
3718 3719
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3720
	} else {
3721
		put_page(virt_to_page(spte));
3722 3723
		mm_inc_nr_pmds(mm);
	}
3724
	spin_unlock(ptl);
3725 3726
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3727
	i_mmap_unlock_write(mapping);
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3738
 * called with page table lock held.
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
3754
	mm_dec_nr_pmds(mm);
3755 3756 3757
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3758 3759 3760 3761 3762 3763 3764
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3765 3766
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
3825
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3826
		pmd_t *pmd, int flags)
3827
{
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
3840
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
3856 3857 3858
	return page;
}

3859
struct page * __weak
3860
follow_huge_pud(struct mm_struct *mm, unsigned long address,
3861
		pud_t *pud, int flags)
3862
{
3863 3864
	if (flags & FOLL_GET)
		return NULL;
3865

3866
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3867 3868
}

3869 3870
#ifdef CONFIG_MEMORY_FAILURE

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3885 3886 3887 3888
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3889
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3890 3891 3892
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3893
	int ret = -EBUSY;
3894 3895

	spin_lock(&hugetlb_lock);
3896
	if (is_hugepage_on_freelist(hpage)) {
3897 3898 3899 3900 3901 3902 3903
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3904
		set_page_refcounted(hpage);
3905 3906 3907 3908
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3909
	spin_unlock(&hugetlb_lock);
3910
	return ret;
3911
}
3912
#endif
3913 3914 3915

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3916
	VM_BUG_ON_PAGE(!PageHead(page), page);
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
3927
	VM_BUG_ON_PAGE(!PageHead(page), page);
3928 3929 3930 3931 3932
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3933 3934 3935

bool is_hugepage_active(struct page *page)
{
3936
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}