hugetlb.c 32.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

D
David Gibson 已提交
18 19 20 21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
L
Linus Torvalds 已提交
23 24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26
static unsigned long surplus_huge_pages;
27
static unsigned long nr_overcommit_huge_pages;
L
Linus Torvalds 已提交
28
unsigned long max_huge_pages;
29
unsigned long sysctl_overcommit_huge_pages;
L
Linus Torvalds 已提交
30 31 32
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
33
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36
static int hugetlb_next_nid;
37

38 39 40 41
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
42

43 44 45 46 47 48 49
static void clear_huge_page(struct page *page, unsigned long addr)
{
	int i;

	might_sleep();
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
		cond_resched();
50
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51 52 53 54
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
55
			   unsigned long addr, struct vm_area_struct *vma)
56 57 58 59 60 61
{
	int i;

	might_sleep();
	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
		cond_resched();
62
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63 64 65
	}
}

L
Linus Torvalds 已提交
66 67 68 69 70 71 72 73
static void enqueue_huge_page(struct page *page)
{
	int nid = page_to_nid(page);
	list_add(&page->lru, &hugepage_freelists[nid]);
	free_huge_pages++;
	free_huge_pages_node[nid]++;
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
static struct page *dequeue_huge_page(void)
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			break;
		}
	}
	return page;
}

static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93
				unsigned long address)
L
Linus Torvalds 已提交
94
{
95
	int nid;
L
Linus Torvalds 已提交
96
	struct page *page = NULL;
97
	struct mempolicy *mpol;
98
	struct zonelist *zonelist = huge_zonelist(vma, address,
99
					htlb_alloc_mask, &mpol);
100
	struct zone **z;
L
Linus Torvalds 已提交
101

102
	for (z = zonelist->zones; *z; z++) {
103
		nid = zone_to_nid(*z);
104
		if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
A
Andrew Morton 已提交
105 106 107 108 109 110
		    !list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
111 112
			if (vma && vma->vm_flags & VM_MAYSHARE)
				resv_huge_pages--;
K
Ken Chen 已提交
113
			break;
A
Andrew Morton 已提交
114
		}
L
Linus Torvalds 已提交
115
	}
116
	mpol_free(mpol);	/* unref if mpol !NULL */
L
Linus Torvalds 已提交
117 118 119
	return page;
}

A
Adam Litke 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static void update_and_free_page(struct page *page)
{
	int i;
	nr_huge_pages--;
	nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

135 136
static void free_huge_page(struct page *page)
{
137
	int nid = page_to_nid(page);
138
	struct address_space *mapping;
139

140
	mapping = (struct address_space *) page_private(page);
141
	set_page_private(page, 0);
142
	BUG_ON(page_count(page));
143 144 145
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
146 147 148 149 150 151 152
	if (surplus_huge_pages_node[nid]) {
		update_and_free_page(page);
		surplus_huge_pages--;
		surplus_huge_pages_node[nid]--;
	} else {
		enqueue_huge_page(page);
	}
153
	spin_unlock(&hugetlb_lock);
154
	if (mapping)
155
		hugetlb_put_quota(mapping, 1);
156 157
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && surplus_huge_pages_node[nid] >=
						nr_huge_pages_node[nid])
			continue;

		surplus_huge_pages += delta;
		surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

193
static struct page *alloc_fresh_huge_page_node(int nid)
L
Linus Torvalds 已提交
194 195
{
	struct page *page;
196

197 198 199
	page = alloc_pages_node(nid,
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
		HUGETLB_PAGE_ORDER);
L
Linus Torvalds 已提交
200
	if (page) {
201
		set_compound_page_dtor(page, free_huge_page);
202
		spin_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
203
		nr_huge_pages++;
204
		nr_huge_pages_node[nid]++;
205
		spin_unlock(&hugetlb_lock);
N
Nick Piggin 已提交
206
		put_page(page); /* free it into the hugepage allocator */
L
Linus Torvalds 已提交
207
	}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	return page;
}

static int alloc_fresh_huge_page(void)
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

	start_nid = hugetlb_next_nid;

	do {
		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
		if (page)
			ret = 1;
		/*
		 * Use a helper variable to find the next node and then
		 * copy it back to hugetlb_next_nid afterwards:
		 * otherwise there's a window in which a racer might
		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
		 * But we don't need to use a spin_lock here: it really
		 * doesn't matter if occasionally a racer chooses the
		 * same nid as we do.  Move nid forward in the mask even
		 * if we just successfully allocated a hugepage so that
		 * the next caller gets hugepages on the next node.
		 */
		next_nid = next_node(hugetlb_next_nid, node_online_map);
		if (next_nid == MAX_NUMNODES)
			next_nid = first_node(node_online_map);
		hugetlb_next_nid = next_nid;
	} while (!page && hugetlb_next_nid != start_nid);

	return ret;
L
Linus Torvalds 已提交
243 244
}

245 246 247 248
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
						unsigned long address)
{
	struct page *page;
249
	unsigned int nid;
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
		nr_huge_pages++;
		surplus_huge_pages++;
	}
	spin_unlock(&hugetlb_lock);

284 285
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
					HUGETLB_PAGE_ORDER);
286 287

	spin_lock(&hugetlb_lock);
288
	if (page) {
289 290 291 292 293 294
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
295
		nid = page_to_nid(page);
296
		set_compound_page_dtor(page, free_huge_page);
297 298 299 300 301 302 303 304
		/*
		 * We incremented the global counters already
		 */
		nr_huge_pages_node[nid]++;
		surplus_huge_pages_node[nid]++;
	} else {
		nr_huge_pages--;
		surplus_huge_pages--;
305
	}
306
	spin_unlock(&hugetlb_lock);
307 308 309 310

	return page;
}

311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
static int gather_surplus_pages(int delta)
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

	needed = (resv_huge_pages + delta) - free_huge_pages;
323 324
	if (needed <= 0) {
		resv_huge_pages += delta;
325
		return 0;
326
	}
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
		page = alloc_buddy_huge_page(NULL, 0);
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
364 365 366
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
367 368
	 */
	needed += allocated;
369
	resv_huge_pages += delta;
370 371 372 373 374 375
	ret = 0;
free:
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
		list_del(&page->lru);
		if ((--needed) >= 0)
			enqueue_huge_page(page);
376 377
		else {
			/*
378 379 380
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
381 382 383 384
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
			spin_unlock(&hugetlb_lock);
385
			free_huge_page(page);
386 387
			spin_lock(&hugetlb_lock);
		}
388 389 390 391 392 393 394 395 396 397
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
A
Adrian Bunk 已提交
398
static void return_unused_surplus_pages(unsigned long unused_resv_pages)
399 400 401 402 403
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

404 405 406
	/* Uncommit the reservation */
	resv_huge_pages -= unused_resv_pages;

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	nr_pages = min(unused_resv_pages, surplus_huge_pages);

	while (nr_pages) {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		if (!surplus_huge_pages_node[nid])
			continue;

		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			surplus_huge_pages--;
			surplus_huge_pages_node[nid]--;
			nr_pages--;
		}
	}
}

431 432 433

static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
						unsigned long addr)
L
Linus Torvalds 已提交
434
{
435
	struct page *page;
L
Linus Torvalds 已提交
436 437

	spin_lock(&hugetlb_lock);
438
	page = dequeue_huge_page_vma(vma, addr);
L
Linus Torvalds 已提交
439
	spin_unlock(&hugetlb_lock);
440
	return page ? page : ERR_PTR(-VM_FAULT_OOM);
441
}
442

443 444 445 446
static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
						unsigned long addr)
{
	struct page *page = NULL;
447

448 449 450
	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
		return ERR_PTR(-VM_FAULT_SIGBUS);

451 452
	spin_lock(&hugetlb_lock);
	if (free_huge_pages > resv_huge_pages)
453
		page = dequeue_huge_page_vma(vma, addr);
454
	spin_unlock(&hugetlb_lock);
K
Ken Chen 已提交
455
	if (!page) {
456
		page = alloc_buddy_huge_page(vma, addr);
K
Ken Chen 已提交
457 458 459 460 461 462
		if (!page) {
			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
	return page;
463 464 465 466 467 468
}

static struct page *alloc_huge_page(struct vm_area_struct *vma,
				    unsigned long addr)
{
	struct page *page;
469 470
	struct address_space *mapping = vma->vm_file->f_mapping;

471 472 473 474
	if (vma->vm_flags & VM_MAYSHARE)
		page = alloc_huge_page_shared(vma, addr);
	else
		page = alloc_huge_page_private(vma, addr);
475 476

	if (!IS_ERR(page)) {
477
		set_page_refcounted(page);
478
		set_page_private(page, (unsigned long) mapping);
479 480
	}
	return page;
481 482
}

L
Linus Torvalds 已提交
483 484 485 486
static int __init hugetlb_init(void)
{
	unsigned long i;

487 488 489
	if (HPAGE_SHIFT == 0)
		return 0;

L
Linus Torvalds 已提交
490 491 492
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

493 494
	hugetlb_next_nid = first_node(node_online_map);

L
Linus Torvalds 已提交
495
	for (i = 0; i < max_huge_pages; ++i) {
N
Nick Piggin 已提交
496
		if (!alloc_fresh_huge_page())
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
			break;
	}
	max_huge_pages = free_huge_pages = nr_huge_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
	return 0;
}
module_init(hugetlb_init);

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
		max_huge_pages = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

513 514 515 516 517 518 519 520 521 522 523
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
524 525 526 527
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
528 529
	int i;

L
Linus Torvalds 已提交
530 531 532
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
533 534
			if (count >= nr_huge_pages)
				return;
L
Linus Torvalds 已提交
535 536 537 538 539
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
540
			free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
541 542 543 544 545 546 547 548 549
		}
	}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif

550
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
L
Linus Torvalds 已提交
551 552
static unsigned long set_max_huge_pages(unsigned long count)
{
553
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
554

555 556 557 558
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
559 560 561 562 563 564
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
565
	 */
L
Linus Torvalds 已提交
566
	spin_lock(&hugetlb_lock);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	while (surplus_huge_pages && count > persistent_huge_pages) {
		if (!adjust_pool_surplus(-1))
			break;
	}

	while (count > persistent_huge_pages) {
		int ret;
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
		ret = alloc_fresh_huge_page();
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
593 594 595 596 597 598 599 600
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
601
	 */
602 603
	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
	min_count = max(count, min_count);
604 605
	try_to_free_low(min_count);
	while (min_count < persistent_huge_pages) {
606
		struct page *page = dequeue_huge_page();
L
Linus Torvalds 已提交
607 608 609 610
		if (!page)
			break;
		update_and_free_page(page);
	}
611 612 613 614 615 616
	while (count < persistent_huge_pages) {
		if (!adjust_pool_surplus(1))
			break;
	}
out:
	ret = persistent_huge_pages;
L
Linus Torvalds 已提交
617
	spin_unlock(&hugetlb_lock);
618
	return ret;
L
Linus Torvalds 已提交
619 620 621 622 623 624 625 626 627 628
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
	max_huge_pages = set_max_huge_pages(max_huge_pages);
	return 0;
}
629 630 631 632 633 634 635 636 637 638 639 640 641

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

642 643 644 645 646
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
647 648
	spin_lock(&hugetlb_lock);
	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
649 650 651 652
	spin_unlock(&hugetlb_lock);
	return 0;
}

L
Linus Torvalds 已提交
653 654 655 656 657 658 659
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
660
			"HugePages_Rsvd:  %5lu\n"
661
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
662 663 664
			"Hugepagesize:    %5lu kB\n",
			nr_huge_pages,
			free_huge_pages,
665
			resv_huge_pages,
666
			surplus_huge_pages,
L
Linus Torvalds 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
			HPAGE_SIZE/1024);
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
		"Node %d HugePages_Free:  %5u\n",
		nid, nr_huge_pages_node[nid],
		nid, free_huge_pages_node[nid]);
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}

/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
691
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
692 693
{
	BUG();
N
Nick Piggin 已提交
694
	return 0;
L
Linus Torvalds 已提交
695 696 697
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
698
	.fault = hugetlb_vm_op_fault,
L
Linus Torvalds 已提交
699 700
};

701 702
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
703 704 705
{
	pte_t entry;

706
	if (writable) {
D
David Gibson 已提交
707 708 709 710 711 712 713 714 715 716 717
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

718 719 720 721 722 723
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

	entry = pte_mkwrite(pte_mkdirty(*ptep));
724 725 726
	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
		update_mmu_cache(vma, address, entry);
	}
727 728 729
}


D
David Gibson 已提交
730 731 732 733 734
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
735
	unsigned long addr;
736 737 738
	int cow;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
739

740
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
H
Hugh Dickins 已提交
741 742 743
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
D
David Gibson 已提交
744 745 746
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
747 748 749 750 751

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
752
		spin_lock(&dst->page_table_lock);
753
		spin_lock(&src->page_table_lock);
H
Hugh Dickins 已提交
754
		if (!pte_none(*src_pte)) {
755 756
			if (cow)
				ptep_set_wrprotect(src, addr, src_pte);
757 758 759 760 761 762
			entry = *src_pte;
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
763
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
764 765 766 767 768 769 770
	}
	return 0;

nomem:
	return -ENOMEM;
}

771 772
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			    unsigned long end)
D
David Gibson 已提交
773 774 775
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
776
	pte_t *ptep;
D
David Gibson 已提交
777 778
	pte_t pte;
	struct page *page;
779
	struct page *tmp;
780 781 782 783 784
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
785
	LIST_HEAD(page_list);
D
David Gibson 已提交
786 787 788 789 790

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~HPAGE_MASK);
	BUG_ON(end & ~HPAGE_MASK);

791
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
792
	for (address = start; address < end; address += HPAGE_SIZE) {
793
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
794
		if (!ptep)
795 796
			continue;

797 798 799
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

800
		pte = huge_ptep_get_and_clear(mm, address, ptep);
D
David Gibson 已提交
801 802
		if (pte_none(pte))
			continue;
803

D
David Gibson 已提交
804
		page = pte_page(pte);
805 806
		if (pte_dirty(pte))
			set_page_dirty(page);
807
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
808
	}
L
Linus Torvalds 已提交
809
	spin_unlock(&mm->page_table_lock);
810
	flush_tlb_range(vma, start, end);
811 812 813 814
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
815
}
D
David Gibson 已提交
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			  unsigned long end)
{
	/*
	 * It is undesirable to test vma->vm_file as it should be non-null
	 * for valid hugetlb area. However, vm_file will be NULL in the error
	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
	 * to clean up. Since no pte has actually been setup, it is safe to
	 * do nothing in this case.
	 */
	if (vma->vm_file) {
		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
		__unmap_hugepage_range(vma, start, end);
		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
	}
}

835 836 837 838
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *ptep, pte_t pte)
{
	struct page *old_page, *new_page;
839
	int avoidcopy;
840 841 842 843 844 845 846 847

	old_page = pte_page(pte);

	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
848
		return 0;
849 850 851
	}

	page_cache_get(old_page);
852
	new_page = alloc_huge_page(vma, address);
853

854
	if (IS_ERR(new_page)) {
855
		page_cache_release(old_page);
856
		return -PTR_ERR(new_page);
857 858 859
	}

	spin_unlock(&mm->page_table_lock);
860
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
861
	__SetPageUptodate(new_page);
862 863 864 865 866 867 868 869 870 871 872 873
	spin_lock(&mm->page_table_lock);

	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
	if (likely(pte_same(*ptep, pte))) {
		/* Break COW */
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
874
	return 0;
875 876
}

877
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
878
			unsigned long address, pte_t *ptep, int write_access)
879 880
{
	int ret = VM_FAULT_SIGBUS;
A
Adam Litke 已提交
881 882 883 884
	unsigned long idx;
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
885
	pte_t new_pte;
A
Adam Litke 已提交
886 887 888 889 890 891 892 893 894

	mapping = vma->vm_file->f_mapping;
	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
895 896 897
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
898 899 900
		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
		if (idx >= size)
			goto out;
901
		page = alloc_huge_page(vma, address);
902 903
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
904 905
			goto out;
		}
906
		clear_huge_page(page, address);
N
Nick Piggin 已提交
907
		__SetPageUptodate(page);
908

909 910
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
911
			struct inode *inode = mapping->host;
912 913 914 915 916 917 918 919

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
920 921 922 923

			spin_lock(&inode->i_lock);
			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
			spin_unlock(&inode->i_lock);
924 925 926
		} else
			lock_page(page);
	}
927

928
	spin_lock(&mm->page_table_lock);
A
Adam Litke 已提交
929 930 931 932
	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
933
	ret = 0;
934
	if (!pte_none(*ptep))
A
Adam Litke 已提交
935 936
		goto backout;

937 938 939 940 941 942 943 944 945
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
	}

946
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
947 948
	unlock_page(page);
out:
949
	return ret;
A
Adam Litke 已提交
950 951 952 953 954 955

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
956 957
}

958 959 960 961 962
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
963
	int ret;
964
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
965 966 967 968 969

	ptep = huge_pte_alloc(mm, address);
	if (!ptep)
		return VM_FAULT_OOM;

970 971 972 973 974 975
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
976
	entry = *ptep;
977 978 979 980 981
	if (pte_none(entry)) {
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
982

N
Nick Piggin 已提交
983
	ret = 0;
984 985 986 987 988 989 990

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
	if (likely(pte_same(entry, *ptep)))
		if (write_access && !pte_write(entry))
			ret = hugetlb_cow(mm, vma, address, ptep, entry);
	spin_unlock(&mm->page_table_lock);
991
	mutex_unlock(&hugetlb_instantiation_mutex);
992 993

	return ret;
994 995
}

D
David Gibson 已提交
996 997
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
998 999
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1000
{
1001 1002
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1003 1004
	int remainder = *length;

1005
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1006
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1007 1008
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
1009

A
Adam Litke 已提交
1010 1011 1012 1013 1014 1015
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
D
David Gibson 已提交
1016

1017
		if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
A
Adam Litke 已提交
1018
			int ret;
D
David Gibson 已提交
1019

A
Adam Litke 已提交
1020
			spin_unlock(&mm->page_table_lock);
1021
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
1022
			spin_lock(&mm->page_table_lock);
1023
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
1024
				continue;
D
David Gibson 已提交
1025

A
Adam Litke 已提交
1026 1027 1028 1029 1030 1031
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

1032 1033 1034
		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
		page = pte_page(*pte);
same_page:
1035 1036
		if (pages) {
			get_page(page);
1037
			pages[i] = page + pfn_offset;
1038
		}
D
David Gibson 已提交
1039 1040 1041 1042 1043

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
1044
		++pfn_offset;
D
David Gibson 已提交
1045 1046
		--remainder;
		++i;
1047 1048 1049 1050 1051 1052 1053 1054
		if (vaddr < vma->vm_end && remainder &&
				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
1055
	}
1056
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
1057 1058 1059 1060 1061
	*length = remainder;
	*position = vaddr;

	return i;
}
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

1074
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1075 1076 1077 1078 1079
	spin_lock(&mm->page_table_lock);
	for (; address < end; address += HPAGE_SIZE) {
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
1080 1081
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
1082 1083 1084 1085 1086 1087 1088
		if (!pte_none(*ptep)) {
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
1089
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1090 1091 1092 1093

	flush_tlb_range(vma, start, end);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
S
Simon Arlott 已提交
1148
	 * size such that we can guarantee to record the reservation. */
1149 1150
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1151
		if (!nrg)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

static int hugetlb_acct_memory(long delta)
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
1237 1238 1239 1240
	if (delta > 0) {
		if (gather_surplus_pages(delta) < 0)
			goto out;

1241 1242
		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
			return_unused_surplus_pages(delta);
1243
			goto out;
1244
		}
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	}

	ret = 0;
	if (delta < 0)
		return_unused_surplus_pages((unsigned long) -delta);

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

int hugetlb_reserve_pages(struct inode *inode, long from, long to)
{
	long ret, chg;

	chg = region_chg(&inode->i_mapping->private_list, from, to);
	if (chg < 0)
		return chg;
1263

1264 1265
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
1266
	ret = hugetlb_acct_memory(chg);
K
Ken Chen 已提交
1267 1268
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
1269
		return ret;
K
Ken Chen 已提交
1270
	}
1271 1272 1273 1274 1275 1276 1277
	region_add(&inode->i_mapping->private_list, from, to);
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
1278 1279 1280 1281 1282

	spin_lock(&inode->i_lock);
	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
	spin_unlock(&inode->i_lock);

1283 1284
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
	hugetlb_acct_memory(-(chg - freed));
1285
}