hugetlb.c 53.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17
#include <linux/sysfs.h>
18

D
David Gibson 已提交
19 20 21 22
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
23
#include "internal.h"
L
Linus Torvalds 已提交
24 25

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
26 27
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
28

29 30 31 32 33 34 35 36 37 38
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
39

40 41 42 43
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
44

45 46 47
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
48 49 50 51 52 53 54 55 56 57
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

204 205 206 207
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
208 209
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
210
{
211 212
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
213 214
}

215 216 217 218 219 220 221
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
222
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
223

224 225 226 227 228 229 230 231 232
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
233 234 235 236 237 238 239 240 241
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
242
 */
243 244 245 246 247 248 249 250 251 252 253
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

struct resv_map *resv_map_alloc(void)
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

void resv_map_release(struct kref *ref)
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
281 282 283
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
284 285
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
286 287 288
	return 0;
}

289
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
290 291 292 293
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

294 295
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
296 297 298 299 300
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
301 302 303
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
304 305 306 307 308
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
309 310

	return (get_vma_private_data(vma) & flag) != 0;
311 312 313
}

/* Decrement the reserved pages in the hugepage pool by one */
314 315
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
316
{
317 318 319
	if (vma->vm_flags & VM_NORESERVE)
		return;

320 321
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
322
		h->resv_huge_pages--;
323
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
324 325 326 327
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
328
		h->resv_huge_pages--;
329 330 331
	}
}

332
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
333 334 335 336 337 338 339 340 341 342 343 344
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static int vma_has_private_reserves(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED)
		return 0;
345
	if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
346 347 348 349
		return 0;
	return 1;
}

350 351
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
352 353 354 355
{
	int i;

	might_sleep();
356
	for (i = 0; i < sz/PAGE_SIZE; i++) {
357
		cond_resched();
358
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
359 360 361 362
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
363
			   unsigned long addr, struct vm_area_struct *vma)
364 365
{
	int i;
366
	struct hstate *h = hstate_vma(vma);
367 368

	might_sleep();
369
	for (i = 0; i < pages_per_huge_page(h); i++) {
370
		cond_resched();
371
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
372 373 374
	}
}

375
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
376 377
{
	int nid = page_to_nid(page);
378 379 380
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
381 382
}

383
static struct page *dequeue_huge_page(struct hstate *h)
384 385 386 387 388
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
389 390
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
391 392
					  struct page, lru);
			list_del(&page->lru);
393 394
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
395 396 397 398 399 400
			break;
		}
	}
	return page;
}

401 402
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
403
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
404
{
405
	int nid;
L
Linus Torvalds 已提交
406
	struct page *page = NULL;
407
	struct mempolicy *mpol;
408
	nodemask_t *nodemask;
409
	struct zonelist *zonelist = huge_zonelist(vma, address,
410
					htlb_alloc_mask, &mpol, &nodemask);
411 412
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
413

414 415 416 417 418 419
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_private_reserves(vma) &&
420
			h->free_huge_pages - h->resv_huge_pages == 0)
421 422
		return NULL;

423
	/* If reserves cannot be used, ensure enough pages are in the pool */
424
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
425 426
		return NULL;

427 428
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
429 430
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
431 432
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
433 434
					  struct page, lru);
			list_del(&page->lru);
435 436
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
437 438

			if (!avoid_reserve)
439
				decrement_hugepage_resv_vma(h, vma);
440

K
Ken Chen 已提交
441
			break;
A
Andrew Morton 已提交
442
		}
L
Linus Torvalds 已提交
443
	}
444
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
445 446 447
	return page;
}

448
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
449 450
{
	int i;
451 452 453 454

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
455 456 457 458 459 460
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
461
	arch_release_hugepage(page);
462
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
463 464
}

465 466 467 468 469 470 471 472 473 474 475
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

476 477
static void free_huge_page(struct page *page)
{
478 479 480 481
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
482
	struct hstate *h = page_hstate(page);
483
	int nid = page_to_nid(page);
484
	struct address_space *mapping;
485

486
	mapping = (struct address_space *) page_private(page);
487
	set_page_private(page, 0);
488
	BUG_ON(page_count(page));
489 490 491
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
492 493 494 495
	if (h->surplus_huge_pages_node[nid]) {
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
496
	} else {
497
		enqueue_huge_page(h, page);
498
	}
499
	spin_unlock(&hugetlb_lock);
500
	if (mapping)
501
		hugetlb_put_quota(mapping, 1);
502 503
}

504 505 506 507 508
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
509
static int adjust_pool_surplus(struct hstate *h, int delta)
510 511 512 513 514 515 516 517 518 519 520 521
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
522
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
523 524
			continue;
		/* Surplus cannot exceed the total number of pages */
525 526
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
527 528
			continue;

529 530
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
531 532 533 534 535 536 537 538
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

539
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
540 541 542
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
543 544
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
545 546 547 548
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

549
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
550 551
{
	struct page *page;
552

553
	page = alloc_pages_node(nid,
554 555
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
556
		huge_page_order(h));
L
Linus Torvalds 已提交
557
	if (page) {
558 559
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
560
			return NULL;
561
		}
562
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
563
	}
564 565 566 567

	return page;
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

589
static int alloc_fresh_huge_page(struct hstate *h)
590 591 592 593 594 595
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

596
	start_nid = h->hugetlb_next_nid;
597 598

	do {
599
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
600 601
		if (page)
			ret = 1;
602
		next_nid = hstate_next_node(h);
603
	} while (!page && h->hugetlb_next_nid != start_nid);
604

605 606 607 608 609
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

610
	return ret;
L
Linus Torvalds 已提交
611 612
}

613 614
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
615 616
{
	struct page *page;
617
	unsigned int nid;
618

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
643
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
644 645 646
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
647 648
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
649 650 651
	}
	spin_unlock(&hugetlb_lock);

652 653
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
654
					huge_page_order(h));
655 656

	spin_lock(&hugetlb_lock);
657
	if (page) {
658 659 660 661 662 663
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
664
		nid = page_to_nid(page);
665
		set_compound_page_dtor(page, free_huge_page);
666 667 668
		/*
		 * We incremented the global counters already
		 */
669 670
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
671
		__count_vm_event(HTLB_BUDDY_PGALLOC);
672
	} else {
673 674
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
675
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
676
	}
677
	spin_unlock(&hugetlb_lock);
678 679 680 681

	return page;
}

682 683 684 685
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
686
static int gather_surplus_pages(struct hstate *h, int delta)
687 688 689 690 691 692
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

693
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
694
	if (needed <= 0) {
695
		h->resv_huge_pages += delta;
696
		return 0;
697
	}
698 699 700 701 702 703 704 705

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
706
		page = alloc_buddy_huge_page(h, NULL, 0);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
727 728
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
729 730 731 732 733 734 735
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
736 737 738
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
739 740
	 */
	needed += allocated;
741
	h->resv_huge_pages += delta;
742 743
	ret = 0;
free:
744
	/* Free the needed pages to the hugetlb pool */
745
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
746 747
		if ((--needed) < 0)
			break;
748
		list_del(&page->lru);
749
		enqueue_huge_page(h, page);
750 751 752 753 754 755 756
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
757
			/*
758 759 760
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
761 762 763
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
764
			free_huge_page(page);
765
		}
766
		spin_lock(&hugetlb_lock);
767 768 769 770 771 772 773 774 775 776
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
777 778
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
779 780 781 782 783
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

784 785 786 787 788 789 790 791
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

792
	/* Uncommit the reservation */
793
	h->resv_huge_pages -= unused_resv_pages;
794

795
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
796

797
	while (remaining_iterations-- && nr_pages) {
798 799 800 801
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

802
		if (!h->surplus_huge_pages_node[nid])
803 804
			continue;

805 806
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
807 808
					  struct page, lru);
			list_del(&page->lru);
809 810 811 812 813
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
814
			nr_pages--;
815
			remaining_iterations = num_online_nodes();
816 817 818 819
		}
	}
}

820 821 822 823 824 825 826 827 828
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
829 830
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
831 832 833 834 835
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
836
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
837 838 839
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

840 841
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
842

843 844
	} else  {
		int err;
845
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
846 847 848 849 850 851 852
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
853
}
854 855
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
856 857 858 859 860
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
861
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
862
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
863 864

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
865
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
866 867 868 869
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
870 871 872
	}
}

873
static struct page *alloc_huge_page(struct vm_area_struct *vma,
874
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
875
{
876
	struct hstate *h = hstate_vma(vma);
877
	struct page *page;
878 879
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
880
	unsigned int chg;
881 882 883 884 885

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
886 887
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
888
	 */
889
	chg = vma_needs_reservation(h, vma, addr);
890 891 892
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
893 894
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
895 896

	spin_lock(&hugetlb_lock);
897
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
898
	spin_unlock(&hugetlb_lock);
899

K
Ken Chen 已提交
900
	if (!page) {
901
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
902
		if (!page) {
903
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
904 905 906
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
907

908 909
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
910

911
	vma_commit_reservation(h, vma, addr);
912

913
	return page;
914 915
}

916
static void __init hugetlb_init_one_hstate(struct hstate *h)
L
Linus Torvalds 已提交
917 918
{
	unsigned long i;
919

L
Linus Torvalds 已提交
920
	for (i = 0; i < MAX_NUMNODES; ++i)
921
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
L
Linus Torvalds 已提交
922

923
	h->hugetlb_next_nid = first_node(node_online_map);
924

925
	for (i = 0; i < h->max_huge_pages; ++i) {
926
		if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
927 928
			break;
	}
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	h->max_huge_pages = h->free_huge_pages = h->nr_huge_pages = i;
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		hugetlb_init_one_hstate(h);
	}
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		printk(KERN_INFO "Total HugeTLB memory allocated, "
				"%ld %dMB pages\n",
				h->free_huge_pages,
				1 << (h->order + PAGE_SHIFT - 20));
	}
}

L
Linus Torvalds 已提交
953 954
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
955
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
956
{
957 958
	int i;

L
Linus Torvalds 已提交
959 960
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
961 962 963
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
964
				return;
L
Linus Torvalds 已提交
965 966 967
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
968
			update_and_free_page(h, page);
969 970
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
971 972 973 974
		}
	}
}
#else
975
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
976 977 978 979
{
}
#endif

980
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
981
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
982
{
983
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
984

985 986 987 988
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
989 990 991 992 993 994
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
995
	 */
L
Linus Torvalds 已提交
996
	spin_lock(&hugetlb_lock);
997 998
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
999 1000 1001
			break;
	}

1002
	while (count > persistent_huge_pages(h)) {
1003 1004 1005 1006 1007 1008
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1009
		ret = alloc_fresh_huge_page(h);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1022 1023 1024 1025 1026 1027 1028 1029
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1030
	 */
1031
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1032
	min_count = max(count, min_count);
1033 1034 1035
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1036 1037
		if (!page)
			break;
1038
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1039
	}
1040 1041
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1042 1043 1044
			break;
	}
out:
1045
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1046
	spin_unlock(&hugetlb_lock);
1047
	return ret;
L
Linus Torvalds 已提交
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
	BUILD_BUG_ON(HPAGE_SHIFT == 0);

	if (!size_to_hstate(HPAGE_SIZE)) {
		hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
		parsed_hstate->max_huge_pages = default_hstate_max_huge_pages;
	}
	default_hstate_idx = size_to_hstate(HPAGE_SIZE) - hstates;

	hugetlb_init_hstates();

	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
	hugetlb_init_one_hstate(h);
	parsed_hstate = h;
}

static int __init hugetlb_setup(char *s)
{
	unsigned long *mhp;

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

	return 1;
}
__setup("hugepages=", hugetlb_setup);

static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
1271 1272 1273 1274
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1275 1276 1277 1278 1279 1280 1281 1282
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1283
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1284 1285 1286 1287

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1288 1289
	return 0;
}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1303 1304 1305 1306
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1307
	struct hstate *h = &default_hstate;
1308 1309 1310 1311 1312 1313 1314
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1315
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1316 1317 1318 1319 1320 1321 1322

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1323 1324 1325
	return 0;
}

L
Linus Torvalds 已提交
1326 1327 1328 1329
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
1330
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1331 1332 1333
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
1334
			"HugePages_Rsvd:  %5lu\n"
1335
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
1336
			"Hugepagesize:    %5lu kB\n",
1337 1338 1339 1340 1341
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1342 1343 1344 1345
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1346
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1347 1348
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1349 1350
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1351 1352 1353
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1354 1355 1356 1357 1358
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1359 1360
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1361 1362
}

1363
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1386
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1387 1388
			goto out;

1389 1390
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1391 1392 1393 1394 1395 1396
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1397
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1398 1399 1400 1401 1402 1403

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1420 1421
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1422
	struct hstate *h = hstate_vma(vma);
1423 1424 1425 1426 1427 1428
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1429 1430
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1431 1432 1433 1434 1435 1436 1437

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

		if (reserve)
1438
			hugetlb_acct_memory(h, -reserve);
1439
	}
1440 1441
}

L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1448
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1449 1450
{
	BUG();
N
Nick Piggin 已提交
1451
	return 0;
L
Linus Torvalds 已提交
1452 1453 1454
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1455
	.fault = hugetlb_vm_op_fault,
1456
	.open = hugetlb_vm_op_open,
1457
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1458 1459
};

1460 1461
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1462 1463 1464
{
	pte_t entry;

1465
	if (writable) {
D
David Gibson 已提交
1466 1467 1468
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1469
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1470 1471 1472 1473 1474 1475 1476
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1477 1478 1479 1480 1481
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1482 1483
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1484 1485
		update_mmu_cache(vma, address, entry);
	}
1486 1487 1488
}


D
David Gibson 已提交
1489 1490 1491 1492 1493
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1494
	unsigned long addr;
1495
	int cow;
1496 1497
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1498 1499

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1500

1501
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1502 1503 1504
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1505
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1506 1507
		if (!dst_pte)
			goto nomem;
1508 1509 1510 1511 1512

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1513
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1514
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1515
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1516
			if (cow)
1517 1518
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1519 1520 1521 1522 1523
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1524
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1525 1526 1527 1528 1529 1530 1531
	}
	return 0;

nomem:
	return -ENOMEM;
}

1532
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1533
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1534 1535 1536
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1537
	pte_t *ptep;
D
David Gibson 已提交
1538 1539
	pte_t pte;
	struct page *page;
1540
	struct page *tmp;
1541 1542 1543
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1544 1545 1546 1547 1548
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1549
	LIST_HEAD(page_list);
D
David Gibson 已提交
1550 1551

	WARN_ON(!is_vm_hugetlb_page(vma));
1552 1553
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1554

1555
	spin_lock(&mm->page_table_lock);
1556
	for (address = start; address < end; address += sz) {
1557
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1558
		if (!ptep)
1559 1560
			continue;

1561 1562 1563
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1585
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1586
		if (huge_pte_none(pte))
D
David Gibson 已提交
1587
			continue;
1588

D
David Gibson 已提交
1589
		page = pte_page(pte);
1590 1591
		if (pte_dirty(pte))
			set_page_dirty(page);
1592
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1593
	}
L
Linus Torvalds 已提交
1594
	spin_unlock(&mm->page_table_lock);
1595
	flush_tlb_range(vma, start, end);
1596 1597 1598 1599
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1600
}
D
David Gibson 已提交
1601

1602
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1603
			  unsigned long end, struct page *ref_page)
1604
{
1605 1606 1607
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1608 1609
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
int unmap_ref_private(struct mm_struct *mm,
					struct vm_area_struct *vma,
					struct page *page,
					unsigned long address)
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1656
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1657 1658
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1659
{
1660
	struct hstate *h = hstate_vma(vma);
1661
	struct page *old_page, *new_page;
1662
	int avoidcopy;
1663
	int outside_reserve = 0;
1664 1665 1666

	old_page = pte_page(pte);

1667
retry_avoidcopy:
1668 1669 1670 1671 1672
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1673
		return 0;
1674 1675
	}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1690
	page_cache_get(old_page);
1691
	new_page = alloc_huge_page(vma, address, outside_reserve);
1692

1693
	if (IS_ERR(new_page)) {
1694
		page_cache_release(old_page);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1713
		return -PTR_ERR(new_page);
1714 1715 1716
	}

	spin_unlock(&mm->page_table_lock);
1717
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1718
	__SetPageUptodate(new_page);
1719 1720
	spin_lock(&mm->page_table_lock);

1721
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1722
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1723
		/* Break COW */
1724
		huge_ptep_clear_flush(vma, address, ptep);
1725 1726 1727 1728 1729 1730 1731
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1732
	return 0;
1733 1734
}

1735
/* Return the pagecache page at a given address within a VMA */
1736 1737
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1738 1739
{
	struct address_space *mapping;
1740
	pgoff_t idx;
1741 1742

	mapping = vma->vm_file->f_mapping;
1743
	idx = vma_hugecache_offset(h, vma, address);
1744 1745 1746 1747

	return find_lock_page(mapping, idx);
}

1748
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1749
			unsigned long address, pte_t *ptep, int write_access)
1750
{
1751
	struct hstate *h = hstate_vma(vma);
1752
	int ret = VM_FAULT_SIGBUS;
1753
	pgoff_t idx;
A
Adam Litke 已提交
1754 1755 1756
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1757
	pte_t new_pte;
A
Adam Litke 已提交
1758

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1771
	mapping = vma->vm_file->f_mapping;
1772
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1773 1774 1775 1776 1777

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1778 1779 1780
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1781
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1782 1783
		if (idx >= size)
			goto out;
1784
		page = alloc_huge_page(vma, address, 0);
1785 1786
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1787 1788
			goto out;
		}
1789
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
1790
		__SetPageUptodate(page);
1791

1792 1793
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1794
			struct inode *inode = mapping->host;
1795 1796 1797 1798 1799 1800 1801 1802

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1803 1804

			spin_lock(&inode->i_lock);
1805
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
1806
			spin_unlock(&inode->i_lock);
1807 1808 1809
		} else
			lock_page(page);
	}
1810

1811
	spin_lock(&mm->page_table_lock);
1812
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
1813 1814 1815
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1816
	ret = 0;
1817
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1818 1819
		goto backout;

1820 1821 1822 1823 1824 1825
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
1826
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1827 1828
	}

1829
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
1830 1831
	unlock_page(page);
out:
1832
	return ret;
A
Adam Litke 已提交
1833 1834 1835 1836 1837 1838

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
1839 1840
}

1841 1842 1843 1844 1845
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
1846
	int ret;
1847
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1848
	struct hstate *h = hstate_vma(vma);
1849

1850
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1851 1852 1853
	if (!ptep)
		return VM_FAULT_OOM;

1854 1855 1856 1857 1858 1859
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1860 1861
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
1862 1863 1864 1865
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1866

N
Nick Piggin 已提交
1867
	ret = 0;
1868 1869 1870

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
1871
	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1872 1873
		if (write_access && !pte_write(entry)) {
			struct page *page;
1874
			page = hugetlbfs_pagecache_page(h, vma, address);
1875 1876 1877 1878 1879 1880
			ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
			if (page) {
				unlock_page(page);
				put_page(page);
			}
		}
1881
	spin_unlock(&mm->page_table_lock);
1882
	mutex_unlock(&hugetlb_instantiation_mutex);
1883 1884

	return ret;
1885 1886
}

D
David Gibson 已提交
1887 1888
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
1889 1890
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1891
{
1892 1893
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1894
	int remainder = *length;
1895
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
1896

1897
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1898
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1899 1900
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
1901

A
Adam Litke 已提交
1902 1903 1904 1905 1906
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
1907
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
D
David Gibson 已提交
1908

1909 1910
		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
1911
			int ret;
D
David Gibson 已提交
1912

A
Adam Litke 已提交
1913
			spin_unlock(&mm->page_table_lock);
1914
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
1915
			spin_lock(&mm->page_table_lock);
1916
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
1917
				continue;
D
David Gibson 已提交
1918

A
Adam Litke 已提交
1919 1920 1921 1922 1923 1924
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

1925
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
1926
		page = pte_page(huge_ptep_get(pte));
1927
same_page:
1928 1929
		if (pages) {
			get_page(page);
1930
			pages[i] = page + pfn_offset;
1931
		}
D
David Gibson 已提交
1932 1933 1934 1935 1936

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
1937
		++pfn_offset;
D
David Gibson 已提交
1938 1939
		--remainder;
		++i;
1940
		if (vaddr < vma->vm_end && remainder &&
1941
				pfn_offset < pages_per_huge_page(h)) {
1942 1943 1944 1945 1946 1947
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
1948
	}
1949
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
1950 1951 1952 1953 1954
	*length = remainder;
	*position = vaddr;

	return i;
}
1955 1956 1957 1958 1959 1960 1961 1962

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
1963
	struct hstate *h = hstate_vma(vma);
1964 1965 1966 1967

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

1968
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1969
	spin_lock(&mm->page_table_lock);
1970
	for (; address < end; address += huge_page_size(h)) {
1971 1972 1973
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
1974 1975
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
1976
		if (!huge_pte_none(huge_ptep_get(ptep))) {
1977 1978 1979 1980 1981 1982
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
1983
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1984 1985 1986 1987

	flush_tlb_range(vma, start, end);
}

1988 1989 1990
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
1991 1992
{
	long ret, chg;
1993
	struct hstate *h = hstate_inode(inode);
1994

1995 1996 1997
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

1998 1999 2000 2001 2002 2003 2004 2005 2006
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
2007 2008 2009 2010
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2011
		chg = to - from;
2012 2013

		set_vma_resv_map(vma, resv_map);
2014
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2015 2016
	}

2017 2018
	if (chg < 0)
		return chg;
2019

2020 2021
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2022
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2023 2024
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2025
		return ret;
K
Ken Chen 已提交
2026
	}
2027 2028
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
2029 2030 2031 2032 2033
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2034
	struct hstate *h = hstate_inode(inode);
2035
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2036 2037

	spin_lock(&inode->i_lock);
2038
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2039 2040
	spin_unlock(&inode->i_lock);

2041
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2042
	hugetlb_acct_memory(h, -(chg - freed));
2043
}